OREGON STATE UNIVERSITY

hatfield marine science center

Sea star juveniles abundant, but recovery is anything but guaranteed

CORVALLIS, Ore. – An unprecedented number of juvenile sea stars have been observed off the Oregon coast over the past several months – just two years after one of the most severe marine ecosystem epidemics in recorded history nearly wiped the population out.

The appearance of the juveniles does not mean the threat of “sea star wasting disease” is over, researchers caution. A second round of the disease could be disastrous to the purple ochre (Pisaster ochraceus) and other sea stars, some of which are considered “keystone” species in marine habitats because of their influence on the ecosystem.

A team of Oregon State University scientists who have been monitoring the sea stars for years reported on their status this week in the journal PLOS ONE.

“When we looked at the settlement of the larval sea stars on rocks in 2014 during the epidemic, it was the same or maybe even a bit lower than previous years,” said Bruce Menge, the Wayne and Gladys Valley Professor of Marine Biology at Oregon State University and lead author on the study. “But a few months later, the number of juveniles was off the charts – higher than we’d ever seen – as much as 300 times normal.”

“It wasn’t a case of high settlement, or more sea stars being born. They just had an extraordinary survival rate into the juvenile stage. Whether they can make it into adulthood and replenish the population without succumbing to sea star wasting disease is the big question.”

Menge and his colleagues believe the reason for the high survival rate is the availability of more food. The young sea stars feed on larval and juvenile mussels and barnacles, competing with adult sea stars for the same food source. The scarcity of adults provided a temporary smorgasbord for the juveniles.

Sea star wasting disease first appeared in Oregon in the summer of 2014. In rocky intertidal habitats, disease rapidly depleted populations of the dominant sea star, Pisaster ochraceus. The sea stars first developed twisted arms, then showed deflation and lesions, and eventually lost arms and the ability to grip onto the substrate before finally disintegrating completely.

Over a period of about 15 months, the disease reduced the overall sea star population by 63 to 84 percent at different site along the Oregon coast, and reduced the Pisaster ochraceus population by 80 to 99 percent. The epidemic ranged from Alaska to Baja California.

Scientists from Cornell University attributed the epidemic to a Sea Star-associated Densovirus and researchers in Washington say warmer water may have provided the trigger for the disease in that state.

But Menge’s research group found no association between water temperature and the disease outbreak in Oregon.

“The sea temperatures were warmer when the outbreak first began,” he said, “but Oregon wasn’t affected as early as other parts of the West Coast, and the outbreak reached its peak here when the sea temperature plummeted and was actually cooler than normal.”

The Cornell researchers found evidence of densovirus in the sea stars, the water column and in sediments. It occurs naturally and can become virulent, possibly as a result of stress.

“Something triggered that virulence and it happened on a coast-wide basis,” said Menge, a distinguished professor in the Department of Integrative Biology in OSU’s College of Science. “We don’t think it was a result of warming because conditions were different in Oregon than they were, for example, in Washington and likely other parts of the West Coast. Ocean acidification is one possibility and we’re looking at that now. Ultimately, the cause seems likely to be multi-faceted.”

Menge and his research team have been studying these intertidal rocky zones at different sites for as long as 32 years and analyzing the community structure. Historical research has shown that the ochre star is a “keystone” species because of its influence in these ecosystems, suggesting that the absence of so many adults could have a significant impact.

Ochre sea stars prey on barnacles and mussels and keep their populations under control. When left unchecked, mussel populations can explode, covering up algae and small invertebrates.

“The longer-term ecological consequences of this (disease) event could include wholesale elimination of many low zone species and a complete change in the zonation patterns of rocky intertidal communities along the West Coast of North America,” the authors wrote in their study.

Among the other findings the OSU researchers reported in PLOS One:

  • Sea stars that were continuously submerged, such as those in tidepools, had a higher rate of the disease than sea stars on rocks outside of tidepools where periodically they were above water;
  • During the last two years, the number of gooseneck barnacles has exploded along the coast – likely because they are not being preyed upon as heavily by adult sea stars;
  • Adult sea stars are much more likely to be affected by sea star wasting disease than juveniles, which may be because of longer exposure or some other factor.

The OSU research has been funded by the David and Lucile Packard Foundation, the National Science Foundation, the Kingfisher Foundation, and the Wayne and Gladys Valley Foundation.

Other authors on the study, all from OSU, include Elizabeth Cerny-Chipman, Angela Johnson, Jenna Sullivan, Sarah Gravem and Francis Chan.

Story By: 
Source: 

Bruce Menge, 541-737-5358, mengeb@oregonstate.edu

Multimedia Downloads
Multimedia: 

 

 

 

This photograph of a disintegrating adult purple sea star, Pisaster ochraceus, is available at: https://flic.kr/p/nzd81S

“Eve” and descendants shape global sperm whale population structure

NEWPORT, Ore. – Although sperm whales have not been driven to the brink of extinction as have some other whales, a new study has found a remarkable lack of diversity in the maternally inherited mitochondrial DNA within the species.

In fact, the mitochondrial DNA from more than a thousand sperm whales examined during the past 15 years came from a single “Eve” sperm whale tens of thousands of years ago, the researchers say.

Results of the study are being published this week in the journal Molecular Ecology.

While the exact origins of this sperm whale “Eve” remain uncertain, the study shows the importance of her female descendants in shaping global population structure, according to Alana Alexander, a University of Kansas Biodiversity Institute researcher who conducted the study while a doctoral student at Oregon State University.

“Although the male sperm whale is more famous in literature and cinema through ‘Moby Dick’ and ‘In the Heart of the Sea,’ the patterns in mitochondrial DNA show that female sperm whales are shaping genetic differentiation by sticking close to home,” Alexander said.

Working in the genetic lab of Scott Baker, associate director of Oregon State’s Marine Mammal Institute, Alexander combined DNA information from 1,091 previously studied samples with 542 newly obtained DNA profiles from sperm whales. The new samples were part of a global sampling of sperm whale populations made possible by the Ocean Alliance’s “Voyage of the Odyssey,” a five-and-a-half year circumnavigation of the globe, including some of the most remote regions of the world.

The new sampling, including sperm whales from the previously un-sampled Indian Ocean, revealed global patterns of genetic differentiation and diversity.

“Sperm whales have been in the fossil record for some 20 million years,” said Baker, a co-author on the study, “so the obvious question is how one maternal lineage could be so successful that it sweeps through the global population and no other lineages survive? At this point, we can only speculate about the reasons for this success, but evolutionary advances in feeding preferences and social strategies are plausible explanations.”

The researchers say female sperm whales demonstrate strong fidelity to local areas, and both feeding habits and social structure are important to determine to better manage the species. “There is a real risk of long-term declines in response to current anthropogenic threats, despite the sperm whale’s large worldwide population,” the authors wrote.

“One concern is that this very strong local fidelity may slow expansion of the species following whaling,” said Baker, a professor of fisheries and wildlife who works at OSU’s Hatfield Marine Science Center in Newport, Oregon. “The Sri Lanka sperm whales, for example, don’t seem to mix with the Maldives whales, thus local anthropogenic threats could have a negative impact on local populations.”

The researchers note that while males are important for describing patterns in the nuclear DNA of sperm whales, ultimately the females shape the patterns within the species’ mitochondrial DNA.

“Although there is low mitochondrial DNA diversity there are strong patterns of differentiation, which implies that the global population structure in the sperm whale is shaped by females being ‘home-bodies’ – at the social group, regional and oceanic level,” Alexander said.

The study was funded by a Mamie Markham Award and a Lylian Brucefield Reynolds Award from the Hatfield Marine Science Center; a 2008-11 International Fulbright Science & Technology award to Alexander; and co-funded by the ASSURE program of the Department of Defense in partnership with the National Science Foundation REU Site program. Publication of the paper was supported in part by the Thomas G. Scott Publication Fund.

Other authors include Debbie Steel of OSU’s Marine Mammal Institute; Kendra Hoekzema, OSU Department of Fisheries and Wildlife; Sarah Mesnick, NOAA’s Southwest Fisheries Science Center; Daniel Engelhaupt, HDR Inc.; and Iain Kerr and Roger Payne, Ocean Alliance.

Story By: 
Source: 

Scott Baker, 541-867-0255, scott.baker@oregonstate.edu;

Alana Alexander, 785-864-9886, alana.alexander@ku.edu

Multimedia Downloads
Multimedia: 

 

 

This photo of a sperm whale pod was taken by Gabriel Barathieu: commons.wikimedia.org/wiki/File:Sperm_whale_pod.jpg

Study finds limit on evaporation to ice sheets, but that may change

CORVALLIS, Ore. – Although the coastal regions of the Greenland Ice Sheet are experiencing rapid melting, a significant portion of the interior of that ice sheet has remained stable – but a new study suggests that stability may not continue.

Researchers found that very little of the snow and ice on the vast interior of the ice sheet is lost to the atmosphere through evaporation because of a strong thermal “lid” that essentially traps the moisture and returns it to the surface where it refreezes.

However, there are signs that this lid is becoming leaky as global temperatures increase. The researchers say there may be a threshold at which warming becomes sufficient to turn on a switch that will destabilize the snow surface.

Results of the study, which was funded by the National Science Foundation, are being published in Science Advances. New measurements from a research tower atop the Greenland ice sheet helped uncovered the mystery of how much snow piles up on this ice sheet.

“Normally, the air temperature goes down as you climb, but near the surface in Greenland, it gets warmer,” said David Noone, an Oregon State University professor who is an atmospheric scientist and principal investigator on the study. “The surface is very cold, but it can be as much as 20 degrees warmer just 30 to 40 feet up in the air. It’s enough that you can feel the difference between your nose and your toes.”

“The temperature difference effectively forms a lid so that there is hardly any evaporation. Warm air likes to rise, but if it is already warmer up above the air is trapped nearer the ground. One consequence is that layers of fog form from water that had recently evaporated. Eventually the small fog water-drops drift back down to the very cold surface where it refreezes onto the ice sheet.”

“It’s a handy little trick of nature.”

Max Berkelhammer, a researcher at the University of Illinois and lead author on the study, said scientists have been aware of “accumulation zones” in high-altitude areas of the ice sheet, but they haven’t been comprehensively measured because of the difficulty in analyzing evaporation and condensation over time.

“Instruments capable of doing this are pretty new and while they have been used before on the ice sheet, they have never been able to run during an entire winter,” said Berkelhammer, who did his post-doctoral work with Noone when both were at the University of Colorado. “I think at this point we are still the only group who has been able to run this type of instrument for an entire year on top of an ice sheet.”

The research aims to better understand how ice cores capture information about past temperatures in Greenland. The snow and ice on Greenland’s interior originated from ocean water far to the south and is transported northward by weather systems and storms, and finally falls as snow on the pristine ice sheet.

The researchers are able to track the origins and fate of the water by the ratio of oxygen and hydrogen isotopes in the water.

Variations in the isotope ratios in layers of snow piled up on the ice sheet provide the team a history of Green climate that helps put recent warming into historical context, the researchers say.

To understand past climate, scientists must know how much precipitation fell and how much evaporated. Without the team’s analysis, what fraction of falling snow accumulates and what fraction evaporates was difficult to determine. When they began to explore evaporation rates, they discovered this unique thermal lid, which effectively “recycles” water back onto the Greenland Ice Sheet.

This finding will allow previous estimates of Greenland’s past water balance to be re-evaluated.

“When thinking about climate change, one often thinks about rising global temperatures,” Noone said. “However in Greenland, as like here in Oregon, climate change is also a story of the changing water cycle and how we lose water because evaporation rates are increasing.

“Climate models suggest that as temperatures increase, more precipitation may actually fall in Greenland because warmer air can hold more water. Taken by itself, that could indicate that parts of the ice sheet may grow. However, if the lid becomes increasingly leaky, the evaporation process has become more effective and moisture will escape to the atmosphere.

“The fate of the ice sheet is in the balance,” Noone said. “It becomes a question of which influence is stronger.”

Story By: 
Source: 

David Noone, 541-737-3629, dcn@coas.oregonstate.edu

Multimedia Downloads
Multimedia: 

 

 

 

This photo of fogbows can be downloaded at: https://flic.kr/p/FM1utW

 

 

 

IMG_3025

Summit Station in Greenland

 

David_Noone_Summit2012_IMG_1170

David Noone, OSU, in a snow pit.

 

IMG_2578

Max Berkelhammer measures ice crystals

OSU to issue RFI on ship project after design completion

CORVALLIS, Ore. – The design phase for a project to construct a new regional class research vessel to replenish the United States academic fleet is complete and Oregon State University will issue a request for information (RFI) on Monday, May 2, to shipyards that may be interested in the vessel construction phase.

In January 2013, the National Science Foundation selected Oregon State as the lead institution to finalize the design and coordinate the construction of the vessel – and possibly up to two more – a project considered crucial to maintaining the country’s marine science research capabilities.

The design phase has been completed by The Glosten Associates, a naval architecture firm based in Seattle, and the RFI is a chance to generate market interest and to get feedback from industry on the design and other project documents. OSU plans to issue a Request for Proposals (RFP) in two phases beginning this summer – a technical phase to establish a competitive pool of qualified shipyards and a cost phase to elicit vessel cost proposals.

“The Request for Information issued on May 2 is a chance for us to make final tweaks in the preliminary design and to open up a dialogue with industry about the project,” said Demian Bailey, Oregon State University’s former marine superintendent and a co-leader on the project. “Once we issue the RFP this summer, it will become more difficult to alter the design or other project documents.”

Although similar in size, the new ship will differ greatly from the R/V Oceanus, built in 1975 and operated by OSU, and its sister ships, Endeavor, operated by the University of Rhode Island, and Wecoma (retired), according to Clare Reimers, a professor in the College of Earth, Ocean, and Atmospheric Sciences and project co-leader.

“This class of ships will enable researchers to work much more efficiently at sea because of better handling and stability, more capacity for instrumentation and less noise,” Reimers said. “The design also has numerous ‘green’ features, including an optimized hull form, waste heat recovery, LED lighting, and variable speed power generation.”

These “regional class research vessels” are designed for studying coastal waters out to beyond the continental rise as part of the U.S. academic fleet that is available to all ocean scientists conducting federal and state-funded research and educational programs.

Among the design features:

  • Each regional class research vessel will be 193 feet, with a range of 7,064 nautical miles;
  • Cruising speed is 11 knots with a maximum speed of 13 knots;
  • There are 16 berths for scientists and 13 for crew members;
  • The ships can stay out at sea for 21 days before coming back to port.

The 2017 President’s budget calls for building two RCRVs, but until a final budget is passed by Congress the plan is to make ready a shipyard contract to build one RCRV with options for additional vessels.

After reviewing the proposals from industry, OSU will select a shipyard in early 2017. The NSF will assume ownership of the regional class research vessels, but Oregon State expects to operate the first vessel constructed, which will conduct science missions primarily in the eastern North Pacific Ocean basin.

Additional vessels would be operated in the Atlantic and Gulf regions of the U.S. by other institutions that the NSF would select in late 2017.

“These ships will also have the ability to operate near ice and are considered ‘ice classed,’ although they are not ice-breakers,” Bailey said. The first ship will likely be delivered in 2020.

More information about the project, including renderings, is available at: http://ceoas.oregonstate.edu/ships/rcrv/

Story By: 
Source: 

Demian Bailey, 541-737-0460, dbailey@coas.oregonstate.edu;

Clare Reimers, 541-737-2426, creimers@coas.oregonstate.edu

Multimedia Downloads
Multimedia: 

 

 

This image of the ship is available at: https://flic.kr/p/FGRCR8

Study finds lack of diversity among fisheries scientists

CORVALLIS, Ore. – Researchers who study fish put a high value on biodiversity in the field, yet a new study found a surprising lack of diversity among fisheries scientists themselves.

According to the 2010 United States Census, 51 percent of the people in the U.S. are women. That same year, a study of Ph.D. students in the biological sciences documented that 52 percent of the students pursuing doctorates were women – roughly the same percentage.

However, the new study by researchers at Oregon State University and the U.S. Forest Service found that roughly even split soon disappears – in both federal government positions and in academic institutions. The researchers found that 74 percent of federal fisheries scientists or managers are men, as were 73 percent of the university assistant professors, 71 percent of associate professors and 85 percent of full professors.

The lack of diversity is even more pronounced when analyzed by race. In 2010, the U.S. population was 64 percent white, and participation in biological sciences Ph.D. programs was 69 percent white. Yet only roughly 10 percent of all fisheries science, manager and faculty positions were occupied by minorities.

Results of the study are being published this week in the journal Bioscience.

“It is clear that the fisheries science culture is one dominated by white men,” said Ivan Arismendi, an Oregon State University research faculty scientist and lead author on the study.  “There has been a lot of concern expressed in recent years about diversity, but the numbers don’t seem to reflect that concern. It is important to begin turning the process today because the hiring we’re doing now will last a generation.”

Brooke Penaluna, a research fish biologist with the U.S. Forest Service’s Pacific Northwest Research Station and co-author on the study, said the reasons for the disparity are not completely clear.

“We are graduating women on a 50-50 basis in the biological sciences, but the hiring rate is not keeping pace with the degree rate,” Penaluna said. “For some women, it may be the biological clock butting up against the timetable of career advancement. That doesn’t explain the disparity among minorities.

“We need to look more closely at possible institutional biases. Women, for example, have fewer professional publications and are not asked as often by senior-level scientists to publish. And some federal positions may be in geographic locations that are not attractive to all candidates. We need to create environments that are welcoming so people want to stay – and those conversations can be uncomfortable.”

The authors suggest diversity training and a diverse composition of search committees at both the federal and academic institution levels, as well as increasing the pool of female and minority candidates, and programs to insure their success and career advancement.

At Oregon State University, 28 percent of faculty members in fisheries science are women and 16 percent are non-white.  In December of 2015, OSU named Selina Heppell as head of the Department of Fisheries and Wildlife, the first female to lead the unit in its 80-year history.

Story By: 
Source: 

Sources: Ivan Arismendi, 541-750-7443, ivan.arismendi@oregonstate.edu;

Brooke Penaluna, 541-758-8783, brooke.penaluna@oregonstate.edu

West Coast scientists sound alarm for changing ocean chemistry

CORVALLIS, Ore. – The ocean chemistry along the West Coast of North America is changing rapidly because of global carbon dioxide emissions, and the governments of Oregon, California, Washington and British Columbia can take actions now to offset and mitigate the effects of these changes.

That is the conclusion of a 20-member panel of leading West Coast ocean scientists, who presented a comprehensive report on Monday outlining a series of recommendations to address the increase in ocean acidification and hypoxia, or extremely low oxygen levels.

“Ocean acidification is a global problem that is having a disproportionate impact on productive West Coast ecosystems,” said Francis Chan, an Oregon State University marine ecologist and co-chair of the West Coast Ocean Acidification and Hypoxia Science Panel. “There has been an attitude that there is not much we can do about this locally, but that just isn’t true. A lot of the solutions will come locally and through coordinated regional efforts.”

Ocean acidification and hypoxia are distinct phenomena that trigger a wide range of effects on marine ecosystems. They frequently occur together and represent two important facets of global ocean changes that have important implications for Oregon’s coastal oceans.

Among the panel’s recommendations:

  • Develop new benchmarks for near-shore water quality as existing criteria were not developed to protect marine organisms from acidification;
  • Improve methods of removing carbon dioxide from seawater through the use of kelp beds, eel grass and other plants;
  • Enhance coastal ecosystems’ ability to adapt to changing ocean chemistry through better resource management, including marine reserves, adaptive breeding techniques for shellfish, and other methods.

“Communities around the country are increasingly vulnerable to ocean acidification and long-term environmental changes," said Richard Spinrad, chief scientist for the National Oceanic and Atmospheric Administration, and former OSU vice president for research. “It is crucial that we comprehend how ocean chemistry is changing in different places, so we applaud the steps the West Coast Ocean Acidification and Hypoxia Science Panel has put forward in understanding and addressing this issue. We continue to look to the West Coast as a leader on understanding ocean acidification.”

Chan said regional awareness of the impact of changing ocean chemistry started in Oregon. Some of the first impacts were seen about 15 years ago when the state began experiencing seasonal hypoxia, or low-oxygen water, leading to some marine organism die-offs. Then the oyster industry was confronted with high mortality rates of juvenile oysters because of increasingly acidified water. It turns out that Oregon was on the leading edge of a much larger problem.

“It was a wakeup call for the region, which since has spread up and down the coast,” said Chan, an associate professor in the Department of Integrative Biology in OSU’s College of Science.

California responded to this call, and in partnership with Oregon, Washington and British Columbia, convened a panel of scientific experts to provide advice on the issue. The panel worked with federal and state agencies, local organizations and higher education institutions to identify concerns about ocean acidification and hypoxia, then developed a series of recommendations and actions that can be taken today.

“One of the things all of the scientists agree on is the need for better ocean monitoring or ‘listening posts,’ up and down the West Coast,” said Jack Barth, a professor and associate dean in OSU’s College of Earth, Ocean, and Atmospheric Sciences and a member of the panel. “It is a unifying issue that will require participation from state and federal agencies, as well as universities, ports, local governments and NGOs.”

Barth said one such “listening post” has been the Whiskey Creek Shellfish Hatchery in Netarts Bay, Oregon, which was able to solve the die-off of juvenile oysters with the help of OSU scientists George Waldbusser and Burke Hales, who both served on the 20-member panel. Together, they determined that the ocean chemistry changed throughout the day and by taking in seawater in the afternoon, when photosynthesis peaked and CO2 levels were lower, juvenile oysters could survive.

The West Coast is a hotspot for acidification because of coastal upwelling, which brings nutrient-rich, low-oxygen and high carbon dioxide water from deep in the water column to the surface near the coast. These nutrients fertilize the water column, trigger phytoplankton blooms that die and sink to the bottom, producing even more carbon dioxide and lowering oxygen further.

“We’re just starting to see the impacts now, and we need to accelerate what we know about how increasingly acidified water will impact our ecosystems,” said panel member Waldo Wakefield, a research fisheries biologist with NOAA Fisheries in Newport and courtesy associate professor in OSU’s College of Earth, Ocean, and Atmospheric Sciences.

“There’s a lot at stake. West Coast fisheries are economic drivers of many coastal communities, and the seafood we enjoy depends on a food web that is likely to be affected by more corrosive water.”

Last year, OSU researchers completed the deployment of moorings, buoys and gliders as part of the Endurance Array – a component of the $386 million National Science Foundation-funded Ocean Observatories Initiative, created to address ocean issues including acidification.

These and other ocean-monitoring efforts will be important to inform policy-makers about where to best focus their adaptation and mitigation strategies.

“The panel’s findings provide a road map to help us prepare for the changes ahead,” said Gabriela Goldfarb, natural resource policy adviser to Oregon Gov. Kate Brown. “How Oregon and the West Coast address ocean acidification will inform those confronting this issue around the country and world.”

“With the best scientific recommendations in hand from the science panel, we now have the information on which to base our future management decisions,” added Caren Braby, marine resource manager at the Oregon Department of Fish and Wildlife. “These are practical recommendations natural resource managers and communities can use to ensure we continue to have the rich and productive ecosystem Oregonians depend on for healthy fisheries, our coastal culture and economy.”

Story By: 
Source: 

Francis Chan, 541-844-8415, chanft@science.oregonstate.edu;

Jack Barth, 541-737-1607, barth@coas.oregonstate.edu

Multimedia Downloads
Multimedia: 

oyster

An oyster at Whiskey Creek Shellfish Hatchery

Southern right whales slowly rebounding, but still decades away from full recovery

NEWPORT, Ore. – A new study has determined that right whales in the Southern Hemisphere were once more abundant than previously thought, making their full recovery from near-extinction another 50 to 100 years away.

An international team of scientists using a combination of catch records from 19th-century logbooks and modern computer modeling techniques concluded that as many as 40,000 right whales once inhabited the waters near New Zealand before whaling drove them to the brink of extinction. As few as 20 mature females were estimated to have survived into the beginning of the 20th century.

Results of the study are being published this week in the journal Royal Society Open Science.

“This is the first time we have been able to estimate the pre-whaling abundance for this population of right whales before they were nearly decimated,” said Scott Baker, associate director of the Marine Mammal Institute at Oregon State University, and co-author on the study. “Only a handful of whales survived, and those were threatened again in the 1960s by illegal Soviet whaling.

“The waters around New Zealand have been depleted of right whales for nearly 200 years,” added Baker, who works out of OSU’s Hatfield Marine Science Center in Newport, Ore. “We have little idea of the ecological role they played prior to whaling, or how they may contribute to ecosystems changes as their population slowly recovers.”

Baker and co-author Nathalie Patenaude initiated the decade-long study of the remnant New Zealand right whale population in 1995, in part because the region has one of the best historical catch records from whaling logbooks and other sources. Southern right whales were particularly vulnerable to exploitation because they are slow swimmers with strong fidelity to sheltered bays for calving, making them “predictable and easy targets,” the authors note.

The term “right whale” was coined because they were so easy to hunt.

“Once we had a good idea about the likely range of catches, we could do a full reconstruction using current estimates of abundance and population increase to measure the population’s trajectory through time and how large it was,” said Jennifer Jackson, lead author on the paper. Jackson, a former post-doctoral fellow with Baker at Oregon State, is now with the British Antarctic Survey.

The researchers’ analysis concluded that prior to whaling right whales were abundant in New Zealand waters, numbering about 28,000 to 33,000 individuals. If most of the right whales harvested in the southwest Pacific Ocean were New Zealand whales, the population rises to 47,000 whales.

“Put in context, the estimated size of the current New Zealand population is less than 12 percent of these numbers,” Jackson said.

Catch records of whaling from the early 19th-century were patchy and required a bit of detective work, said Emma Carroll of St. Andrews University, also a co-author on the study.

“We went back through early colonial New Zealand historical records and whaling logbooks, and even had to cross-reference what ships had been seen where to get an understanding of the scale of operations during the winter in New Zealand,” Carroll said.

Funding for the study was provided by the Royal Society of New Zealand, The Lenfest Ocean Program of the Pew Charitable Trust, Oregon State University’s general research fund, and the New Zealand National Institute of Water and Atmospheric Research (NIWA).

Story By: 
Source: 

Scott Baker, scott.baker@oregonstate.edu; 541-867-0255

Five years after tsunami, scientists cross fingers on invasive species establishment

CORVALLIS, Ore. – Five years after a massive earthquake struck Japan and triggered a tsunami that is still washing debris onto the West Coast of the United States, scientists are unsure whether any of the 200-plus non-native species that hitchhiked over on that debris have gained a foothold in Northwest waters.

Four separate findings of barred knifejaws (Oplegnathus fasciatus) – a fish native to Japan – have been reported over the past three years, and Mediterranean blue mussels have been ubiquitous on tsunami debris. Yet no populations of non-native species that arrived with the tsunami debris are known to have established reproductive populations.

“Maybe we dodged the bullet, although it is still too early to tell,” said John Chapman, an Oregon State University invasive species expert who has investigated tsunami debris along the Pacific coastline. “It is possible that we have not yet discovered these reproductive populations, or that some species from Japan may be cross-breeding with our own species.”

Scientists have not had adequate resources to look extensively up and down the Pacific coast for evidence of establishment by non-native species – especially along long stretches of rugged shoreline.

The magnitude-9 earthquake that struck Japan on March 11, 2011, was the largest in that country’s history and generated a tsunami that had waves estimated as high as 133 feet. The power of these two events, combined with the growth of human settlement over the past two to three centuries, created a new paradigm, said Samuel Chan, an expert in aquatic ecosystem health and invasive species with the Oregon Sea Grant program at Oregon State.

“A tsunami 300 years ago, or even just 60 years ago, would not have created as much marine debris that became a vehicle for moving species across the Pacific Ocean that could become invasive,” Chan said. “What makes these major tsunami-driven events different in modern times is the substantial human industrial infrastructure that we have built along the Pacific coast.”

The first indication that a potential problem loomed came in June of 2012, when a large concrete dock that originated in Misawa, Japan, washed ashore near Newport, Oregon – just a stone’s throw from OSU’s Hatfield Marine Science Center.

The 165-ton dock – which was 66 feet long, 19 feet wide and seven feet high – was covered with nearly 200 species of plant and animal life, including a species of brown algae (Undaria pinnatifida) that nearly covered the structure. Chapman and colleague Jessica Miller also found Northern Pacific sea stars, Japanese shore crabs, at least eight species of mollusk, an anemone, a sponge, an oyster, a solitary tunicate, three or more species of amphipods, four or more species of barnacles and worms, bryozoans, a European blue mussel known as Mytilus galloprovincialis, and a sea urchin.

“Frankly,” Chapman said, “we were blown away. We had always thought these organisms would not be able to survive the long trip across the Pacific Ocean, the middle of which is a biological desert. Yet here they were.”

In March of 2013, a boat from Japan containing five barred knifejaws washed ashore in the state of Washington; one is still on display in the Seaside Aquarium. A second knifejaw was filmed in a shipwreck near Monterey, California. Then a third knifejaw was found trapped in a crab pot near Port Orford, Oregon, in February 2015. Just two months later, another was discovered in a boat tank from Japanese tsunami debris near Seal Rock, Oregon.

“Those knifejaws all survived,” Chapman said. “Theoretically, the water temperatures north of Point Conception, California, are too cold for them to spawn. But it’s hard to know for sure.”

Chan has been working with colleagues from Japan’s Tottori University for Environmental Studies on a project that launched dozens of transponders into the waters off that country and traced their path across the Pacific Ocean to North America. The researchers’ goal is to find out what routes the tsunami debris might have taken and how that may influence the type of organisms found aboard the debris.

“Some species have been discovered that are not native to Japan, and others have not even been identified,” Chan noted. “The transponders bobbed around off Japan for some time and then went fairly quickly across the Pacific. But once they arrived here, they moved in and out of near-shore waters, and up and down the coast.

“Satellite tracking of transponders and their discovery by beachcombers indicates that they floated for 2-3 years before they beached on land,” Chan added. “The movement patterns of the transponders within the continental shelves of Japan and North American – where nutrients and food are relatively available – could be one piece of a complex puzzle that have allowed these organisms to survive the trans-Pacific journey.”

Chan said international exchanges in the five years since the Tohoku earthquake and tsunami have been a bright point, resulting in close collaboration and a shared sense of discovery among Japanese and American scientists.

“The debris still arriving five years later is a reminder that has raised awareness among people – many of whom have been complacent or unaware – about the power and destruction that earthquakes and tsunamis can cause on both sides of the Pacific,” Chan said.

Story By: 
Source: 

Sam Chan, 541-737-1583, Samuel.chan@oregonstate.edu;

John Chapman, 541-867-0235, john.chapman@oregonstate.edu

Multimedia Downloads
Multimedia: 

 

 

 

 

(Left: OSU's John Chapman examines a mussel-encrusted boat from Japan.)

 

 

Natural Resources Leadership Academy 2012

Sam Chan informs coastal visitors about the Japanese dock (background) that washed ashore from Japan.

 

knifejaws

A barred knifejaw from Japan survived its trans-Pacific Ocean journey.

 

seacritter_0346b

OSU's Jessica Miller examines a sea star.

Mariana Trench: Seven miles deep, the ocean is still a noisy place

NEWPORT, Ore. – For what may be the first time, scientists have eavesdropped on the deepest part of the world’s oceans and instead of finding a sea of silence, they discovered a cacophony of sounds both natural and caused by humans.

For three weeks, a titanium-encased hydrophone recorded ambient noise from the ocean floor at a depth of more than 36,000 feet in a trough known as Challenger Deep in the fabled Mariana Trench near Micronesia. The team of researchers from the National Oceanic and Atmospheric Administration, Oregon State University and the U.S. Coast Guard expected to hear little. They were surprised.

“You would think that the deepest part of the ocean would be one of the quietest places on Earth,” said Robert Dziak, a NOAA research oceanographer and chief scientist on the project. “Yet there really is almost constant noise from both natural and man-made sources. The ambient sound field at Challenger Deep is dominated by the sound of earthquakes, both near and far was well as the distinct moans of baleen whales and the overwhelming clamor of a category 4 typhoon that just happened to pass overhead.

“There was also a lot of noise from ship traffic, identifiable by the clear sound pattern the ship propellers make when they pass by,” added Dziak, who has a courtesy appointment in Oregon State’s College of Earth, Ocean, and Atmospheric Sciences. “Guam is very close to Challenger Deep and is a regional hub for container shipping with China and The Philippines.”

The project, which was funded by the NOAA Office of Ocean Exploration and Research, was designed to establish a baseline for ambient noise in the deepest part of the Pacific Ocean. Anthropogenic, or human-caused noise has increased steadily over the past several decades and getting these first recordings will allow scientists in the future to determine if the noise levels are growing.

Getting those first sounds wasn’t easy.

The bottom of the Challenger Deep trough is roughly seven miles below the ocean’s surface. In fact, you could put the world’s tallest peak – Mount Everest – in the trench and its top would still be more than a mile from the surface.

The pressure at that depth is incredible, said Haru Matsumoto, an Oregon State ocean engineer who along with NOAA engineer Chris Meinig helped to develop a hydrophone capable of withstanding such pressure. In the average person’s home or office, the atmospheric pressure is about 14.7 pounds per square inch; at the bottom of the Mariana Trench, it is more than 16,000 PSI.

“We had never put a hydrophone deeper than a mile or so below the surface, so putting an instrument down some seven miles into the ocean was daunting,” Matsumoto said. “We had to drop the hydrophone mooring down through the water column at no more than about five meters per second. Structures don’t like rapid change and we were afraid we would crack the ceramic housing outside the hydrophone.”

Partnering with the U.S. Coast Guard, the researchers deployed the hydrophone from the Guam-based cutter Sequoia in July 2015. It took more than six hours for the instrument package to free-fall to the bottom of the Mariana Trench. Its recordings filled the flash drive in about 23 days, but the researchers had to wait until November to retrieve the hydrophone because of ships’ schedules and persistent typhoons.

Once back on site, they recovered the hydrophone mooring by sending an acoustic signal from the ship above, triggering its release from the seafloor. Attached floats allowed it to gradually ascend to the surface.

“It is akin to sending a deep-space probe to the outer solar system,” Dziak said. “We’re sending out a deep-ocean probe to the unknown reaches of inner space.”

For the past several months, Dziak and his colleagues have been analyzing the sounds and differentiating natural sounds from ships and other human activities.

“We recorded a loud magnitude 5.0 earthquake that took place at a depth of about 10 kilometers (or more than six miles) in the nearby ocean crust,” Dziak said. “Since our hydrophone was at 11 kilometers, it actually was below the earthquake, which is really an unusual experience. The sound of the typhoon was also dramatic, although the cacophony from big storms tends to be spread out and elevates the overall noise for a period of days.”

Matsumoto said the hydrophone also picked up a lot of noise from the surface of the ocean – some seven miles above – including waves and winds disturbing the surface.

“Sound doesn’t get as weak as you think it does even that far from the source,” he said.

Another OSU co-investigator on the project, Joe Haxel, will lead a planned return to Challenger Deep in 2017, where the researchers will deploy the hydrophone for a longer period of time and attach a deep-ocean camera.

Dziak, Matsumoto and Haxel are affiliated with the Acoustics Program in the NOAA/Pacific Marine Environmental Laboratory and work at OSU’s Hatfield Marine Science Center in Newport, Ore. The project in Challenger Deep is one of a number of projects in which the U.S. Coast Guard partners with NOAA to sponsor scientific research.

Story By: 
Source: 

Bob Dziak, 541-867-0175, Robert.P.Dziak@noaa.gov;

Haru Matsumoto, 541-867-0272; haru.matsumoto@oregonstate.edu

Multimedia Downloads
Multimedia: 

 

 

 

 

A link to sound files, images and a video can be found at: http://bit.ly/1QSb8Mv

 

 

Deep trench

 

ChallengerDeep

 

CD-hydrophone-close

OSU’s Hatfield Marine Science Center to hold Fossil Fest on Feb. 13

NEWPORT, Ore. – Oregon State University’s Hatfield Marine Science Center will hold its annual Fossil Fest event on Saturday, Feb. 13, in Newport from 10 a.m. to 4 p.m.

Fossils are top-of-mind for many Oregonians, following the discovery in late January of mammoth bones during a construction project at Reser Stadium on the OSU campus. Loren Davis of OSU and Dave Ellingson of Woodburn High School will be available during the day to talk about the find, share photos, and discuss other important fossil discoveries in the Northwest. They will give a talk on “Reser Fossils” at 3 p.m. in Hennings Auditorium.

Special guest lecturer William Orr, an emeritus anthropologist from the University of Oregon, will speak at 1:30 p.m. on “Lagerstatten: World Class Fossil Sites,” in the auditorium. The lecture will focus on what makes certain fossil sites so valuable, both in the United States and abroad. He also will sign copies of his books, “Oregon Fossils” and “Geology of Oregon.”

A lecture by Guy DiTorrice will focus on “Douglas Emlong – Fossil Pioneer, Fossil Dreamer.” It begins at 11:30 a.m. in the auditorium. DiTorrice will highlight Emlong’s contributions to the Smithsonian and other topics.

Fossil Fest also will include fossil displays and hands-on activities by the North American Research Group, fossil displays from Lincoln County presented by Kent Gibson, and information for participants on where to find fossils.

“We’d also encourage any visitors to bring in their own fossil specimens for identification help,” said Bill Hanshumaker, an OSU marine educator and outreach specialist with the Hatfield center.

Story By: 
Source: 

Bill Hanshumaker, 541-867-0167, bill.hanshumaker@oregonstate.edu