OREGON STATE UNIVERSITY

marine science and the coast

Marine incentives programs may replace 'doom and gloom' with hope

CORVALLIS, Ore. – Incentives that are designed to enable smarter use of the ocean while also protecting marine ecosystems can and do work, and offer significant hope to help address the multiple environmental threats facing the world’s oceans, researchers conclude in a new analysis.

Whether economic or social, incentive-based solutions may be one of the best options for progress in reducing impacts from overfishing, climate change, ocean acidification and pollution, researchers from Oregon State University and Princeton University say in a new report published this week in Proceedings of the National Academy of Sciences.

And positive incentives – the “carrot” – work better than negative incentives, or the “stick.”

Part of the reason for optimism, the researchers report, is changing awareness, attitudes and social norms around the world, in which resource users and consumers are becoming more informed about environmental issues and demanding action to address them. That sets the stage for economic incentives that can convert near-disaster situations into sustainable fisheries, cleaner water and long-term solutions.

“As we note in this report, the ocean is becoming higher, warmer, stormier, more acidic, lower in dissolved oxygen and overfished,” said Jane Lubchenco, the distinguished university professor in the College of Science and advisor in marine studies at Oregon State University, lead author of the new report, and U.S. science envoy for the ocean at the Department of State.

“The threats facing the ocean are enormous, and can seem overwhelming. But there’s actually reason for hope, and it’s based on what we’ve learned about the use of incentives to change the way people, nations and institutions behave. We believe it’s possible to make that transition from a vicious to a virtuous cycle. Getting incentives right can flip a disaster to a resounding success.”

Simon A. Levin, the James S. McDonnell distinguished university professor in ecology and evolutionary biology at Princeton University and co-author of the publication, had a similar perspective.

“It is really very exciting that what, until recently, was theoretical optimism is proving to really work,” Levin said. “This gives me great hope for the future.”

The stakes are huge, the scientists point out in their study.

The global market value of marine and coastal resources and industries is about $3 trillion a year; more than 3 billion people depend on fish for a major source of protein; and marine fisheries involve more than 200 million people. Ocean and coastal ecosystems provide food, oxygen, climate regulation, pest control, recreational and cultural value.

“Given the importance of marine resources, many of the 150 or more coastal nations, especially those in the developing world, are searching for new approaches to economic development, poverty alleviation and food security,” said Elizabeth Cerny-Chipman, a postdoctoral scholar working with Lubchenco.  “Our findings can provide guidance to them about how to develop sustainably.”

In recent years, the researchers said in their report, new incentive systems have been developed that tap into people’s desires for both economic sustainability and global environmental protection. In many cases, individuals, scientists, faith communities, businesses, nonprofit organizations and governments are all changing in ways that reward desirable and dissuade undesirable behaviors.

One of the leading examples of progress is the use of “rights-based fisheries.” Instead of a traditional “race to fish” concept based on limited seasons, this growing movement allows fishers to receive a guaranteed fraction of the catch, benefit from a well-managed, healthy fishery and become part of a peer group in which cheating is not tolerated.

There are now more than 200 rights-based fisheries covering more than 500 species among 40 countries, the report noted. One was implemented in the Gulf of Mexico red snapper commercial fishery, which was on the brink of collapse after decades of overfishing. A rights-based plan implemented in 2007 has tripled the spawning potential, doubled catch limits and increased fishery revenue by 70 percent.

“Multiple turn-around stories in fisheries attest to the potential to end overfishing, recover depleted species, achieve healthier ocean ecosystems, and bring economic benefit to fishermen and coastal communities,” said Lubchenco.  “It is possible to have your fish and eat them too.”

A success story used by some nations has been combining “territorial use rights in fisheries,” which assign exclusive fishing access in a particular place to certain individuals or communities, together with adjacent marine reserves. Fish recover inside the no-take reserve and “spillover” to the adjacent fished area outside the reserve. Another concept of incentives has been “debt for nature” swaps used in some nations, in which foreign debt is exchanged for protection of the ocean.

“In parallel to a change in economic incentives,” said Jessica Reimer, a graduate research assistant with Lubchenco, “there have been changes in behavioral incentives and social norms, such as altruism, ethical values, and other types of motivation that can be powerful drivers of change.”

The European Union, based on strong environmental support among its public, has issued warnings and trade sanctions against countries that engage in illegal, unregulated and unreported fishing. In the U.S., some of the nation’s largest retailers, in efforts to improve their image with consumers, have moved toward sale of only certified sustainable seafood.

Incentives are not a new idea, the researchers noted. But they emphasize that their power may have been under-appreciated.

“Recognizing the extent to which a change in incentives can be explicitly used to achieve outcomes related to biodiversity, ecosystem health and sustainability . . .  holds particular promise for conservation and management efforts in the ocean,” they wrote in their conclusion.

Funding was provided by OSU and the National Science Foundation.

Story By: 
Source: 

Jane Lubchenco, 541-737-5337

lubchenco@oregonstate.edu

Multimedia Downloads
Multimedia: 

Catch share
Catch share program

Rockfish siblings shed new light on how offspring diffuse and disperse

CORVALLIS, Ore. – A splitnose rockfish’s thousands of tiny offspring can stick together in sibling groups from the time they are released into the open ocean until they move to shallower water, research from Oregon State University shows.

The study conducted in the OSU College of Science sheds new light on how rockfish, a group of multiple species that contribute to important commercial and recreational fisheries in the Northwest, disperse through the ocean and “recruit,” or take up residence in nearshore habitats. Previously it was believed rockfish larvae dispersed chaotically to wherever currents carried them.

“When you manage populations, it’s really important to understand where the young are going to and where the young are coming from – how populations are connected and replenished,” said Su Sponaugle, a professor of integrative biology based at OSU’s Hatfield Marine Science Center. “This research helps us better understand what’s possible about offspring movement. We don’t know fully by what mechanisms the larvae are staying together, but these data are suggestive that behavior is playing a role.”

The findings were published today in Proceedings of the National Academy of Sciences. Primary funding came from the Hatfield Marine Science Center’s Mamie L. Markham Research Award.

The discovery of “spatial cohesion” among the larvae came via the collection of newly settled rockfish in a shallow nearshore habitat off the central Oregon coast. Nearly 500 juvenile fish that had started out up to six months earlier as transparent larvae at depths of a few hundred meters were collected and genetically analyzed, with the results showing that 11.6 percent had at least one sibling in the group.

“That’s much higher than we would have expected if they were randomly dispersing,” Sponaugle said.

Bearing live young – a female can release thousands of able-to-swim larvae at a time – and dwelling close to the sea floor in the benthic zone, rockfishes make up a diverse genus with many species.

Adult splitnose rockfish live in deep water – usually 100 to 350 meters – but juveniles often settle in nearshore habitats less than 20 meters deep after spending up to a year in the open sea. Taking into account dynamic influences such as the California Current, siblings recruiting to the same area suggest they remained close together as larvae rather than diffusing randomly and then reconnecting as recruits.

“This totally changes the way we understand dispersal,” said lead author Daniel Ottmann, a graduate student in integrative biology at the Hatfield Marine Science Center. “We’d thought larvae were just released and then largely diffused by currents, but now we know behavior can substantially modify that.”

Splitnose rockfish range from Alaska to Baja California and can live for more than 100 years. Pelagic juveniles – juveniles in the open sea – often aggregate to drifting mats of kelp, and the large amount of time larvae and juveniles spend at open sea is thought to enable them to disperse great distances from their parental source.

“This research gives us a window into a stage of the fishes’ life we know so little about,” added Kirsten Grorud-Colvert, an assistant professor of integrative biology at OSU’s Corvallis campus. “We can’t track the larvae out there in the ocean; we can’t look at their behavior early and see where they go. But this genetic technique allows us to look at how they disperse, and it changes the conversation. Now that we know that siblings are ending up in the same places, we can consider how to more effectively manage and protect these species.”

Because larval aggregation shapes the dispersal process more than previously thought, Ottmann said, it highlights the need to better understand what happens in the pelagic ocean to affect the growth, survival and dispersal of the larvae.

“Successful recruitment is critical for the population dynamics of most marine species,” he said. “Our findings have far-reaching implications for our understanding of how populations are connected by dispersing larvae.”

In addition, Grorud-Colvert adds, there’s the simple and substantial “gee whiz” factor of the findings.

“These tiny little fish, a few days old, out there in the humongous ocean, instead of just going wherever are able to swim and stay close together on their epic journey,” she said. “These tiny, tiny things, sticking together in the open ocean – it’s cool.”

Media Contact: 

Steve Lundeberg, 541-737-4039

Multimedia Downloads
Multimedia: 

SplitnoseRockfish_DanielOttmann

Splitnose rockfish

Kelp forests globally resilient, but may need local solutions to environmental threats

CORVALLIS, Ore. – The first global assessment of marine kelp ecosystems shows that these critically-important habitats have exhibited a surprising resilience to environmental impacts over the past 50 years, but they have a wide variability in long-term responses that will call for regional management efforts to help protect their health in the future.

The findings were published today in Proceedings of the National Academy of Sciences.

Scientists noted that kelp forests have a remarkable ability to recover quickly from extreme damage, but they can still be overwhelmed in some instances by the combination of global and local pressures.

This points to the need for regional management efforts that carefully consider local conditions when trying to offset human-caused impacts from climate change, overfishing and direct harvests, researchers said.

Kelp forests, the largest species of algae in shallow, coastal waters almost everywhere except the tropics, are a globally important foundation species that occupy almost half of the world’s marine ecoregions. Often harvested directly, they help support commercial fisheries, nutrient cycling, shoreline protection, and are valued in the range of billions of dollars annually.

The new research was conducted by an international team of 37 scientists who analyzed changes in kelp abundance in 34 regions of the planet that had been monitored over the past 50 years.

“Kelp forests are cold-water, fast-growing species that can apparently withstand many types of environmental disturbances,” said Mark Novak, an assistant professor of integrative biology in the College of Science at Oregon State University, co-author of the study, and an organizer of the international group at the National Center for Ecological Analysis and Synthesis that conducted this research.

“The really surprising thing in this study was how much region-to-region variation we found, which is quite different from many other ecosystems. Thus, despite global threats like climate change and ocean acidification, the battle to protect our kelp forests of the future may best be fought locally – in the U.S., by states, counties, even individual cities and towns.”

These forests can grow fast, tall, and are highly resilient – but also are often on the coastal front line in exposure to pollution, sedimentation, invasive species, fishing, recreation and harvesting. Even though “they have some of the fastest growth rates of any primary producer on the planet,” the researchers wrote, there are limits to what they can take.

In their study the scientists concluded that of the kelp ecosystems that have been studied, 38 percent are in decline; 27 percent are increasing; and 35 percent show no detectable change. On a global scale, they are declining at 1.8 percent per year.

Where kelp resilience is eroding and leading to declines in abundance, impacts to ecosystem health and services can be far-reaching, the researchers wrote in their report.

This research was supported by the National Science Foundation, the University of California/Santa Barbara, and the state of California.

Story By: 
Source: 

Mark Novak, 541-737-3610

mark.novak@oregonstate.edu

Multimedia Downloads
Multimedia: 

Kelp Forest
Kelp forests

Discovery of new bacteria complicates problem with salmon poisoning in dogs

CORVALLIS, Ore. – Researchers at Oregon State University have identified for the first time another bacterium that can cause symptoms similar to “salmon poisoning” in dogs - and may complicate the efforts of Pacific Northwest pet owners to keep their dogs protected and healthy.

The Pacific Northwest, from northern California to central Washington, is the only region of the world in which dogs face this potentially deadly health threat. It’s caused by a complicated life cycle that includes a common freshwater snail that harbors a fluke worm, and the fluke, in turn, carries the bacterium Neorickettsia helminthoeca. The bacterium is the actual cause of salmon poisoning.

The underlying problem is not new. Dogs that died after eating uncooked, infected salmon were first noted in the Astoria Journal in 1814, not long after Lewis and Clark visited the region.

The conventional wisdom, however, has been that dogs are usually immune to salmon poisoning after they have once been infected, treated with antibiotics and recovered – giving pet owners at least some assurance that it’s a problem they no longer need be concerned about.

The new discovery makes it clear the issue is not that simple.

In the infectious process that leads to salmon poisoning, the fluke is released from snails, which then infect salmon and other freshwater fishes. The life cycle is completed when a mammal eats an infected fish – in this case, dogs get sick from eating raw or undercooked salmon. The possible occurrence of “salmon poisoning” is actually dictated by the geographic distribution of the snail.

Another bacterium called “SF agent,” however, has been found for the first time in a salmonid fish anywhere in the world, researchers report in a recent study in Veterinary Parasitology. The fluke host for this bacterium is Stellanchasmus falcatus.

“SF agent can infect dogs that eat salmon or trout, and it can cause a mild fever in dogs and other symptoms that can resemble salmon poisoning,” said Michael Kent, a professor of microbiology in the OSU College of Science and College of Veterinary Medicine, and co-author of the study. “It can also be treated with antibiotics, but may not offer immunity to dogs that could be later exposed to the actual salmon poisoning bacterium. A pet owner might believe their dog is protected, when it isn’t.”

The larval stages of the worm that carries Neorickettsia helminthoeca were first associated with the disease in 1911, and in 1950 the actual bacterium was confirmed as the cause of salmon poisoning. It’s in the same bacterial family as SF agent – meaning pet owners must now understand their dogs may face two related Neorickettsia pathogens – but one causes only a mild illness, while the other can be deadly.

Veterinary doctors, Kent said, routinely have treated animals based on their [mlk1] clinical signs, because the eggs of the fluke may be hard to find in dog feces, and the bacterium is difficult to culture from dog blood. Left untreated, dogs with salmon poisoning can die in a week to 10 days, often from severe hemorrhaging and internal ruptures. The ultimate fatality rate can approach 90 percent of untreated cases.

The bottom line, he said, is that pet owners should not make any assumptions about whether or not their dogs may have immunity to salmon poisoning. Kent said he has received several reports from local veterinarians documenting dogs contracting salmon poisoning more than once.

With the new awareness that different bacteria can cause similar initial symptoms, pet owners should know that dogs displaying such symptoms may or may not have a serious health problem.

The fluke worm, but not the bacterium, can also infect humans.  Humans do not contract salmon poisoning, but may develop a relatively mild gastrointestinal illness. Either freezing or cooking infected fish will kill the worms.

This research was supported by the National Institutes of Health and done in collaboration with researchers from the University of North Dakota, Georgia Southern University, and the Woodburn Veterinary Clinic in Woodburn, Ore.


Story By: 
Source: 

Michael Kent, 541-737-8652

michael.kent@oregonstate.edu

Multimedia Downloads
Multimedia: 

Salmon poisoning of dogs
Dogs at play

Fall Creek hatchery to hold annual festival on Nov. 5

CORVALLIS, Ore. – The Oregon Hatchery Research Center will host its annual Fall Creek Festival on Saturday, Nov. 5, from 10 a.m. to 4 p.m. at the hatchery, located 13 miles west of Alsea on Highway 34.

The festival, which is free and open to the public, features a day of art workshops – scheduled for 10:30 a.m. and 2 p.m. – as well as children’s activities and tours. Registration is required because space is limited; lunch will be provided for registered participants.

To register, call 541-487-5512 and state workshop preferences, or send an email to oregonhatchery.researchcenter@state.or.us

“It’s a wonderful opportunity to see wild coho and Chinook salmon spawning in Fall Creek,” said David Noakes, an OSU professor of fisheries and wildlife.

The workshops include:

  • Water color painting
  • Fish printing
  • Bird house construction
  • Grocery bag stenciling
  • Wind chime construction
  • Nature journal illustration

The center is jointly operated by the Oregon Department of Fish and Wildlife and Oregon State University’s Department of Fisheries and Wildlife.

Story By: 
Source: 

David Noakes, 541-737-1953, david.noakes@oregonstate.edu

Multimedia Downloads
Multimedia: 

Tsunami-safety panel to oversee construction of Marine Studies building

CORVALLIS, Ore. – Oregon State University President Ed Ray announced today the creation of an oversight committee to monitor construction of a Marine Studies Building and student housing in Newport, Ore.

“This committee will ensure that the design, engineering and construction of these buildings meet or exceed the earthquake and tsunami performance commitments the university has made to the public,” Ray said.

Ray also charged the committee with ensuring that the buildings are operated with the highest level of safety and evacuation procedures, preparation and training. The committee’s charge is available online.

The $50 million center for global marine studies research and education will be built at OSU’s Hatfield Marine Science Center in Newport. The 100,000-square-foot facility is an integral part of OSU’s ambitious Marine Studies Initiative, designed to educate students and conduct research on marine-related issues – from rising sea levels and ocean acidification to sustainable fisheries and economic stability.

Housing to accommodate Oregon State students at the campus will be located near Oregon Coast Community College and located out of the tsunami zone.

“Life safety for the occupants of these buildings, as well as the safety for all Hatfield Marine Science Center faculty, staff, students and visitors, is of the highest priority for OSU,” Ray said.

Scott Ashford, dean of Oregon State’s College of Engineering, will chair the committee, which will report to interim Provost and Executive Vice President Ron Adams. The committee will be made up of eight university leaders and will be advised by two seismic and structural engineers, one of whom will be externally employed and independent of the university.

Committee members include Michael Green, OSU interim vice president for finance and administration; Toni Doolen, dean of the university’s Honors College; Susie Brubaker-Cole, vice provost for Student Affairs; Jock Mills, government relations director; Steve Clark, vice president for University Relations and Marketing; and Roy Haggerty, associate vice president for research. OSU’s Office of General Counsel will serve in an advisory capacity.

The committee will be advised by Chris D. Poland, an independent, third party seismic resilience structural engineer, who is a member of the National Academy of Engineering; and Dan Cox, an OSU professor in civil and construction engineering with expertise in coastal resilience and tsunami impacts.

Ashford said the Marine Studies Building will meet or surpass the new “inundation zone” construction guidelines announced recently by the American Society of Civil Engineers. Faculty researchers within OSU’s College of Engineering and Oregon State’s O.H. Hinsdale Wave Research Laboratory aided in the standards’ formation.

In addition to design, engineering and construction matters, the committee will also oversee safety and evacuation planning, procedures and training for the Marine Studies Building, the HMSC campus and the student housing to be built in Newport.

The committee’s charge also includes keeping stakeholders informed; maintaining transparency of all the university’s work regarding design, engineering, construction and safety operations; and ensuring the buildings are completed within budget and on time.

Media Contact: 

Steve Lundeberg, 541-737-4039

Source: 
Multimedia Downloads
Multimedia: 

AerialFullSize18

Hatfield Marine Science Center

Larvae from fat fish on deep reefs help keep shallower populations afloat

CORVALLIS, Ore. – Populations of coral reef fish in shallower, more vulnerable habitats likely owe at least some of their sustainability to the prodigious reproductive abilities of large, old counterparts that dwell at greater depths, a recent study suggests.

Researchers found that fish in the mesophotic zone – 30 to 150 meters underwater, the depth limit for reefs that depend on photosynthesis – are present in lower densities than at other depths, but consisted of larger, older fish with better than average reproductive capabilities.

That mesophotic population, research suggests, is heavy on what are known as BOFFFFs: big, old, fat, fecund, female fish.

Results of the study were recently published at nature.com. Primary funding for the research came from the National Oceanic and Atmospheric Administration Center for Sponsored Coastal Ocean Research.

Su Sponaugle, a professor of integrative biology at Oregon State University’s Hatfield Marine Science Center, teamed up with two other researchers, lead author Esther D. Goldstein and Evan K. D’Alessandro, both of the University of Miami, to study the demographics of bicolor damselfish populations across three reef depths off the Florida coast.

The team studied bicolor damselfish at shallow (less than 10 meters); deep shelf (20 to 30 meters); and mesophotic reef locations, looking at population density and individuals’ structure, growth, size and reproductive output. The damselfish is a small, short-lived plankton feeder that’s closely associated with reef habitat. At mesophotic depths, however, the fish can live more than a dozen years.

The researchers sought to assess the potential of mesophotic reefs to support robust fish populations. Because of their greater depth, those reefs are less susceptible to both human-caused and natural habitat disturbances such as temperature increases.

The scientists found that as water depth increased, the bicolor damsel fish population density decreased and age distributions shifted toward older, and larger, individuals. Among those individuals are the BOFFFFs that produce lots of large eggs that likely hatch high-condition larvae.

The larval stage for the bicolor damselfish lasts 30 days, during which time the larvae are carried by water currents to eventually settle to a reef. At whatever depth they settle to, within 24 hours, larvae will metamorphosize into juveniles and then remain in close proximity to the reef for the duration of their lives.

“They’re very site attached,” Sponaugle said. “Once they settle somewhere, that’s where they live, grow and reproduce – that is, until they’re eaten.”

Across all depths, the fish are genetically similar, meaning it’s probable that shallow water and mesophotic reefs exchange young.

“Mesophotic reefs are sort of a warehouse for future fish in the shallower reefs,” Goldstein said. “The fish are older and larger on average, and they invest a lot into reproduction, which is good.

“So even though there are not as many of them on these deep reefs, their offspring hatch from larger eggs and likely experience higher survivorship, so it would seem they have the capacity to contribute more than their fair share to the shallow-water environments.” 

Media Contact: 

Steve Lundeberg, 541-737-4039

Multimedia Downloads
Multimedia: 

Damselfish

Bicolor damselfish

Study finds local fidelity key to ocean-wide recovery of humpback whales

NEWPORT, Ore. – Humpback whales can migrate thousands of miles to reach feeding grounds each year, but a new study concludes that their fidelity to certain local habitats – as passed on through the generations – and the protection of these habitats are key to understanding the ultimate recovery of this endangered species.

The study documents the local recruitment of whales in Glacier Bay and Icy Strait in Alaska over a 30-year period. The researchers found that contemporary whales that utilize these rich feeding grounds overwhelmingly are descendants of whales that previously used the area.

In other words, the population recovery of humpback whales in the region depends on cultural knowledge of migratory routes passed on from mothers to their calves; it is not a product of whales from outside the area suddenly “discovering” a rich feeding ground.

Results of the study are being published this week in the journal Endangered Species Research.

“Humpback whales are recovering from exploitation on an ocean-wide basis, but ultimately their individual success is on a much more local scale,” said Scott Baker, associate director of the Marine Mammal Institute at Oregon State University and a co-author on the study.

“Humpback whales travel globally, but thrive locally.”

The study compares records of individual whales returning to Glacier Bay. The first, referred to as the “founder’s population,” included whales documented by a local high school teacher, Charles Jurasz, beginning in the 1970s. Jurasz was one of the first researchers to realize that individual whales could be identified by photographs of natural markings – a technique now widely used to study living whales.

Over the years, other researchers – including the authors of this study – continued to record the return of these whales by photo identification and they later collected small genetic samples to confirm the relatedness between individual whales.

Using a large database maintained by Glacier Bay National Park and the University of Alaska Southeast, the records of the founding population were then compared to records of the “contemporary population” returning to Glacier Bay, more than 30 years after Jurasz’s initial studies. The results were striking.

Of the 25 “founding females” that were also sampled for genetic analysis, all but one was represented in the contemporary group – either as still living, or by a direct descendant, or in many cases, both. Several of the founding females were even grandmothers of individuals in the contemporary population.

“We looked at three possibilities for population increase over a 33-year period including local recruitment from Glacier Bay/Icy Strait, recruitment from elsewhere in southeastern Alaska, and immigration from outside the region,” said Sophie P. Pierszalowski, a master’s student in OSU’s Department of Fisheries and Wildlife and lead author on the study.

“It is clear that the contemporary generation of whales is based on local recruitment, highlighting the importance of protecting local habitat for recovering species, especially those with culturally inherited migratory destinations.”

Humpback whales in the North Pacific were once estimated to number more than 15,000 individuals based on catch data before commercial whaling took a toll, reducing the population to less than a thousand by 1966. Humpback whales were first protected by the International Whaling Commission in 1965, then listed under the U.S. Endangered Species Act in 1973.

Since the protection, the oceanic population has increased to an estimated 21,000 individuals based on photo-identification studies and other evidence. The recovery has been slow, in part because humpback whales can live to be 70 years of age and their recovery is driven primarily by local fidelity and recruitment.

“Limiting vessel traffic in important habitats is one way to help protect humpback whales,” Pierszalowski said, “along with maintaining legal distances by vessels, reducing the risk of entanglement with fishing gear, and maintaining stranding networks that have the capacity to quickly disentangle whales.”

OSU’s Marine Mammal Institute is based at the university’s Hatfield Marine Science Center in Newport, Ore.

Story By: 
Source: 

Scott Baker, 541-272-0560, scott.baker@oregonstate.edu;

Sophie Pierszalowski, 541-737-4523, pierszas@oregonstate.edu

Multimedia Downloads
Multimedia: 

 

Photo of mother and calf to the left:

https://flic.kr/p/MbQR5w


 

 

 

jump

New technologies – and a dash of whale poop – help scientists monitor whale health

NEWPORT, Ore. – A lot of people think what Leigh Torres has done this summer and fall would qualify her for a spot on one of those “World’s Worst Jobs” lists.

After all, the Oregon State University marine ecologist follows gray whales from a small inflatable boat in the rugged Pacific Ocean and waits for them to, well, poop. Then she and her colleagues have about 20-30 seconds to swoop in behind the animal with a fine mesh net and scoop up some of the prized material before it drifts to the ocean floor.

Mind you, gray whales can reach a length of more than 40 feet and weigh more than 30 tons, making the retrieval of their daily constitutional somewhat daunting. Yet Torres, a principal investigator in the university’s Marine Mammal Institute, insists that it really isn’t that bad.

“We’re just looking for a few grams of material and to be honest, it doesn’t even smell that bad,” she said. “Now, collecting a DNA sample from a whale’s blow-hole – that’s a bad job. Their breath is horrendous.”

Being a marine pooper-scooper isn’t some strange fetish for the Oregon State research team. They are conducting a pilot project to determine how gray whales respond to ocean noise – both natural and human – and whether these noises cause physiological stress in the animals. Technology is changing the way the researchers are approaching their study.

“New advances in biotechnology allow us to use the fecal samples to look at a range of things that provide clues to the overall health and stress of the whales,” Torres said. “We can look at their hormone levels and genetically identify individual whales, their sex and whether they are pregnant. And we can analyze their prey and document what they’ve been eating.

“Previously, we would have to do a biopsy to learn some of these things and though they can be done safely, you typically don’t repeat the procedure often because it’s invasive,” she added. “Here, we can follow individual whales over a four-month feeding season and pick up multiple samples that can tell us changes in their health.”

The study is a pilot project funded by the National Oceanic and Atmospheric Administration’s Ocean Acoustics Program to determine the impacts of noise on whale behavior and health. Torres, who works out of OSU’s Hatfield Marine Science Center in Newport, Oregon, focuses on gray whales because they are plentiful and close to shore.

“Many marine mammals are guided by acoustics and use sound to locate food, to navigate, to communicate with one another and to find a mate,” said Torres, a faculty member in OSU’s Department of Fisheries and Wildlife and an ecologist with the Oregon Sea Grant program.

Ten years ago, such a study would not have been possible, Torres acknowledged. In addition to new advances in genetic and hormone analyses, the OSU team uses a drone to fly high above the whales. It not only detects when they defecate, it is giving them unprecedented views of whale behavior.

“We are seeing things through the drone cameras that we have never seen before,” Torres said. “Because of the overhead views, we now know that whales are much more agile in their feeding. We call them ‘bendy’ whales because they make such quick, sharp turns when feeding. These movements just can’t be seen from the deck of a ship.”

The use of small, underwater Go-Pro cameras allows them to observe what the whales are feeding upon below. The researchers can identify zooplankton, benthic invertebrates, and fish in the water column near feeding whales, and estimate abundance – helping them understand what attracts the whales to certain habitats.

Joe Haxel and Sharon Nieukirk are acoustic scientists affiliated with OSU's Cooperative Institute for Marine Resources Studies and the NOAA Pacific Marine Environmental Laboratory at the Hatfield center who are assisting with the project. They deploy drifting hydrophones near the whales to record natural and human sounds, help operate the overhead drone camera that monitors the whales’ behavior, and also get in on the fecal analysis.

“Gray whales are exposed to a broad range of small- and medium-sized boat traffic that includes sport fishing and commercial fleets,” Haxel said. “Since they are very much a coastal species, their exposure to anthropogenic noise is pretty high. That said, the nearshore environment is already very noisy with natural sounds including wind and breaking surf, so we’re trying to suss out some of the space and time patterns in noise levels in the range of habitats where the whales are found.”

It will take years for the researchers to learn how ocean noise affects whale behavior and health, but as ocean noises continue increasing – through ship traffic, wave energy projects, sonar use, seismic surveys and storms – the knowledge they gain may be applicable to many whale species, Torres said.

And the key to this baseline study takes a skilled, professional pooper-scooper.

“When a whale defecates, it generates this reddish cloud and the person observing the whale usually screams “POOP!” and we spring into action,” Torres said. “It’s a moment of excitement, action - and also sheer joy. I know that sounds a little weird, but we have less than 30 seconds to get in there and scoop up some of that poop that may provide us with a biological gold mine of information that will help protect whales into the future.

“That’s not such a bad job after all, is it?”

Story By: 
Source: 

Leigh Torres, 541-867-0895, leigh.torres@oregonstate.edu

Multimedia Downloads
Multimedia: 

 

 

Link to: the whale fluke photo

 

 

For a video of the research, click here

 

 

 

 


 

Whale-Aerial-2

Aerial shot of a gray whale.

 

 

 

Torres-boat

Researchers use a drone to monitor whale behavior

 

 

 

 

Salmon trucking success could open miles of historical spawning habitat

NEWPORT, Ore. – For the past several years, technicians have been trucking spring Chinook salmon above Foster Dam in Sweet Home to see if they would spawn, and if their offspring could survive the passage over the dam and subsequent ocean migration to eventually return as adults some 3-5 years later.

A new study examining the genetic origin of adult spring Chinook returning to Foster Dam offers definitive proof that the offspring survived, potentially opening up miles of spawning habitat on the upper South Santiam and other river systems.

Results of the study have been published in the Canadian Journal of Fisheries and Aquatic Sciences.

“With a little human assistance, it is now clear that we can restore natural production to areas above some dams and there is prime habitat on some river systems, such as the North Santiam above Detroit Dam,” said Kathleen O’Malley, an Oregon State University geneticist and principal investigator on the project. “This could really contribute to the long-term population viability in some river systems.”

Some past studies have explored whether salmon that spawned above dams could survive as juveniles going back through the dams, but this new study is one of the first to assess whether those fish successfully would return years later as adults.

Beginning in 2007, technicians from Oregon Department of Fish and Wildlife and the U.S. Army Corps of Engineers took genetic samples of adult salmon trucked above the dam. During the first two years, most of those adult salmon were reared in hatcheries and released as juveniles, but in 2009 they began using only wild-born fish, hoping to give a boost to that population. Since then, researchers have taken genetic samples from returning adult salmon to see if their parents were among those released above the dam.

The key is the “cohort replacement rate,” O’Malley said. If you release 100 female salmon above the dam, will you get at least 100 females from that population returning as adults to the dam for a rate of 1.0?  The researchers have to sample for several years to determine the success rate of one cohort, since spring Chinook can return as 3-, 4- or 5-year olds.

In 2007, ODFW released 385 hatchery-origin adult salmon and 18 wild-born salmon above Foster Dam, and the cohort replacement rate was .96. In 2008, 527 hatchery-origin fish and 163 wild-born fish were released, and the replacement rate was 1.16.

In 2009, the shift was made to all wild-born fish and ODFW released 434 spring Chinook above Foster Dam. When the researchers completed their genetic analysis for that year they found a cohort replacement rate of 1.56.

“It could be a one-year anomaly, or it may be an indication that wild-born fish are fitter and better able to survive and reproduce above the dams,” O’Malley said. “It is promising, though.”

Dams can limit downstream damage from potential floods, the researchers say, but there is little protection for spawning salmon above the dams. One flood occurred in 2010, and the researchers are just finishing their analysis of that year. Many of the spawning beds were wiped out, thus the cohort replacement rate likely will be lower. Although re-establishment of spawning activity above the dams has the potential to enhance productivity, those efforts are vulnerable to environmental processes.

“One limiting factor is that we don’t know for sure what an appropriate replacement rate is,” O’Malley pointed out. “We know that 1.0 is the bare minimum – one fish dies and another takes its place. But it won’t be clear what a good number will be to sustain and expand the population until we have several years of research.”

Researchers and fisheries managers note that ocean conditions play an important role in determining the number of adult salmon that survive to return and spawn, and can account for a significant amount of inter-annual variability in salmon abundance. It is important to have a population that is sufficiently productive across years in order to survive poor environmental conditions – in the ocean, or in fresh water – in any single given year.

ODFW also has released fish above dams on the North Santiam River and Fall Creek and OSU researchers are using genetics to monitor some of the first returning adults in these systems.

“One reason we think that the South Santiam reintroduction is going so well is that the reservoir is smaller and the dam is lower than in others systems in the Willamette basin,” O’Malley said. “The salmon’s downstream survival rate is likely higher than it may be on other river systems.”

The project is funded by the Army Corps of Engineers.

O’Malley is an associate professor in the Department of Fisheries and Wildlife at OSU, who is affiliated with the Coastal Oregon Marine Experiment Station at the university’s Hatfield Marine Science Center in Newport.

Other authors on the study include Melissa Evans and Dave Jacobson of Oregon State; Jinliang Wang of the Zoological Society of London; and Michael Hogansen and Marc Johnson of the Oregon Department of Fish and Wildlife. Evans, the lead author, now works for the Fish and Wildlife Department of the Shoshone-Bannock Tribes in Idaho.

Story By: 
Source: 

Kathleen O’Malley, 541-961-3311, kathleen.omalley@oregonstate.edu

Multimedia Downloads
Multimedia: 

 

 

 

 

 

 

 

 

 

 

 

 

 

Aerial video of South Santiam: https://www.youtube.com/watch?v=zEb5l8lGtb8&

 

 

fish3

Spring Chinook bypassing Foster Dam

 

fish1

Foster Dam trapping operation