OREGON STATE UNIVERSITY

scientific research and advances

Disease “superspreaders” were driving cause of 2014 Ebola epidemic

CORVALLIS, Ore. – A new study about the overwhelming importance of “superspreaders” in some infectious disease epidemics has shown that in the catastrophic 2014-15 Ebola epidemic in West Africa, about 3 percent of the people infected were ultimately responsible for infecting 61 percent of all cases.

The issue of superspreaders is so significant, scientists say, that it’s important to put a better face on just who these people are. It might then be possible to better reach them with public health measures designed to control the spread of infectious disease during epidemics.

Findings were reported this week in Proceedings of the National Academy of Sciences.

The researchers concluded that Ebola superspreaders often fit into certain age groups and were based more in the community than in health care facilities. They also continued to spread the disease after many of the people first infected had been placed in care facilities, where transmission was much better controlled.

If superspreading had been completely controlled, almost two thirds of the infections might have been prevented, scientists said in the study. The researchers also noted that their findings were conservative, since they only focused on people who had been buried safely.

This suggests that the role of superspreaders may have been even more profound than this research indicates.

The research was led by Princeton University, in collaboration with scientists from Oregon State University, the London School of Hygiene and Tropical Medicine, the International Federation of Red Cross and Red Crescent Societies, the Imperial College London, and the National Institutes of Health.

The concept of superspreaders is not new, researchers say, and it has evolved during the 2000s as scientists increasingly appreciate that not all individuals play an equal role in spreading an infectious disease.

Superspreaders, for instance, have also been implicated in the spread of severe acute respiratory syndrome, or SARS, in 2003; and the more recent Middle East respiratory syndrome in 2012.

But there’s less understanding of who and how important these superspreaders are.

“In the recent Ebola outbreak it’s now clear that superspreaders were an important component in driving the epidemic,” said Benjamin Dalziel, an assistant professor of population biology in two departments of the College of Science at Oregon State University, and co-author of the study.

“We now see the role of superspreaders as larger than initially suspected. There wasn’t a lot of transmission once people reached hospitals and care centers. Because case counts during the epidemic relied heavily on hospital data, those hospitalized cases tended to be the cases we ‘saw.’

“However, it was the cases you didn’t see that really drove the epidemic, particularly people who died at home, without making it to a care center. In our analysis we were able to see a web of transmission that would often track back to a community-based superspreader.”

Superspreading has already been cited in many first-hand narratives of Ebola transmission. This study, however, created a new statistical framework that allowed scientists to measure how important the phenomenon was in driving the epidemic. It also allowed them to measure how superspreading changed over time, as the epidemic progressed, and as control measures were implemented.

The outbreak size of the 2014 Ebola epidemic in Africa was unprecedented, and early control measures failed. Scientists believe that a better understanding of superspreading might allow more targeted and effective interventions instead of focusing on whole populations.

“As we can learn more about these infection pathways, we should be better able to focus on the types of individual behavior and demographics that are at highest risk for becoming infected, and transmitting infection,” Dalziel said.

Researchers pointed out, for instance, that millions of dollars were spent implementing message strategies about Ebola prevention and control across entire countries. They suggest that messages tailored to individuals with higher risk and certain types of behavior may have been more successful, and prevented the epidemic from being so persistent.

Lead author on the study was Max Lau, a postdoctoral research associate at Princeton University focused on applying statistical methodology in epidemiological and ecological modelling. at Princeton University. Support and funding was provided by the Bill and Melinda Gates Foundation, the National Institutes of Health, and the UK Medical Research Council.

Story By: 
Source: 

Benjamin Dalziel, 541-737-1979

benjamin.dalziel@oregonstate.edu

Agility Robotics evolves from OSU research, aims to revolutionize robot mobility

CORVALLIS, Ore. – The rapidly expanding robotics program in the College of Engineering at Oregon State University has spun off one of its first businesses, a company focused on legged locomotion that may revolutionize robot mobility and enable robots to go anywhere people can go.

The firm, Agility Robotics, is based in Albany, Oregon, and Pittsburgh, Pennsylvania; already has several of its first customers; will license some technologies first developed at OSU, and plans to build on this scientific foundation in their product research and development.

A leading application for this type of mobility is package delivery, company officials say. In the long term, advanced mobility will enable shipping so automated and inexpensive that its cost becomes inconsequential, opening vast new possibilities in retail trade while lowering costs for manufacturing and production.

“This technology will simply explode at some point, when we create vehicles so automated and robots so efficient that deliveries and shipments are almost free,” said Jonathan Hurst, an associate professor of robotics in the OSU College of Engineering, chief technology officer at Agility Robotics and an international leader in the development of legged locomotion.

“Quite simply, robots with legs can go a lot of places that wheels cannot. This will be the key to deliveries that can be made 24 hours a day, 365 days a year, by a fleet of autonomous vans that pull up to your curb, and an onboard robot that delivers to your doorstep.

“This robot capability will free people from weekend shopping chores, reduce energy use, and give consumers more time to do the things they want to do. It effectively brings efficient automated logistics from state-of-the-art warehouses out and into the rest of the world.”

This long-term vision will take many steps, company officials said.

Some of Agility Robotics’ first sales will be to other academic and research institutions, to grow the research community and educate a new generation of engineers in this area, company officials said. What the firm now offers is a bipedal robot named “Cassie” – similar to the prototype version demonstrated Feb. 8 at OSU’s State of the University address in Portland, Oregon, by President Edward J. Ray.

Cassie the robot can stand, steer, and take a pretty good fall without breaking. It’s half the weight and much more capable than earlier robots developed at OSU.

“Our previous robot, ATRIAS, had motors that would work against either other, which was inefficient,” Hurst said. “With Cassie, we’ve fixed this problem and added steering, feet, and a sealed system, so it will work outdoors in the rain and snow as we continue with our controller testing.”

The particular issue of motors working against one another prompted some extensive theoretical research, to create the mathematical frameworks needed to solve the problem. The resulting leg configuration of Cassie looks much like an ostrich or other ground-running bird.

“We weren’t trying to duplicate the appearance of an animal, just the techniques it uses to be agile, efficient and robust in its movement,” Hurst said.

“We didn’t care what it looked like and were mostly just working to find out why Mother Nature did things a certain way. But even though we weren’t trying to mimic the form, what came out on the other end of our research looked remarkably like an animal leg.”

Cassie, built with a 16-month, $1 million grant from the Advanced Research Projects Agency of the U.S. Department of Defense, is already one of the leading innovations in the world of legged robotics.

Company officials say they plan to do all initial production in Oregon and will focus their business on the commercial applications of legged robots. Hiring is anticipated for research, production and development.

“The robotics revolution will bring with it enormous changes, perhaps sooner than many people realize,” Hurst said. “We hope for Agility Robotics to be a big part of that revolution. We want to change people’s lives and make them better.”

 

Company officials said that access to the research base and education of students at OSU will aid its growth, providing the needed expertise and trained work force. OSU has already been ranked by Grad School Hub as the best in the western United States and fourth leading program in the nation in robotics research and education.

Last month, OSU officials also announced that the university will be a founding academic partner in the newest Manufacturing USA Institute, the Advance Robotics Manufacturing Innovation Hub. This broad program with 14 institutes is a $3 billion federal and private company initiative designed to enhance U.S. competitiveness in advanced manufacturing.

Story By: 
Source: 

Jonathan Hurst, 541-737-7010

jonathan.hurst@oregonstate.edu

Multimedia Downloads
Multimedia: 

Cassie the robot
Cassie the robot

YouTube video:

http://bit.ly/2kwD5xV

 

 

MRI brain scans may help identify risks, prevent adolescent substance abuse

CORVALLIS, Ore. – Neuroimaging of the brain using technologies such as magnetic resonance imaging, or MRIs, increasingly is showing promise as a technique to predict adolescent vulnerability to substance abuse disorders, researchers conclude in a new analysis. 

A greater understanding of what such technologies offer and continued research to perfect the use of them may ultimately help identify youth at the highest risk for these problems and allow prevention approaches. These might include neuropsychological intervention exercises that can strengthen vulnerable cognitive networks in the brain.

The findings are of importance, researchers say, because underage alcohol and drug use is increasingly being recognized as a public health and social problem, with long-term consequences that include poorer academic performance, neurocognitive deficits and psychosocial problems.

Youth who begin drinking before age 15 have four to six times the rate of lifetime alcohol dependence than those who do not drink by age 21, researchers noted in this analysis, which was recently published in Current Opinion in Behavioral Sciences.

“Structural and neural alterations in the brain from drug and alcohol abuse have now been well established,” said Anita Cservenka, an assistant professor in the College of Liberal Arts at Oregon State University, and co-author of the study.

“It’s also becoming clear that some of these alterations can exist before any substance abuse, and often are found in youth who have a family history of alcohol and drug use disorders. These familial risk factors can play a role in future substance abuse, along with environmental risk factors such as peer influence, personality and psychosocial interactions.”

Family history of alcohol-use disorder is a strong predictor of substance abuse, Cservenka said, as it raises the risk for the development of alcohol-use disorder in adolescents by three to five times. Neuroimaging studies show significant overlap in brain scans between those with a family history of alcohol- and substance-use disorders and youth who begin using substances during adolescence.

Some of the findings in youth with family history of alcohol- and substance-use disorder include a smaller volume of limbic brain regions, sex-specific patterns of hippocampal volume, and a positive association of familial risk with “nucleus accumbens” volume in the brain. Other risk factors for adolescent substance use that have been identified include poorer performance on executive functioning tasks of inhibition and working memory, smaller brain volumes in reward and cognitive control regions, and heightened response to rewards.

A factor contributing to a peak in substance use during adolescence, researchers say, may be emotion and reward systems that develop before cognitive control systems, leaving youth more vulnerable to risk-taking behaviors.

Almost two thirds of 18-year-olds, for instance, support lifetime alcohol use; 45 percent marijuana use; and 31 percent smoking cigarettes.

Various studies, Cservenka said, are examining such issues, including the National Consortium on Alcohol and Neurodevelopment in Adolescence, which includes five sites across the U.S. following 800 youth ages 12-21.

“We’re just beginning to understand the risk factors for substance abuse and the consequences of adolescent substance use with these types of large, long-term studies,” she said. “Ultimately such information should help inform us about who might be at most risk and what brain areas are most vulnerable, so we can target them and work to prevent the problems.”

If an MRI showed weakness in working memory, for instance, computer games or behavioral tasks might help strengthen the area of the brain that is deficient. Similar approaches might also be used to help address issues such as stress and depression, Cservenka said.

The lead author on this review was Lindsay Squeglia at the Medical University of South Carolina. The work has been supported by the National Institutes of Health.

Story By: 
Source: 

Anita Cservenka, 541-737-1366

anita.cservenka@oregonstate.edu

Multimedia Downloads
Multimedia: 

Brain scan
Brain scan

Vitamin E deficiency linked to embryo damage, death

CORVALLIS, Ore. – Researchers for the first time have explained how deficient levels of vitamin E can cause neurologic damage to an embryo, failure to normally develop and ultimately death – a process that in women can be one cause of miscarriage.

The research was published by scientists from Oregon State University in Free Radical Biology and Medicine. It answers some questions about the biologic activities of vitamin E that have been debated since 1922, when this essential micronutrient was first discovered, in part for its role in preventing embryonic mortality.

The research also made clear the importance of vitamin E status for any woman who is planning to, or might become pregnant, scientists said.

The study, done with zebrafish embryos, showed that severe vitamin E deficiency causes the depletion of essential fatty acids, especially the omega-3 fatty acid DHA, which has been shown to be of critical importance to health in multiple studies in recent years.

When this happens, cells use glucose to prevent or reduce damage. Lacking glucose for energy, many physical and neurologic features, especially the brain, simply don’t get built, and death can be the result. Restoration of glucose can repair some of the damage, but some physical deformities remain.

In the growing embryo of a zebrafish – which goes from a cell to a swimming fish in about five days – a severe vitamin E deficiency causes 70-80 percent mortality, the study showed.

“Vitamin E has many biologic roles, only one of which is to serve as an antioxidant,” said Maret Traber, a professor in the OSU College of Public Health and Human Sciences, and Ava Helen Pauling Professor in the Linus Pauling Institute.

“In the growing embryo, vitamin E plays a major role in protecting essential fats such as DHA. Loss and oxidation of these fats can begin a chain reaction that involves glucose, depletes the cell of other antioxidants such as vitamin C, robs the cell of energy, and ultimately has a lethal outcome.”

When vitamin E is deficient, the embryonic brain is literally starved of necessary energy and nutrients, particularly DHA and choline, the researchers concluded in their study.

The neurological development of zebrafish is very similar to that of humans, Traber said, which make them a good model for this research.

“The importance of vitamin E in embryonic development, the very earliest days of vertebrate life, is part of what actually led to its discovery,” Traber said. “Since then we’ve learned much more about the need for this micronutrient in women. One study done in Bangladesh, for instance, showed that pregnant women with lower levels of vitamin E had double the risk of miscarriages as another group with adequate nutrition.”

Nutrition surveys suggest that about 96 percent of women in the U.S. have inadequate intakes of vitamin E in their diet, Traber said. The problem may be of even greater concern in young adult women who avoid high-fat foods and may not have a diet rich in oils, nuts and seeds, some of the foods with the highest levels of this micronutrient. The human body can create DHA from some foods, but not vitamin E.

In a human fetus, some of the most critical periods for neurologic and brain development are in the first few weeks of pregnancy. Given the difficulty of obtaining vitamin E in the diet, this would suggest that any woman who is planning to or may become pregnant should take a multivitamin with the recommended daily allowance of vitamin E and some other micronutrients, Traber said.

Collaborators on this research were from the Catholic University of Korea and the University of Southern California. The study was supported by the National Institutes of Health, the National Science Foundation and the Helen P. Rumbel endowment to the Linus Pauling Institute.

Story By: 
Source: 

Maret Traber, 541-737-7977

maret.traber@oregonstate.edu

Multimedia Downloads
Multimedia: 

Vitamin E
Vitamin E supplements

Third Oregon climate assessment report shows state still warming, despite frigid winter

CORVALLIS, Ore. – Don’t let this winter fool you. Oregon’s climate continues to warm; there are impacts on the state’s physical, biological and human-managed systems; and more studies are pointing to greenhouse gas emissions as the reason for these climate trends and events.

That is the conclusion of the third Oregon Climate Assessment Report, a synthesis of peer-reviewed scientific studies over the past three years. The legislatively mandated report was produced by the Oregon Climate Change Research Institute at Oregon State University and is being presented this month to key Oregon political leaders.

“Oregonians shouldn’t be swayed by this winter, which is colder than any of the ones we’ve had since 1990,” noted Philip Mote, director of the OSU center and a co-author on the report. “Overall, temperatures are still getting warmer – in Oregon, throughout the United States, and globally – and the impacts are very real.

“For Oregonians, it means warmer temperatures, lower snowpack and less water during the summer. And more and more studies are confirming greenhouse gas emissions as the cause.”

Kathie Dello, associate director of the Oregon Climate Change Research Institute, points out that although December of 2016 was the 11th coldest December on record in Oregon in 122 years of monitoring, the year was still among the top 10 warmest years on record for the state.

The climate assessment report, led by Meghan Dalton, a research assistant with the institute in the College of Earth, Ocean, and Atmospheric Sciences at OSU, looked at more than 300 studies published from 2013-16 by researchers at universities, state and federal agencies, and elsewhere. Dalton led a team of researchers who synthesized the literature and developed the report.

“The year 2015 has been described as foreshadowing what we can expect as normal conditions by the mid-21st century,” Dalton said. “There were warmer temperatures that led to drought, low snowpack, and greater wildfire risk, with less water in the summer. That appears to be our future.”

Snowpack in the past three years has varied greatly, according to Dello.

“In 2015, we basically had no snow to speak of,” Dello said. “In 2016, we had a lot of snow, but most of it got wiped out by warm temperatures in late winter and early spring. So far this year, we have had a lot of snow, but warmer temperatures are moving in, and we still have a lot of winter left. We’re cautiously optimistic. Large year-to-year changes like that are still expected, even in a warming climate.”

The report notes that a warming climate and earlier spring may have a few beneficial results. Farmers, for example, may benefit from a longer growing season, though water could be an issue for some crops.

The report analyzes potential impacts of climate change for Oregon’s many regions. Among the findings:

  • The Oregon Coast: Sea level rise will increase the risk of erosion and flooding and higher estuary temperatures will challenge migrating salmon and steelhead. One study estimated that warming of Yaquina Bay by 1.3 to 2.9 degrees (F) would result in 40 additional days of temperatures not meeting the criteria for protecting salmonids.
  • The Willamette Valley: Heat waves are expected to become longer, more common and more intense; operating rules for reservoirs may have to change to balance flood risk and summer water supply; air quality will decline, and wildfire risk will increase. A study of fire activity concluded that there will be a three-fold to nine-fold increase in the amount of area burned in the basin by the year 2100.
  • The Cascade Mountains: More precipitation will fall as rain instead of snow, with elevations between 3,000 feet and 6,000 feet being the most sensitive. In addition to potential impacts on ski resorts, there likely will be a change in when water is available. Cascades forests will probably be subject to more wildfire, drought, insect damage and disease, and some studies suggest that woodlands will shift from predominantly conifer to mixed conifer forests. The risk of increased incidence of respiratory illness from wildfire smoke is a top public health risk in Jackson County.
  • Eastern Oregon: Water will be a huge issue in the east with snowpack decline, and the same forest issues face the Blue Mountains as the Cascades. Increased wildfire risk may create more days of heavy smoke affecting public health, and fires will threaten the forests. Salmon in the John Day basin and other river systems will be challenged with warmer temperatures, and rangeland and sagebrush habitat is threatened by non-native weeds and grasses.

“A lot of the studies we cited focus on the physical aspects of warming, from snowpack to wildfire, but there are a lot of people who will be affected,” Dello said. “We can’t forget that Oregonians, their families, their jobs and their resources are at risk. There is still time to do something, but time is running short.”

A copy of the report is available at http://occri.net/

Story By: 
Source: 

Kathie Dello, 541-737-8927, kdello@coas.oregonstate.edu; Phil Mote, 541-913-2274, pmote@coas.oregonstate.edu

Globe-trotting pollutants raise some cancer risks four times higher than predicted

CORVALLIS, Ore. -- A new way of looking at how pollutants ride through the atmosphere has quadrupled the estimate of global lung cancer risk from a pollutant caused by combustion, to a level that is now double the allowable limit recommended by the World Health Organization.

The findings, published this week in the Proceedings of the National Academy of Sciences Early Edition online, showed that tiny floating particles can grow semi-solid around pollutants, allowing them to last longer and travel much farther than what previous global climate models predicted.

Scientists said the new estimates more closely match actual measurements of the pollutants from more than 300 urban and rural settings.

The study was done by scientists at Oregon State University, the Department of Energy’s Pacific Northwest National Laboratory, or PNNL, and Peking University. The research was primarily supported by PNNL.

"We developed and implemented new modeling approaches based on laboratory measurements to include shielding of toxics by organic aerosols, in a global climate model that resulted in large improvements of model predictions," said PNNL scientist and lead author Manish Shrivastava.

"This work brings together theory, lab experiments and field observations to show how viscous organic aerosols can largely elevate global human exposure to toxic particles, by shielding them from chemical degradation in the atmosphere."

Pollutants from fossil fuel burning, forest fires and biofuel consumption include air-polluting chemicals known as polycyclic aromatic hydrocarbons, or PAHs. In the United States, the Environmental Protection Agency has identified several PAHs as cancer-causing agents.

But PAHs have been difficult to represent in past climate models. Simulations of their degradation process fail to match the amount of PAH that is actually measured in the environment.

To look more closely at how far PAHs can travel while riding shielded on a viscous aerosol, the researchers compared the new model's numbers to PAH concentrations actually measured by Oregon State University scientists at the top of Mount Bachelor in the central Oregon Cascade Range.

“Our team found that the predictions with the new shielded models of PAHs came in at concentrations similar to what we measured on the mountain,” said Staci Simonich, a toxicologist and chemist in the College of Agricultural Sciences and College of Science at OSU, and international expert on the transport of PAHs.

“The level of PAHs we measured on Mount Bachelor was four times higher than previous models had predicted, and there’s evidence the aerosols came all the way from the other side of the Pacific Ocean.”

These tiny airborne particles form clouds, cause precipitation and reduce air quality, yet they are the most poorly understood aspect of the climate system.

A smidge of soot at their core, aerosols are tiny balls of gases, pollutants, and other molecules that coalesce around the core. Many of the molecules that coat the core are what's known as "organics." They arise from living matter such as vegetation -- leaves and branches, for example, or even the molecule responsible for the pine smell that wafts from forests.

Other molecules such as pollutant PAHs also stick to the aerosol. Researchers long thought that PAHs could move freely within the organic coating of an aerosol. This ease of movement allowed the PAH to travel to the surface where ozone -- a common chemical in the atmosphere -- can break it down.

But scientists' understanding of aerosols has changed in the last five years or so.

Recent experiments led by PNNL coauthor Alla Zelenyuk show that, depending on the conditions, the aerosol coatings can actually be quite viscous. If the atmosphere is cool and dry, the coating can become as viscous as tar, trapping PAHs and other chemicals. By preventing their movement, the viscous coating shields the PAHs from degradation.

Researchers developed a new way of representing PAHs in a global climate model, and ran it to simulate PAH concentrations from 2008 to 2010. They examined one of the most carcinogenic PAHs in particular, called BaP. Simulations were compared to data from 69 rural sites and 294 urban sites worldwide, and showed that predictions from shielded PAHs were far more accurate than previous, unshielded ones.

Scientists also analyzed how far the protected PAHs could travel, using both old and new models. In all cases, the shielded PAHs traveled across oceans and continents, whereas in the previous version they barely moved from their country of origin.

To look at the impact globe-trotting PAHs might have on human health, Shrivastava combined a global climate model, running either the shielded PAH scenario or the previous unshielded one, with a lifetime cancer risk assessment model developed by coauthors Huizhong Shen and Shu Tao, both then at Peking University.

Globally, the previous model predicted half a cancer death out of every 100,000 people, which is half the limit outlined by the World Health Organization (WHO) for PAH exposure. But using the new model, which showed that shielded PAHs actually travel great distances, the global risk was four times that, or two cancer deaths per 100,000 people, which exceeds WHO standards.

The WHO standards were not exceeded everywhere. It was higher in China and India and lower in the United States and Western Europe. The extent of shielding was also much lower over the tropics compared to the mid- and high-latitudes. As the aerosols traversed the warm and humid tropics, ozone could get access to the PAHs and oxidize them.

"We don't know what implications more PAH oxidation products over the tropics have for future human or environmental health risk assessments,” said Shrivastava. “We need to better understand how the shielding of PAHs varies with the complexity of aerosol composition, atmospheric chemical aging of aerosols, temperature and relative humidity. I was initially surprised to see so much oxidation over the tropics."

Other supporters of this research included the National Institute of Environmental Health Sciences, the National Science Foundation, the Ministry of Education, Youth and Sports of the Czech Republic, and the Department of Energy Office of Science.

Story By: 
Source: 

Staci Simonich, 541-737-9194

staci.simonich@oregonstate.edu

Mary Beckman, 509-375-3688

mary.beckman@pnnl.gov

Multimedia Downloads
Multimedia: 

Airborne transport

Pollutant transport to regions


Aerosol formation
Aerosol formation and transport

New technique could lead to safer, more efficient uranium extraction, aid environmental cleanup

CORVALLIS, Ore. – The separation of uranium, a key part of the nuclear fuel cycle, could potentially be done more safely and efficiently through a new technique developed by chemistry researchers at Oregon State University.

The technique uses soap-like chemicals known as surfactants to extract uranium from an aqueous solution into a kerosene solution in the form of hollow clusters. Aside from fuel preparation, it may also find value in legacy waste treatment and for the cleanup of environmental contamination.

The research at OSU involves a unique form of uranium discovered in 2005, uranyl peroxide capsules, and how those negatively charged clusters form in alkaline conditions. Results were recently published in the European Journal of Inorganic Chemistry.

“This is a very different direction,” said study lead author Harrison Neal, a graduate student in Oregon State’s College of Science. “A lot of the work done now is in acid, and we’re at the other end of the pH scale in base. It’s a very different approach, overall using less harmful, less toxic chemicals.”

Throughout the nuclear fuel cycle, many separations are required – in mining, enrichment and fuel fabrication, and then after fuel use, for the recovery of usable spent isotopes and the encapsulation and storage of unusable radioactive components.

“When you use nuclear fuel, the radioactive decay products poison the fuel and make it less effective,” said May Nyman, professor of chemistry at Oregon State and corresponding author on the research. “You have to take it, dissolve it, get the good stuff out and make new fuel.”

Nyman notes the work represents significant fundamental research in the field of cluster chemistry because it allows for the study of uranyl clusters in the organic phase and can pave the way to improved understanding of ion association.

“With extracting these clusters into the organic phase, the clusters themselves are hollow, so when we get them into the organic solution, they’re still containing other atoms, molecules, other ions,” Neal added. “We can study how these ions interact with these cages that they’re in. The fundamental research is understanding how the ions get inside and what they do once they’re inside because they’re stuck there.”

When the clusters form, each contains 20 to 60 uranium atoms, “so we can extract them in whole bunches instead of one at a time,” Nyman said. “It’s an atom-efficient approach.”

Existing separation techniques require two extraction molecules for every uranium ion, whereas the OSU technique requires less than one extraction molecule per ion.

Scientists from the University of Notre Dame collaborated on the research, which was supported by the U.S. Department of Energy.

Media Contact: 

Steve Lundeberg, 541-737-4039

Source: 
Multimedia Downloads
Multimedia: 

uranyl peroxide capsules

Uranyl peroxide capsules

Ancient, scary and alien-looking specimen forms a rarity in the insect world – a new order

CORVALLIS, Ore. – Researchers at Oregon State University have discovered a 100-million-year-old insect preserved in amber with a triangular head, almost-alien and “E.T.-like” appearance and features so unusual that it has been placed in its own scientific “order” – an incredibly rare event.

There are about 1 million described species of insects, and millions more still to be discovered, but every species of insect on Earth has been placed in only 31 existing orders. Now there’s one more.

The findings have been published in the journal Cretaceous Research and describe this small, wingless female insect that probably lived in fissures in the bark of trees, looking for mites, worms or fungi to feed on while dinosaurs lumbered nearby. It was tiny, but scary looking.

“This insect has a number of features that just don’t match those of any other insect species that I know,” said George Poinar, Jr., an emeritus professor of entomology in the OSU College of Science and one of the world’s leading experts on plant and animal life forms found preserved in the semi-precious stone amber.

“I had never really seen anything like it. It appears to be unique in the insect world, and after considerable discussion we decided it had to take its place in a new order.”

Perhaps most unusual, Poinar said, was a triangular head with bulging eyes, with the vertex of the right triangle located at the base of the neck. This is different from any other known insect, and would have given this species the ability to see almost 180 degrees by turning its head sideways.

The insect, probably an omnivore, also had a long, narrow, flat body, and long slender legs. It could have moved quickly, and literally seen behind itself. It also had glands on the neck that secreted a deposit that scientists believe most likely was a chemical to repel predators.

The insect has been assigned to the newly created order Aethiocarenodea, and the species has been named Aethiocarenus burmanicus, in reference to the Hukawng Valley mines of Myanmar – previously known as Burma – where it was found. Only one other specimen of this insect has been located, also preserved in Burmese amber, Poinar said.

Those two specimens, which clearly belong to the same species, now comprise the totality of the order Aethiocarenodea. The largest order of insects, by comparison, is Coleoptera, the beetles, with hundreds of thousands of known species.

Needless to say, this species from such ancient amber is long extinct. It obviously had special features that allowed it to survive in the forests of what is now Burma, 100 million years ago, but for some unknown reason it disappeared. Loss of its preferred habitat is a likely possibility.

“The strangest thing about this insect is that the head looked so much like the way aliens are often portrayed,” Poinar said. “With its long neck, big eyes and strange oblong head, I thought it resembled E.T. I even made a Halloween mask that resembled the head of this insect. But when I wore the mask when trick-or-treaters came by, it scared the little kids so much I took it off.”

Story By: 
Source: 

George Poinar, Jr.

poinarg@science.oregonstate.edu

Multimedia Downloads
Multimedia: 

New order

New order of insect


Strange head

Strange head


Neck glands
Neck glands

‘Navigators’ help indigenous cancer patients overcome barriers to diagnosis, treatment

CORVALLIS, Ore. – New research shows that patient “navigators” are a valuable resource for American Indians and Alaskan Natives with cancer as they try to overcome barriers to diagnosis and care, and may offer a path to improved treatment outcomes.

The findings, recently published in the Journal of Primary Prevention, are important because American Indians and Alaskan Natives are stricken with cancer at the same rate as non-Hispanic white people but have lower five-year survivorship rates, and are more likely to die of cancer in general.

Indigenous patients in the Pacific Northwest working with a navigator were almost four times more likely to have a definitive diagnosis within a year of an abnormal screening result than patients without a navigator, the research indicated.

In addition, patients in the study praised their navigators’ ability to provide emotional and logistical support throughout the complicated and often-confusing treatment process. A navigator coordinated patients’ care between multiple providers and agencies and helped connect patients to support groups and other resources.

Megan Cahn, a postdoctoral research associate in Oregon State University’s College of Public Health and Human Sciences, was a co-author of the study along with scientists from the Northwest Tribal Epidemiology Center. The center, one of 12 in the nation, collaborates with the region’s tribes on health-related research, surveillance, training and technical assistance.

The patients in the study all received care through tribal community health clinics, which receive funding from the Indian Health Service. The project was part of a larger program by the National Cancer Institute examining the effectiveness of the patient navigator model in populations with sub-optimal cancer outcomes.

“One of the big concerns for tribal populations is that they have lower screening rates,” Cahn said. “If you don’t screen, then you don’t detect cancer until someone is showing symptoms. A big part of the program was to see if there was a way to get individuals with an abnormal screening result to get a definitive diagnosis, to shorten that window and get treatment in a timely fashion.

“We found that patients enrolled in a navigator program were 3.6 times more likely to have a definitive diagnosis within a year.”

The researchers also learned that not only was the navigator program measurably effective, the patients liked it – an important indicator of the program’s long-term success potential.

“If the patients don’t find it acceptable, the program won’t continue to work,” Cahn said.

A patient navigator was hired by the tribe at each of three tribal clinics in Idaho and Oregon, and researchers interviewed 40 patients for their perceptions of the program. The average age of the participants was 54.4, and 65 percent were female. Thirty-four of the 40 rated the navigator program as “good” or “excellent,” and one added she felt the navigator had saved her life.

In addition to the screening and diagnosis issue, the research found that the main barriers to cancer treatment cited by tribal members were physical and emotional obstacles - symptoms of the cancer itself or side effects from treatment, and “also the emotional response to the diagnosis.”

“There’s a lot of fear and anxiety and shock, and those fears often lead patients to be reluctant to continue with treatment,” Cahn said. “Some of them felt like they had received mistreatment or had been misdiagnosed, plus there were financial barriers: the cost of care and a lack of coordination regarding payment for the services.

“Other barriers were concerns around transportation – some people would have to travel several hours to get treatment, and the availability and cost of public transportation were problems. Navigators could help come up with strategies that were effective for addressing these logistical barriers.”

Sometimes a navigator would accompany a patient to an appointment and help the patient understand what the doctor was saying. Navigators also provided direct emotional support as well as referring patients to support groups.

“Patients said they valued that navigators were part of their communities and respected their culture,” Cahn said. “It made them feel like the navigators were invested in the community and the patients and their families.”

Media Contact: 

Steve Lundeberg, 541-737-4039

Source: 

Scientists zero in on global ocean temperatures during last interglaciation period

CORVALLIS, Ore. – During the last major interglaciation period, when ice sheets in Greenland and Antarctica were smaller than today resulting in a global sea level that was 20 to 30 feet higher, scientists believe ocean temperatures were warmer than at most times in the Earth’s recent history.

However, those estimates of ocean temperatures show a high level of uncertainty, making it difficult to accurately project warming into the future and its impacts on sea level rise.

Now a team of scientists has assembled data from around the world in a comprehensive analysis of global ocean temperatures during the interglaciation period from 129,000 to 116,000 years ago. The team found that global average ocean temperatures were roughly half a degree (Celsius) warmer during that period than during pre-industrial times and nearly identical to the average temperature over the last 20 years.

Results of the study, which was supported by the National Science Foundation, appear this week in the journal Science.

“Half a degree may not sound like very much, but in terms of average global ocean temperature, it actually is quite substantial,” said lead author Jeremy Hoffman, who led the work as a doctoral student at Oregon State University, and is now a staff scientist with the Science Museum of Virginia. “The problem is that computer models have not been able to simulate this amount of warming for the last interglaciation. Because these are the same models used to project future temperatures, this suggests that they may be missing important processes that would result in even warmer temperatures than now considered.”

The last interglaciation period was one of the warmest periods on Earth in the last 800,000 years. A previous study by Oregon State researchers and published in Science documented the higher sea levels and scientists have hypothesized that warmer ocean temperatures may have been part of the process.

Peter Clark, an Oregon State climate scientist and co-author on the study, said one reason for warmer temperatures during the last interglaciation, and the decline of the Greenland ice sheet, was a shift in Earth’s orbit around the sun.

“Although carbon dioxide levels then were comparable to the pre-industrial era, solar insolation in the northern hemisphere during the summer was much higher,” said Clark, who has the title of distinguished professor in OSU’s College of Earth, Ocean, and Atmospheric Sciences. “This more intense solar insolation contributed to the warmer temperatures.”

The researchers believe the melting of the Greenland ice sheet weakened the Atlantic Meridional Overturning Circulation, or AMOC, a system of currents that usually brings warmer water from the tropics to the south. As it weakened, sea surface temperatures rose in the southern hemisphere, also contributing to warmer global temperatures.

“It was a double whammy,” Clark said. “Solar insolation warmed the northern hemisphere, a weakened AMOC warmed the south.”

Earth’s orbit around the sun is different today, resulting in less solar insolation. The planet has warmed by about one degree (Celsius) since 1750, however, because of human influence.

Other authors on the study included Andrew Parnell of University College Dublin in Ireland, and Feng He from the University of Wisconsin.

Story By: 
Source: 

Peter Clark, 541-737-1247

clarkp@geo.oregonstate.edu