OREGON STATE UNIVERSITY

marine science and the coast

Scientists: Warming temperatures could trigger starvation, extinctions in deep oceans by 2100

CORVALLIS, Ore. – Researchers from 20 of the world’s leading oceanographic research centers today warned that the world’s largest habitat – the deep ocean floor – may face starvation and sweeping ecological change by the year 2100.

Warming ocean temperatures, increased acidification and the spread of low-oxygen zones will drastically alter the biodiversity of the deep ocean floor from 200 to 6,000 meters below the surface. The impact of these ecosystems to society is just becoming appreciated, yet these environments and their role in the functioning of the planet may be altered by these sweeping impacts. 

Results of the study, which was supported by the Foundation Total and other organizations, were published this week in the journal Elementa.

“Biodiversity in many of these areas is defined by the meager amount of food reaching the seafloor and over the next 80-plus years – in certain parts of the world – that amount of food will be cut in half,” said Andrew Thurber, an Oregon State University marine ecologist and co-author on the study. “We likely will see a shift in dominance to smaller organisms. Some species will thrive, some will migrate to other areas, and many will die. 

“Parts of the world will likely have more jellyfish and squid, for example, and fewer fish and cold water corals.”

The study used the projections from 31 earth system models developed for the Intergovernmental Panel on Climate Change to predict how the temperature, amount of oxygen, acidity (pH) and food supply to the deep-sea floor will change by the year 2100. The authors found these models predict that deep ocean temperatures in the “abyssal” seafloor (3,000 to 6,000 meters deep) will increase as much as 0.5 to 1.0 degrees (Celsius) in the North Atlantic, Southern and Arctic oceans by 2100 compared to what they are now. 

Temperatures in the “bathyal” depths (200 to 3,000 meters deep) will increase even more – parts of this deep-sea floor are predicted to see an increase of nearly 4 degrees (C) in the Pacific, Atlantic and Arctic oceans.

“While four degrees doesn’t seem like much on land, that is a massive temperature change in these environments,” Thurber said. “It is the equivalent of having summer for the first time in thousands to millions of years.” 

The over-arching lack of food will be exacerbated by warming temperatures, Thurber pointed out.

“The increase in temperature will increase the metabolism of organisms that live at the ocean floor, meaning they will require more food at a time when less is available.” 

Most of the deep sea already experiences a severe lack of food, but it is about to become a famine, according to Andrew Sweetman, a researcher at Heriot-Watt University in Edinburgh and lead author on the study.

“Abyssal ocean environments, which are over 3,000 meters deep, are some of the most food-deprived regions on the planet,” Sweetman said. “These habitats currently rely on less carbon per meter-squared each year than is present in a single sugar cube. Large areas of the abyss will have this tiny amount of food halved and for a habitat that covers half the Earth, the impacts of this will be enormous.” 

The impacts on the deep ocean are unlikely to remain there, the researchers say. Warming ocean temperatures are expected to increase stratification in some areas yet increase upwelling in others. This can change the amount of nutrients and oxygen in the water that is brought back to the surface from the deep sea. This low-oxygen water can affect coastal communities, including commercial fishing industries, which harvest groundfish from the deep sea globally and especially in areas like the Pacific Coast of North America, Thurber said.

“A decade ago, we even saw low-oxygen water come shallow enough to kill vast numbers of Dungeness crabs,” Thurber pointed out. “The die-off was massive.” 

Areas most likely to be affected by the decline in food are the North and South Pacific, North and South Atlantic, and North and South Indian oceans.

“The North Atlantic in particular will be affected by warmer temperatures, acidification, a lack of food and lower oxygen,” Thurber said. “Water in the region is soaking up the carbon from the atmosphere and then sending it on its path around the globe, so it likely will be the first to feel the brunt of the changes.” 

Thurber, who is a faculty member in Oregon State’s College of Earth, Ocean, and Atmospheric Sciences and the OSU College of Science, has previously published on the “services” or benefits provided by the deep ocean environments. The deep sea is important to many of the processes affecting the Earth’s climate, including acting as a “sink” for greenhouse gases and helping to offset growing amounts of carbon dioxide emitted into the atmosphere.

These habitats are not only threatened by warm temperatures and increasing carbon dioxide; they increasingly are being used by fishing and explored by mining industries for extraction of mineral resources. 

“If we look back in Earth’s history, we can see that small changes to the deep ocean caused massive shifts in biodiversity,” Thurber said. “These shifts were driven by those same impacts that our model predict are coming in the near future. We think of the deep ocean as incredibly stable and too vast to impact, but it doesn’t take much of a deviation to create a radically altered environment.

Story By: 
Source: 

Andrew Thurber, 541-737-4500, athurber@coas.oregonstate.edu; Andrew Sweetman, +44 (0) 131 451 3993, a.sweetman@hw.ac.uk

Multimedia Downloads
Multimedia: 

Sea pig (Image Courtesy of Ocean Networks Canada)

SeaPig

Methane seep (Image by Andrew Thurber, OSU)

CRSeep

Marine ecologist offers suggestions for achieving a strong, lasting ‘blue economy’

BOSTON – Incentive-based solutions offer significant hope for addressing the myriad environmental challenges facing the world’s oceans – that’s the central message a leading marine ecologist delivered today in during a presentation at the annual meeting of the American Association for the Advancement of Science. 

Jane Lubchenco, a distinguished professor in the Oregon State University College of Science, shared lessons from around the world about ways “to use the ocean without using it up” as nations look to the ocean for new economic opportunities, food security or poverty alleviation.

Elizabeth Cerny-Chipman, a former postdoctoral scholar under Lubchenco who’s now a Knauss Fellow at the National Oceanic and Atmospheric Administration, co-authored the presentation, titled “Getting Incentives Right for Sustained Blue Growth: Science and Opportunities.”

In her presentation, Lubchenco pointed out that achieving the long-term potential of blue growth will require aligning short- and long-term economic incentives to achieve a diverse mix of benefits. Blue growth refers to long-term strategies for supporting sustainable growth in the marine and maritime sectors as a whole.

“If we harness human ingenuity and recognize that a healthy ocean is essential for long-term prosperity, we can tackle the enormous threats facing the ocean,” Lubchenco says, “and we can make a transition from vicious cycles to virtuous cycles.”

Lubchenco and her collaborators note that the world’s oceans are the main source of protein production for 3 billion people; are directly or indirectly responsible for the employment of more than 200 million people; and contribute $270 billion to the planet’s gross domestic product.

“The right incentives can drive behavior that aligns with both desired environmental outcomes and desirable social outcomes,” Lubchenco says.

The first step in building increased support for truly sustainable blue growth, she says, is highlighting its potential. That means working with decision-makers to promote win-win solutions with clear short-term environmental and economic benefits. Governments, industry and communities all have important roles to play, Lubchenco notes.

“Another key step is transforming the social norms that drive the behavior of the different actors, particularly in industry,” Lubchenco says. “Finally, it will be critical to take a cross-sector approach.

“Some nations, like the Seychelles, Belize and South Africa, are doing integrated, smart planning to deconflict use by different sectors while also growing their economies in ways that value the health of the ocean, which is essential to jobs and food security. They are figuring out how to be smarter about ocean uses, not just to use the ocean more intensively.”

Prior to her presentation, Lubchenco gave a related press briefing on how to create the right incentives for sustainable uses of the ocean.

In November 2016, Lubchenco, Cerny-Chipman, OSU graduate student Jessica Reimer and Simon Levin, the distinguished university professor in ecology and evolutionary biology at Princeton University, co-authored a paper on a related topic for the Proceedings of the National Academy of Sciences.

Media Contact: 

By Steve Lundeberg, 541-737-4039

Source: 
Multimedia Downloads
Multimedia: 

Catch share

"Catch share" fisheries program

Women in Oregon fishing industry have important, but sometimes invisible role

CORVALLIS, Ore. – Women have always played an important role in Oregon’s commercial fishing industry, even if they don’t actually fish or work on boats - but a new study indicates their roles are changing.

The research, funded by Oregon Sea Grant and published in the journal Marine Policy, was based on a series of oral-history interviews conducted mainly with fishermen and their wives.

The findings could help government agencies set policies that take into account their potential impacts on the well-being of entire fishing communities, said Flaxen Conway, a community outreach specialist with Oregon Sea Grant Extension and a co-author of the paper.

Conway, who is also a professor in OSU’s College of Liberal Arts, noted that a federal law, the Magnuson-Stevens Fishery Conservation and Management Act, requires policymakers to consider how management policies could affect the economic and social well-being of fishing communities.

Women’s contributions to the fishing industry are not always visible and are continually evolving, Conway said. They have traditionally performed onshore legwork roles, such as provisioning vessels and taking care of the financial side of the business, she said. But some of those interviewed noted an increase in the number of women involved in research or management – such as serving on task forces and commissions – sometimes because of increasingly complex regulations and markets.

Sarah Calhoun, a former OSU master’s student, conducted interviews with 15 women and 10 men from the coastal Oregon towns of Astoria, Warrenton, Garibaldi, Newport and Port Orford; and Morro Bay, Calif., as part of this project.

One fisherman’s wife said she entered the “politics of fishing” when fishing quotas were starting to be implemented.

“It was really obvious that our boat and our community was going to be entirely left off it [if] we weren’t at the table to participate in the really finer details of the design of the [catch shares] program, and so that’s when I got involved,” she said.

Another fisherman’s wife noted, “. . . more women and fishermen’s wives are much more aware of the regulatory issues than they were 20 years ago, and are much more active . . . self-educating or attending the meetings, or pushing their husbands out the door [to a meeting] and telling them, ‘You need to go to this.’”

The increasing complexities of the fishing industry have increased women’s need to turn to social support groups such as Newport Fishermen’s Wives and to adapt by learning new skills, said Conway. For example, one fisherman’s wife described the challenge of understanding fishing quotas: “How do I open a quota share account, how do I trade quota, how do I transfer it from account to account?” she asked. “That’s the kind of constant learning [that’s necessary] as regulations change. And I think that the learning curve – as opposed to 20 years ago – [has] grown exponentially.”

As one fisherman’s wife put it: “Fishing isn't what it used to be. It isn't the same. So I think you have to be able to adapt to change.”

Conway agreed. “I’ve always been really impressed with the resilience of the fishing community, and this work has showed us that adaptation has actually resulted in a major change in the roles women play in the family business.”

The interviews form part of the Voices from the West Coast oral history project. Suzanne Russell, a social scientist with NOAA’s Northwest Fisheries Science Center, was a co-author of the paper, and the center also provided funding.

Media Contact: 

Rick Cooper, 541-737-0793

Source: 

Flaxen Conway, 541-737-1339

fconway@coas.oregonstate.edu

Multimedia Downloads
Multimedia: 

Eder003CB

Michele Longo Eder


Conway002

Coastal discussion


Skamser001LK

Sara Skamser

2015-16 weather event took toll on California beaches; not so much for Oregon, Washington

CORVALLIS, Ore. – The 2015-16 El Niño was one of the strongest climate events in recent history with extraordinary winter wave energy, a new study shows, though its impact on beaches was greater in California than in Oregon and Washington.

The reason, researchers say, is that the Pacific Northwest had experienced comparatively mild wave conditions in the years prior to the onset of the El Niño, while California was experiencing a severe drought and “sediment starvation.”

Results of the study are being published this week in Nature Communications.

“Rivers still supply the primary source of sand to California beaches, despite long-term reductions due to extensive dam construction,” said Patrick Barnard, a geologist with the U.S. Geological Survey and lead author on the study. “But as California was in the midst of a major drought, the resulting lower river flows equated to even less sand being carried to the coast to help sustain beaches.

“Therefore, many of the beaches in California were in a depleted state prior to the El Niño winters, and thereby were subjected to extreme and unprecedented landward erosion due to the highly energetic winter storm season of 2015-16.”

The West Coast, on average, experienced a “shoreline retreat” – or degree of beach erosion – that was 76 percent above normal and 27 percent higher than any other winter on record, eclipsing the El Niño events of 2009-10 and 1997-98. Coastal erosion was greatest in California, where 11 of the 18 beaches surveyed experienced historical levels of erosion.

Peter Ruggiero, an Oregon State University coastal hazards expert and co-author on the study, said Oregon and Washington were not affected to the same extent.

“You would have thought that there would be massive damage associated with erosion in Oregon and Washington with the strength of this El Niño,” said Ruggiero, a professor in OSU’s College of Earth, Ocean, and Atmospheric Sciences. “But the previous three years had mild winters and therefore the sand buildup was much higher than in California. It helped the Northwest offset the potential erosion from the El Niño.”

Oregon and Washington also have broader beaches than in California, Ruggiero pointed out, which also eases the erosion of sand dunes and impacts to development.

The 2015-16 El Niño, in some ways, was stronger than the 1982-83 event, which caused an estimated $11.5 billion in damages, the researchers say in the study. Only a portion of the damage was directly related to coastal erosion, with damage to houses and roads, they note. Most of the impact was from related storms, flooding and other damage that occurred inland.

The Nature Communications study is important, the authors say, because it is one of the first attempts to document the oceanographic “forcing” directly related to beach impacts created by El Niño. The study documents the amount of power created by winter storm waves, using height and “period” – or the length of time between waves. It is the level of forcing, along with relative beach health, that dictates the amount of erosion that occurs and the associated impacts from that erosion.

“During an El Niño, the nearshore experiences higher water levels because of the storms and the fact that the water is warmer and expands,” Ruggiero said. “In Oregon, the water was about 15-17 centimeters (roughly 6-7 inches) higher than average, which led to higher storm tides.”

Although Northwest beaches were buffered from catastrophic damage, Ruggiero said, they did experience significant retreat. And it may take a while for the beaches to rebuild.

“We’re not completely recovered yet, and it may take years for some beaches to build back up,” he said. “After the 1997-98 El Niño, it took some beaches a decade to recover.”

Ruggiero, his students and colleagues have been monitoring Northwest beaches since 1997, and in 2015, they received a National Science Foundation rapid response grant to study the impact of El Niño on beaches. Ruggiero also receives support from the Northwest Association of Networked Ocean Observing Systems (NANOOS) and the U.S. Army Corps of Engineers for additional monitoring.

Story By: 
Source: 

Peter Ruggiero, 541-737-1239, pruggier@coas.oregonstate.edu; Patrick Barnard, 831-460-7556, pbarnard@usgs.gov

Multimedia Downloads
Multimedia: 

South Beach, Oregon
Oregon's South Beach

 

(Left: Crescent Beach in Callifornia. Photos by Nick Cohn, Oregon State University. https://flic.kr/p/RwDLsb)

Leading marine researcher says scientists must speak, reach out and integrate into society

CORVALLIS, Ore. – A leading global marine ecologist today called on scientists to increasingly engage the public by demonstrating the value of their research.

Jane Lubchenco, a distinguished university professor in the Oregon State University College of Science and advisor in marine studies for the university, urged this action during a time in which she said scientific facts are being called into question.

She made the points in a commentary titled “Environmental Science in a Post-Truth World” published today in Frontiers in Ecology and the Environment, the journal of the Ecological Society of America.

“Access to information, and critical thinking, are essential for an informed democracy,” Lubchenco says. “A post-truth world, a U.S. cabinet full of climate deniers, suppression of science and scientists all threaten – seriously threaten – our democracy. Resistance is appropriate, but now, more than ever, scientists also need to engage meaningfully with society to address intertwined environmental and societal problems.”

Lubchenco, an internationally recognized expert on marine ecology, environmental science and climate change, is urging researchers to act boldly and creatively to counteract what she called a “pervasive” dismissal of facts exemplified by President Trump’s labeling of climate change as a hoax.

She outlines three parallel approaches for scientists to “rise to the occasion, find solutions and help create a better world”:

1)    Demonstrate the merits of science by making it accessible, which includes eschewing jargon in favor of plain language and acting in such a way that shows scientists are warm, caring human beings;

2)    Provide hope by highlighting successes, creating even more successes, and figuring out how to bring them to a meaningful scale;

3)    Modify academic reward structures to incentivize public engagement as a core responsibility.

Lubchenco, a former administrator of the National Oceanic and Atmospheric Administration (2009-13) and the first U.S. Science Envoy for the Ocean (2014-16), makes those points and others in her invited editorial.

She says facts are losing ground to appeals to emotion and personal belief in the shaping of public opinion. Lubchenco sounds a clarion call for the scientific community to do everything in its power to stand up for science and also to make research findings understandable, credible, relevant and accessible.

That includes, Lubchenco says, “getting off our lofty perches and being more integrated into society.”

“Fortunately, many politicians and other citizens still believe that decisions based on science are better decisions than those not based on science,” says Lubchenco, past president of the Ecological Society of America, the nation’s largest professional society of ecologists.

The challenges of the post-truth era demand that scientists serve in a way that responds to needs through interactions with citizens based on humility, transparency and respect, she says.

“Now’s the time for all scientists to take a quantum leap into greater relevance by helping people to understand how important our work really is,” Lubchenco says. “For example, the world has finally begun to make tangible progress in addressing climate change. We can’t let a post-truth mentality derail that or the other things we do to improve people’s lives.”

Media Contact: 

Steve Lundeberg, 541-737-4039

Source: 
Multimedia Downloads
Multimedia: 

Jane Lubchenco 1

Jane Lubchenco

Third Oregon climate assessment report shows state still warming, despite frigid winter

CORVALLIS, Ore. – Don’t let this winter fool you. Oregon’s climate continues to warm; there are impacts on the state’s physical, biological and human-managed systems; and more studies are pointing to greenhouse gas emissions as the reason for these climate trends and events.

That is the conclusion of the third Oregon Climate Assessment Report, a synthesis of peer-reviewed scientific studies over the past three years. The legislatively mandated report was produced by the Oregon Climate Change Research Institute at Oregon State University and is being presented this month to key Oregon political leaders.

“Oregonians shouldn’t be swayed by this winter, which is colder than any of the ones we’ve had since 1990,” noted Philip Mote, director of the OSU center and a co-author on the report. “Overall, temperatures are still getting warmer – in Oregon, throughout the United States, and globally – and the impacts are very real.

“For Oregonians, it means warmer temperatures, lower snowpack and less water during the summer. And more and more studies are confirming greenhouse gas emissions as the cause.”

Kathie Dello, associate director of the Oregon Climate Change Research Institute, points out that although December of 2016 was the 11th coldest December on record in Oregon in 122 years of monitoring, the year was still among the top 10 warmest years on record for the state.

The climate assessment report, led by Meghan Dalton, a research assistant with the institute in the College of Earth, Ocean, and Atmospheric Sciences at OSU, looked at more than 300 studies published from 2013-16 by researchers at universities, state and federal agencies, and elsewhere. Dalton led a team of researchers who synthesized the literature and developed the report.

“The year 2015 has been described as foreshadowing what we can expect as normal conditions by the mid-21st century,” Dalton said. “There were warmer temperatures that led to drought, low snowpack, and greater wildfire risk, with less water in the summer. That appears to be our future.”

Snowpack in the past three years has varied greatly, according to Dello.

“In 2015, we basically had no snow to speak of,” Dello said. “In 2016, we had a lot of snow, but most of it got wiped out by warm temperatures in late winter and early spring. So far this year, we have had a lot of snow, but warmer temperatures are moving in, and we still have a lot of winter left. We’re cautiously optimistic. Large year-to-year changes like that are still expected, even in a warming climate.”

The report notes that a warming climate and earlier spring may have a few beneficial results. Farmers, for example, may benefit from a longer growing season, though water could be an issue for some crops.

The report analyzes potential impacts of climate change for Oregon’s many regions. Among the findings:

  • The Oregon Coast: Sea level rise will increase the risk of erosion and flooding and higher estuary temperatures will challenge migrating salmon and steelhead. One study estimated that warming of Yaquina Bay by 1.3 to 2.9 degrees (F) would result in 40 additional days of temperatures not meeting the criteria for protecting salmonids.
  • The Willamette Valley: Heat waves are expected to become longer, more common and more intense; operating rules for reservoirs may have to change to balance flood risk and summer water supply; air quality will decline, and wildfire risk will increase. A study of fire activity concluded that there will be a three-fold to nine-fold increase in the amount of area burned in the basin by the year 2100.
  • The Cascade Mountains: More precipitation will fall as rain instead of snow, with elevations between 3,000 feet and 6,000 feet being the most sensitive. In addition to potential impacts on ski resorts, there likely will be a change in when water is available. Cascades forests will probably be subject to more wildfire, drought, insect damage and disease, and some studies suggest that woodlands will shift from predominantly conifer to mixed conifer forests. The risk of increased incidence of respiratory illness from wildfire smoke is a top public health risk in Jackson County.
  • Eastern Oregon: Water will be a huge issue in the east with snowpack decline, and the same forest issues face the Blue Mountains as the Cascades. Increased wildfire risk may create more days of heavy smoke affecting public health, and fires will threaten the forests. Salmon in the John Day basin and other river systems will be challenged with warmer temperatures, and rangeland and sagebrush habitat is threatened by non-native weeds and grasses.

“A lot of the studies we cited focus on the physical aspects of warming, from snowpack to wildfire, but there are a lot of people who will be affected,” Dello said. “We can’t forget that Oregonians, their families, their jobs and their resources are at risk. There is still time to do something, but time is running short.”

A copy of the report is available at http://occri.net/

Story By: 
Source: 

Kathie Dello, 541-737-8927, kdello@coas.oregonstate.edu; Phil Mote, 541-913-2274, pmote@coas.oregonstate.edu

El Niño, Pacific Decadal Oscillation implicated in domoic acid shellfish toxicity

CORVALLIS, Ore. – Researchers today reported in Proceedings of the National Academy of Sciences a strong correlation between toxic levels of domoic acid in shellfish and the warm-water ocean conditions orchestrated by two powerful forces – El Niño events and the Pacific Decadal Oscillation.

Using a combination of time-series data spanning two decades, the scientists not only showed a clear link between domoic acid and these larger climatic phenomena, but also developed a new model to predict with some accuracy the timing of domoic acid risks in the Pacific Northwest.

The model is based on interpreting the status of the “Oceanic Niño Index” and the Pacific Decadal Oscillation – both of which are measures of climate, ocean water movement, currents and temperature. It’s designed to help coastal resource managers more effectively monitor this issue and protect public health.

The findings were made by researchers from Oregon State University, the University of Oregon, the National Oceanic and Atmospheric Association (NOAA), and the Oregon Department of Fish and Wildlife. The work was primarily supported by NOAA.

Researchers also pointed out that the findings are particularly timely, given the potential for greater domoic acid outbreak occurrences as oceans continue to warm due to climate change.

Domoic acid, a potent neurotoxin produced by specific types of phytoplankton and ingested by shellfish, can cause serious health effects in humans and some other animals. In recent years, dangerous levels of these toxins have led to the repeated closure of crab and shellfish harvesting in the Pacific Northwest and elsewhere. The problem threatens public health, marine wildlife and can cost millions for coastal economies. Until now, its connection to larger climatic forces has been suspected, but not confirmed.

“In the natural world there are always variations, and it’s been difficult to connect a specific event to larger forces that operate over periods of years and decades,” said Angelicque White, an associate professor and research team leader in the OSU College of Earth, Oceanic and Atmospheric Sciences.

“To do so, long observational time-series are crucial. With NOAA’s commitment to sponsored coastal ocean research and monitoring, along with state support for monitoring shellfish toxins, we’ve finally been able to tease out short term variability from natural climate forcing.”

Beyond problems with domoic acid levels, White said, this correlation also appears to mirror problems with green crabs, an invasive species of significant concern in the Pacific Northwest. These same warm climate phases lead to increased numbers of green crabs in Oregon waters, where they compete with native Dungeness crabs. The conditions also deliver communities of lipid-poor “copepods” – types of small crustaceans that float with currents – from the south, that are associated with reduced salmon runs.

The new study shows that oscillations to positive, or warm-favorable conditions in natural climate cycles can reduce the strength of the south-flowing California Current. This allows more movement northwards of both warmer waters and higher levels of toxic plankton, and also brings that toxic mix closer to shore where it can infiltrate shellfish.

“Part of the concern is that a large influx of the plankton that produce domoic acid can have long-term impacts,” said Morgaine McKibben, an OSU doctoral student and lead author on the study.

“For example, razor clams are filter-feeders that bioaccumulate this toxin in their muscles, so they take much longer to flush it out than other shellfish. The higher the toxin levels, the longer it takes for razor clams to be safe to eat again, perhaps up to a year after warm ocean conditions have subsided.”

Domoic acid is produced by the diatom genus Pseudo-nitzschia, and enters the marine food web when toxic blooms of these micro-algae are ingested by animals such as anchovies and shellfish. Referred to as “amnesic shellfish poisoning,” human symptoms can range from gastrointestinal disturbance to seizures, memory loss or, rarely, death. It was only first identified as a public health threat in 1987, and has been monitored on the U.S. West Coast since 1991.

Domoic acid events have been linked to mass deaths of marine mammals, like sea lions, sea otters, dolphins and whales. And closures of Pacific Northwest beaches to shellfish harvests, such as those that occurred in 2003, 2015 and 2016, can result in large economic impacts to coastal towns and tourism. In 2015, domoic-acid related closures led to a decline in value of nearly $100 million for the West Coast Dungeness crab fishery, according to the Fisheries of the U.S. Report 2015.

“Advance warning of when domoic acid levels are likely to exceed our public health thresholds in shellfish is extremely helpful,” said Matt Hunter, co-author of the study with the Oregon Department of Fish and Wildlife. “Agencies like mine can use this model to anticipate domoic acid risks and prepare for periods of more intensive monitoring and testing, helping to better inform our decisions and ensure the safety of harvested crab and shellfish.”

Story By: 
Source: 

Angelicque White, 541-737-6397

awhite@coas.oregonstate.edu

Multimedia Downloads
Multimedia: 

West Coast algae


Algae on West Coast


Diatom
Diatom that makes domoic acid

New tag revolutionizes whale research - and makes them partners in science

NEWPORT, Ore. – A sophisticated new type of “tag” on whales that can record data every second for hours, days and weeks at a time provides a view of whale behavior, biology and travels never before possible, scientists from Oregon State University reported today in a new study.

This “Advanced Dive Behavior,” or ADB tag, has allowed researchers to expand their knowledge of whale ecology to areas deep beneath the sea, over thousands of miles of travel, and outline their interaction with the prey they depend upon for food.

It has even turned whales into scientific colleagues to help understand ocean conditions and climate change.

The findings, just published in the journal Ecology and Evolution, showed sperm whales diving all the way to the sea floor, more than 1000 meters deep, and being submerged for up to 75 minutes. It reported baleen whales lunging after their food; provided a basis to better understand whale reactions to undersea noises such as sonar or seismic exploration; and is helping scientists observe how whales react to changes in water temperature.

The ADB tag is a pretty revolutionary breakthrough,” said Bruce Mate, professor and director of OSU’s Marine Mammal Institute in the College of Agricultural Sciences. “This provides us a broad picture of whale behavior and ecology that we’ve never had before.

“This technology has even made whales our partners in acquiring data to better understand ocean conditions and climate change,” Mate said. “It gives us vast amounts of new data about water temperatures through space and time, over large distances and in remote locations. We’re learning more about whales, and the whales are helping us to learn more about our own planet.”

The new tag, the researchers say, expands by several orders of magnitude the observations that can be made of whale feeding and behavior. Researchers say it’s showing what whales do while underwater; when, how and where they feed; how they might be affected by passing ships or other noises; and what types of water temperatures they prefer.

In the new study, researchers outlined the continued evolution and improvements made in the ADB technology from 2007-15, in which it was used on sperm, blue and fin whales. The research has been supported by the Office of Naval Research, the U.S. Navy and the International Association of Oil and Gas Producers.

“By using this technology on three different species, we’ve seen the full range of behavior that is specific to each species,” said Daniel Palacios, a co-author on the study. “Sperm whales, for instance, really like to dive deep, staying down a long time and appearing to forage along the seafloor at times. During summer the baleen whales will feed as much as possible in one area, and then they move on, probably after the prey density gets too low.”

Unlike earlier technology that could not return data from the deep sea for much longer than a day, the new ADB tags are designed to acquire data constantly, for up to seven weeks at a time, before they detach from the whale, float to the surface and are retrieved in the open sea to download data. The retrieval itself is a little tricky – scientists compare it to searching for a hamburger floating in thousands of square miles of open ocean – but it has worked pretty well, thanks to the tags transmitting GPS-quality locations and flashing LED lights once they have released.

The tag can sense water depth, whale movement and body orientation, water temperature and light levels.

“With this system we can acquire much more data at a lower cost, with far less commitment of time by ships and personnel,” said Ladd Irvine, the corresponding author on the study. “This tag type yields amazing results. It’s going to significantly expand what we can accomplish, learning both about whale ecology and the ocean itself.”

Story By: 
Source: 

Bruce Mate, 541-867-0202

bruce.mate@oregonstate.edu

Multimedia Downloads
Multimedia: 

Whale tag

Whale with tag


Whale tag 2

Whale with tag

Whale travels
Whale travel and feeding

Wave energy center receives $40 million to construct world’s premier test facility

NEWPORT, Ore. – Oregon State University’s Northwest National Marine Renewable Energy Center today was awarded up to $40 million from the U.S. Department of Energy, to create the world’s premier wave energy test facility in Newport.

The NNMREC facility, known as the Pacific Marine Energy Center South Energy Test Site, or PMEC-SETS, is planned to be operational by 2020. It will be able to test wave energy “converters” that harness the energy of ocean waves and turn it into electricity. Companies around the world are already anticipating construction of the new facility to test and perfect their technologies, OSU officials say.

“We anticipate this will be the world’s most advanced wave energy test facility,” said Belinda Batten, the director of NNMREC and a professor in the OSU College of Engineering.

“This is a tribute to the support we received from the state of Oregon, and the efforts of many other people who have worked for the past four years – in some cases since the mid-2000s – to see this facility become a reality. It will play an integral role in moving forward on the testing and refinement of wave energy technologies.”

Those technologies, Batten said, are complex and expensive.

“These devices have to perform in hostile ocean conditions; stand up to a 100-year storm; be energy efficient, durable, environmentally benign – and perhaps most important, cost-competitive with other energy sources,” Batten said. “This facility will help answer all of those questions, and is literally the last step before commercialization.”

The DOE award is subject to appropriations, federal officials said today, and will be used to design, permit, and construct an open-water, grid-connected national wave energy testing facility. It will include four grid-connected test berths.

“OSU researchers are already international leaders on several new sources of energy that will be dependable, cost-competitive and efficient,” said OSU President Edward J. Ray.

“This is another enormous step for alternative energy, especially for an energy resource that Oregon is so well-suited to pursue. In coming years this new facility, aided by the assistance of OSU experts, will provide great learning opportunities for our students and have repercussions for wave energy development around the world.”

In making the award, the agency noted that more than 50 percent of the U.S. population lives within 50 miles of coastlines, offering America the potential to develop a domestic wave energy industry that could help provide reliable power to coastal regions.

Investments in marine and hydrokinetic energy technology will encourage domestic manufacturing, create jobs, and advance this technology to help achieve the nation’s energy goals, DOE officials said in their announcement of this award. Studies have estimated that even if only a small portion of the energy available from waves is recovered, millions of homes could be powered.

The new facility and award also received support from a range of academic and political leaders:

Oregon U.S. Sen. Ron Wyden: “This is great news for OSU and its partners and will launch a new level of local job creation and clean energy innovation. Oregon will use this opportunity to build on its solid position nationally and internationally as a leader in renewable wave energy."

Oregon U.S. Sen. Jeff Merkley: "This is a huge success story for Oregon State University, and I thank the Department of Energy for helping us harness the enormous potential of wave energy off the Oregon coast. This test facility will make Oregon the leader in bringing wave energy to the United States, which will create good-paying local jobs, and strengthen our coastal economies."

Oregon U.S. Rep. Kurt Schrader: "Being able to tap into our rich marine energy resources will unleash the potential for billions of dollars in investment along our coastlines. The research that will be made possible through this grant is absolutely critical to the full and effective implementation of wave energy converters into the U.S. green energy portfolio. This federal support is terrific news for OSU and the entire local economy as it allows Oregonians to lead the pack here at home on wave energy."

Oregon U.S. Rep. Suzanne Bonamici: "OSU is at the forefront of wave energy research. Wave energy has tremendous potential as a renewable resource to put our country on a path to a clean energy future. This critical federal support will allow the university, researchers, and students to continue to investigate and test the potential of wave energy. With this investment we are one important step closer to harnessing the power of the ocean to meet our nation’s clean energy needs, create good-paying jobs, and spur economic growth in our communities.”

Oregon Gov. Kate Brown: “I commend the talented team of Oregon State University researchers, staff, and students who lead the nation in research and development of wave energy technology. This U.S. Department of Energy grant announcement of up to $40 million leverages years of work and partnership with our state. This innovative work will contribute to Oregon and the nation’s clean energy mix of the future.”

Oregon State Sen. Arnie Roblan: “After the work of the coastal caucus during the 2016 session to secure a state match for this grant, I am pleased by this news. This grant will enable cutting edge research that will bring a variety of individual innovators to the Oregon coast. We are uniquely positioned to help the nation determine the efficacy of their energy devices to Oregon.”

Cynthia Sagers, vice president for research at OSU: “This award is a major win for Dr. Batten and her team.  It comes after years of collaboration among OSU researchers, state and federal agencies, and industry partners. With it, we are one step closer to a clean, affordable and reliable energy future.”

Story By: 
Source: 

Belinda Batten, 541-737-9492

belinda.batten@oregonstate.edu

Multimedia Downloads
Multimedia: 

Wave energy test site
Wave energy test center

New study: Weakening of North Atlantic current can be prevented by reducing carbon emissions

CORVALLIS, Ore. – Continued melting of the Greenland Ice Sheet could have a significant impact on the Atlantic Meridional Overturning Circulation, a system of surface and deep ocean currents – including the Gulf Stream – in the Atlantic Ocean that keeps upper North America and Europe temperate.

A new international study incorporating a comprehensive assessment of Greenland Ice Sheet melting suggests the freshwater influx could weaken the AMOC over the next three centuries, though the impact could be offset if human-caused carbon emissions decline and global temperatures stabilize.

However, if carbon emissions continue unabated, there is a 44 percent likelihood of a collapse of the system by the year 2300, the researchers say.

The findings are being published in the journal Geophysical Research Letters.

“Previous studies and assessment reports, including those from the Intergovernmental Panel on Climate Change, have not considered the impacts on the AMOC from melting of the Greenland Ice Sheet, or they have looked at it simplistically,” said Andreas Schmittner, an Oregon State University climate scientist and co-author on the study.

“Our study, using eight state-of-the-science global climate models, incorporates a realistic assessment of the ice sheet melting and shows a definite weakening of the AMOC system, but one that can be partially mitigated by a decline in carbon emissions.”

The study also suggests that the freshwater influx from melting of the Greenland Ice Sheet will have less of an impact on the Atlantic Meridional Overturning Circulation than will overall global warming, rising sea surface temperatures, and intensification of the water cycle leading to more precipitation and evaporation.

“The good news is that we can still do something to lessen the impact of AMOC weakening and prevent an unlikely, but still possible collapse of the system,” said lead author Pepijn Bakker, a former post-doctoral researcher at Oregon State University now with the MARUM Center for Marine Environmental Studies at the University of Bremen in Germany.

“Our models predict that the ice sheet may not melt as rapidly as another recent study has suggested, but everything comes down to what will we in the United States, and people in other countries, do to lessen our carbon emissions.”

The Atlantic Meridional Overturning Circulation brings warm waters up from the tropics and transports cooler water to the south. A weakening of the system could mean that the North Atlantic would not warm as rapidly or thoroughly as it does now, affecting regional climate in North America and northern Europe.

The AMOC also is important for preserving ocean ecosystems, affecting nutrient transport.

“A weakening of the AMOC system would probably lead to more stratification of ocean waters and less biological productivity,” Schmittner said. “It may create more sea ice in the North Atlantic, which could be beneficial in some ways. At the same time, however, it would likely reduce the transport of cooler water to the south and shift rainfall patterns near the equator.”

The study was supported by the National Oceanic and Atmospheric Administration and several other agencies.

 

Story By: 
Source: 

Andreas Schmittner, 541-737-9952, aschmittner@coas.oregonstate.edu;

Pepijn Bakker, 004942121865435, pbakker@marum.de