environment and natural resources

ODFW, OSU to survey hunters about use of lead ammunition

CORVALLIS, Ore. – The Oregon Department of Fish and Wildlife and Oregon State University are collaborating on an effort to survey Oregon hunters about their use and knowledge of lead ammunition.

The random sample of 4,200 Oregon hunters will begin later this month and those selected should receive a letter from ODFW within the next two weeks. Oregon has approximately 250,000 hunters and the survey will include hunters from each geographic region of the state.

The use of lead ammunition has become a national issue because of impacts to wildlife and human health concerns, according to Ron Anglin, ODFW Wildlife Division administrator. Last year, California passed a law banning the use of lead ammunition for all hunting in the state beginning in 2019; other states have adopted voluntary measures encouraging the use of ammunition made from alternative compounds.

“There is no proposal to ban or limit use of lead ammunition in Oregon, but developments outside of Oregon could affect the use of lead ammunition within the state,” Anglin said. “The Environmental Protection Agency was petitioned to ban the use of lead in ammunition on a nationwide basis and there is the potential of condors being restored in northern California.”

The California legislature passed a law banning lead ammunition to protect endangered California condors, according to Dana Sanchez, an OSU Extension wildlife specialist and one of the project leaders. Condors can become ill after scavenging on animals that have been killed by lead bullets. The birds ingest lead fragments and can become sick or die, she said.

“Historically, Oregon has had condors, though none are known to live here now,” Sanchez pointed out. “However, there are efforts to re-establish populations in northern California and if they are successful, it is only a matter of time before condors begin frequenting the southern portions of Oregon.

“Once condors appear in Oregon, they would be subject to federal protection under the Endangered Species Act,” she added.

Sanchez said some conservation organizations in the state are monitoring lead levels in birds of prey brought into wildlife rehabilitation centers. There is increasing concern that lead exposure may be causing impacts to raptors and eagles in some areas, she said.

“This could lead to an initiative or other efforts to eliminate or restrict the use of lead ammunition,” Sanchez said.

The survey was developed by the OSU Survey Research Center, which will collect the data for ODFW and the OSU Wildlife Extension program. Survey results will be used to inform discussions among agencies, groups and others about any potential restrictions in the use of lead ammunition.

The purpose of the survey, Anglin said, is to gather information from the group of stakeholders who would be most affected by any restrictions on lead ammunition – Oregon hunters.

“Ideally, we would like to survey all Oregon hunters, but that is expensive,” Anglin said. “However, by selecting a random sample of hunters from regions across the state, we should get a clear picture of how Oregon hunters feel about lead ammunition and possible alternatives.”

Persons not chosen for the survey are welcome to provide comments on lead ammunition directly to the Oregon Department of Fish & Wildlife at a special email address: ODFW.wildlifeinfo@state.or.us

Anglin said the ODFW/OSU project team plans to conduct a similar survey of non-hunting Oregonians in the future.

Story By: 

Ron Anglin, 503-947-6301; ODFW.wildlifeinfo@state.or.us; Dana Sanchez, 541-737-6003; dana.sanchez@oregonstate.edu

Sea star disease epidemic surges in Oregon, local extinctions expected

CORVALLIS, Ore. – Just in the past two weeks, the incidence of sea star wasting syndrome has exploded along the Oregon Coast and created an epidemic of historic magnitude, one that threatens to decimate the entire population of purple ochre sea stars.

Prior to this, Oregon had been the only part of the West Coast that had been largely spared this devastating disease.

The ochre sea star, which is the species most heavily affected by the disease in the intertidal zone, may be headed toward localized extinction in Oregon, according to researchers at Oregon State University who have been monitoring the outbreak. As a “keystone” predator, its loss could disrupt the entire marine intertidal ecosystem.

Researchers say this is the first time that die-offs of sea stars, more commonly known as starfish, have ever been identified at one time along such a wide expanse of the West Coast, and the sudden increase in Oregon has been extraordinary.

The best information is from the intertidal zone, which is easier to access for monitoring. In this area, less than 1 percent of the ochre sea stars in Oregon were affected in April, and only slightly more than that by mid-May.

Today, an estimated 30-50 percent of the Oregon populations of this sea star species in the intertidal zone have the disease. The highest losses are at Fogarty Creek, where about 60 percent are affected. Researchers project that the epidemic will intensify and, at some sites, nearly 100 percent of the ochre sea stars could die.

“This is an unprecedented event,” said Bruce Menge, the Wayne and Gladys Valley Professor of Marine Biology in the Department of Integrative Biology of the OSU College of Science. “We’ve never seen anything of this magnitude before.

“We have no clue what’s causing this epidemic, how severe the damage might be or how long that damage might last,” he said. “It’s very serious. Some of the sea stars most heavily affected are keystone predators that influence the whole diversity of life in the intertidal zone.”

Colleagues from the Oregon Coast Aquarium are monitoring subtidal sites in Yaquina Bay, where wasting was first observed in April. Photos and video of that work are available at http://bit.ly/1kMlG9s

Altogether, mortality has been documented in 10 species of sea stars on the West Coast. No definitive cause has yet been identified, and it could include bacterial or viral pathogens. Researchers around the nation are working on the issue. More information, including an interactive map of all observations, and opportunities for interested citizens to participate in the observation effort are available online at http://bit.ly/1o5bWNi

Sea star wasting syndrome is a traumatic process in which, over the course of a week or less, the sea stars begin to lose legs, disintegrate, ultimately die and rot. They sometimes physically tear their bodies apart. Various epidemics of the syndrome have been observed in the past, but none of this extent or severity.

In a healthy ecosystem, sea stars are beautiful, but also tenacious and important parts of the marine ecosystem. In particular, they attack mussels and keep their populations under control. Absent enough sea stars, mussel populations can explode, covering up algae and other small invertebrates. Some affected sea stars also eat sea urchins. This could lead to increased numbers of sea urchins that can overgraze kelp and sea grass beds, reducing habitat for other fish that use such areas for food and refuge.

The very ecological concept of “keystone predators,” in fact, originated from work in 1969 at the University of Washington using this same purple ochre sea star as a model.

“Parts of California, Washington, and British Columbia had already been affected by this outbreak of the wasting syndrome,” said Kristen Milligan, program coordinator at OSU for the Partnership for Interdisciplinary Studies of Coastal Oceans, or PISCO, which is a collaboration of OSU, the University of California/Santa Cruz, UC/Santa Barbara and Stanford University.

“It wasn’t clear why those areas had been hit and Oregon had not,” Milligan said. “We were hoping that Oregon’s coast would be spared. Although it was hit late, we are obviously being hit hard by this potentially devastating syndrome.”

A group of OSU undergraduate students have assisted in recent monitoring of the OSU outbreak, studying conditions at 10 sites from south of Cape Blanco to north of Depoe Bay. Researchers say this is one of the best documented outbreaks of marine disease ever undertaken in North America.

Besides OSU and PISCO, other collaborators in this Oregon initiative include the Oregon Department of Fish and Wildlife, the Oregon Coast Aquarium, OSU Hatfield Marine Science Center, Oregon Coast Watch, Haystack Rock Awareness Program in Cannon Beach, and the Multi-Agency Rocky Intertidal Network. Oregon Sea Grant provides funding for volunteer surveys in the intertidal zone, and the David and Lucile Packard Foundation provides support to PISCO.

In some past cases, ecosystems have recovered from severe losses of sea stars, but in others damage has been long-lasting.

In the past, some of the outbreaks were associated with warm-water conditions during El Nino events, but currently the water temperatures in Oregon “are only at the high end of a normal range,” Menge said.


Story By: 

Kristen Milligan, 541-737-8862

Multimedia Downloads

Dying sea star

Dying sea star

Sea star monitoring

Oregon Coast Aquarium diver monitoring

Monitoring sea star epidemic

OSU students monitoring

YouTube video

Tracking potato famine pathogen to its home may aid $6 billion global fight

CORVALLIS, Ore. – The cause of potato late blight and the Great Irish Famine of the 1840s has been tracked to a pretty, alpine valley in central Mexico, which is ringed by mountains and now known to be the ancestral home of one of the most costly and deadly plant diseases in human history.

Research published today in the Proceedings of the National Academy of Sciences, by researchers from Oregon State University, the USDA Agricultural Research Service and five other institutions, concludes that Phytophthora infestans originated in this valley and co-evolved with potatoes over hundreds or maybe a few thousand years, and later spread repeatedly to much of the world.

Knowing the origin of the pathogen does more than just fill in a few facts in agricultural history, the scientists say. It provides new avenues to discover resistance genes, and helps explain the mechanisms of repeated emergence of this disease, which to this day is still the most costly potato pathogen in the world.

Potato late blight continues to be a major threat to global food security and at least $6 billion a year is spent to combat it, mostly due to the cost of fungicides and substantial yield losses. But P. infestans is now one of the few plant pathogens in the world with a well-characterized center of origin.

“This is immensely important,” said Niklaus Grunwald, who is a courtesy professor in the Department of Botany and Plant Pathology in the College of Agricultural Sciences at Oregon State University, a researcher with the USDA Agricultural Research Service, and lead author on the study.

“This is just a textbook example of a center of origin for a pathogen, and it’s a real treat,” Grunwald said. “I can’t think of another system so well understood. This should allow us to make significant headway in finding additional genes that provide resistance to P. infestans.”

Finding ways to genetically resist the potato late blight, scientists say, could help reduce the use of fungicides, and the expense and environmental concerns associated with them.

There had been competing theories about where P. infestans may have evolved, with the leading candidates being the Toluca Valley near Mexico City, or areas in South America where the potato itself actually evolved thousands of years ago.

Gene sequencing technology used by this research group helped pin down the Toluca Valley as the ancestral hot spot. The P. infestans pathogen co-evolved there hundreds of years ago with plants that were distant cousins of modern potatoes, which produced tubers but were more often thought of as a weed than a vegetable crop.

Today, the newly-confirmed home of this pathogen awaits researchers almost as a huge, natural laboratory, Grunwald said. Since different potato varieties, plants and pathogens have been co-evolving there for hundreds of years, it offers some of the best hope to discover genes that provide some type of resistance.

Along with other staple foods such as corn, rice and wheat, the potato forms a substantial portion of the modern human diet. A recent United Nations report indicated that every person on Earth eats, on average, more than 70 pounds of potatoes a year. Potatoes contain a range of vitamins, minerals, phytochemicals, fiber and – for hungry populations – needed calories.

It’s believed that the potato was first domesticated more than 7,000 years ago in parts of what are now Peru and Bolivia, and it was brought to Europe by Spanish explorers in the late 1500s. A cheap and plentiful crop that can grow in many locations, the ability to increase food production with the potato eventually aided a European population boom in the 1800s.

But what the New World provided, it also took away - in the form of a potato late blight attack that originated from Mexico, caused multiple crop failures and led, among other things, to the Irish potato famine that began in 1845. Before it was over, 1 million people had died and another 1 million emigrated, many to the U.S.

That famine was exacerbated by lack of potato diversity, as some of the varieties most vulnerable to P. infestans were also the varieties most widely cultivated.

Collaborators on the research were from the University of Florida, the James Hutton Institute in Scotland, the University of the Andes in Colombia, Cornell University, and the International Potato Center in Beijing. It was supported by the U.S. Department of Agriculture and the Scottish government.

Story By: 

Niklaus Grunwald, 541-738-4049

Multimedia Downloads

Toluca Valley

Toluca Valley

Potato relative

Potato relative

Infected potato plant

Infected plant

Study finds Oregon’s most common fish at least three distinct species

CORVALLIS, Ore. – A new study has found that the most common fish species in Oregon – the speckled dace – is actually at least three separate and distinct species.

The findings suggest that Oregon may have greater biological diversity in its native fish populations than previously recognized, said researchers at Oregon State University who led the study. The management implications for the discovery are not yet known.

Results of the study are being published this week in the journal Molecular Phylogenetics and Evolution.

The speckled dace is a small minnow that appears in ponds, rivers, springs, lakes and other waterways from Canada to Mexico. It is the most common fish in Oregon, meaning that it appears in more bodies of water than any other fish, the researchers say, yet little is known about its genetic makeup.

“For some reason, the speckled dace has never been fully investigated,” said Kendra Hoekzema, a faculty research assistant in OSU’s Department of Fisheries and Wildlife and lead author on the study. “Yet it varies greatly in genetics and morphology and now we’re finding that more than one species is out there in a small corner of Oregon.

“Who knows how many other species there might be?” she added. “The Great Basin has a lot of springs.”

The study began as a review of the Foskett Spring speckled dace which, as a listed federally threatened subspecies, must be investigated every five years. This particular dace has only been found in a single spring within Warner Valley in southeast Oregon, and as part of her study, Hoekzema collected speckled dace from surrounding basins, including the Warner system, Goose Lake, Lake Abert, Silver Lake and the Malheur River system, as well as Stinking Lake Spring on the Malheur National Wildlife Refuge.

DNA analysis led Hoekzema and co-author Brian Sidlauskas, an assistant professor in the Department of Fisheries and Wildlife at OSU, to determine that there are three “highly divergent” evolutionary lineages of speckled dace that warrant species-level status – the Malheur stream dace, Stinking Lake Spring dace, and dace from the other four basins combined.

“The speckled dace has been on the books for decades as one species and yet when we look at one small corner of Oregon, we find three distinct species,” Sidlauskas said. “Typically, when we think about new species being discovered, we think about some isolated part of the tropics. This is in our own backyard.”

“It goes to show both how much diversity may exist,” he added, “and how little we know about it.”

Hoekzema said the Stinking Lake Spring dace appeared to have branched off genetically some 2.5 million years ago, while the Foskett Spring dace – and perhaps others – became isolated just 10,000 years ago.

The researchers also recommended that the Foskett Spring dace should be listed as an “Evolutionarily Significant Unit” (ESU) and not a subspecies, a technical status change that would not necessarily affect how it is protected.

Paul Scheerer, a biologist with the Oregon Department of Fish and Wildlife, has been working at Foskett Spring since 2005 evaluating population status, trends and habitat conditions. He and his colleagues became concerned, Scheerer said, that the speckled daces’ population was declining and that their habitat was shifting from open water vegetated habitat to emergent marsh.

The Bureau of Land Management, ODFW and the U.S. Fish and Wildlife Service conducted controlled burns of some of the vegetation in 2009 and then excavated new pools fed by the spring.

“Foskett speckled dace quickly expanded into the new pools,” Scheerer said, “and since then we’ve experienced a seven-fold increase in the speckled dace to about 13,000 fish. We also introduced dace into nearby, recently restored ponds to expand their abundance and reduce the risk of catastrophic loss.

“The OSU study results suggest there are more dace species out there than we previously knew,” he added. “It will allow us to adequately protect and enhance these unique fish into the future. The work by OSU is invaluable and will allow us to better understand the diversity of the fish fauna that has evolved in these isolated desert basins.”

The management implications on a broader scale are unclear, Sidlauskas said, because while the new species have been recognized as genetically distinct, their full geographic ranges are unknown. Nevertheless, the discovery of a distinct, unrecognized and possibly endemic species within the Malheur refuge underscores the importance of such areas, he added.

“This suggests that the refuge may harbor even more diversity than we knew and highlights the importance of preserving and valuing such wild places,” Sidlauskas said.

Although the minnows, which grow to a length of about three inches, don’t carry the iconic status of Northwest salmon or steelhead, they are important parts of the food web in many areas. Many species of fish-eating fish love them.

“Speckled dace are the bon-bons of the fish world for piscatorial fish,” Sidlauskas said, “and they are likely important prey for birds and other animals as well.”

The study was funded by the Bureau of Land Management, Oregon Department of Fish and Wildlife, the OSU College of Agricultural Sciences, and the OSU Research Office.

Story By: 

Kendra Hoekzema, 541-737-6035, Kendra.hoekzema@oregonstate.edu; Brian Sidlauskas, 541-737-6789, brian.sidlauskas@oregonstate.edu

Multimedia Downloads











speckled dace photo

speckled dace


Seining for dace

Collecting dace



Mobile lab



Coleman Lake

Study of marine life near Newport finds no red flags for toxicity

NEWPORT, Ore. – Oregon State University scientists have examined a variety of coastal marine species near Newport, Ore., for concentrations of heavy metals and organic pollutants and found only trace amounts with no bioaccumulation of significant concern.

Their report is being presented May 19 to the City of Newport, which commissioned the study. It is available online at: http://www.thecityofnewport.net/

Newport city officials were concerned that effluent from a Georgia-Pacific containerboard plant outfall pipe, located some 4,000 feet off Nye Beach, may be exposing some marine life to contaminants. A 2010 study by CH2M-Hill looked for heavy metals in the surrounding water and sediments and found little with which to be concerned. Their study did not investigate marine organisms, however.

“There was some concern that metals and organic pollutants may be bioaccumulating in nearby marine life,” said Sarah Henkel, a marine ecologist at OSU’s Hatfield Marine Science Center and primary investigator on the study. “We tested for 137 different chemicals and only detected 38 of them – none at levels that remotely approach concern for humans.”

The City of Newport had asked the OSU researchers to look at a variety of species, including flatfish (speckled sand dab), crustaceans (Dungeness crab and Crangon shrimp), and mollusks (mussels and olive snails) because they could bioaccumulate metals and organic pollutants at different rates. The researchers collected a variety of samples in 2012 near the G-P outfall, as well as at sites north of Yaquina Head and south of Yaquina Bay. In fall of 2013, they also collected and analyzed rock scallops.

The organisms were analyzed for trace metals including copper and lead, polychlorinated biphenyls (PCBs) and congeners, polybrominated diphenyl ethers (PBDEs), which are used in flame-retardant materials, and other potentially carcinogenic compounds. They also were analyzed for organic-based compounds, which are commonly derived from pesticides.

Not a single organism was found with a bioaccumulation of metals or organic pollutants that approached levels of concern for humans established by the U.S. Food and Drug Administration, the researchers reported.

“The system is pretty darn clean,” said Scott Heppell, a biologist with the OSU Department of Fisheries and Wildlife and co-primary investigator on the study.  “I was certainly interested personally going into the study because my family goes crabbing in some of the places we sampled. If we had found anything, we would have had to come up with a new place. But we found nothing approaching the level of intervention for humans and that’s reassuring.”

The OSU researchers did find one area of potential future concern – trace levels of arsenic in mussels at sites both north and south of Yaquina Bay. The arsenic levels were still below the FDA level of concern for human consumption (86 parts per million), Heppell said, but in some cases exceeded the established level of concern for impacts to the mussels themselves, which is 3.6 ppm. Some of the samples analyzed by the researchers reached 5.0 ppm.

“It is still 15 times lower than the threshold for human concern, but there is potential for damage to the mussels themselves,” Heppell said. “It is also worth noting because the arsenic was in virtually all of the mussel samples we collected on beaches from Seal Rock to north of Yaquina Head. There is no way to draw a link to the G-P outfall.

“But because it was so common, it may be a good idea to study mussel populations up and down the entire coast to see what arsenic levels are at beyond our study area.”

Arsenic is often used in pressure-treated lumber and wood preservatives, the researchers noted.

Among other findings:

  • The researchers found three derivatives of dichlorodiphenyltrichloroethane, or DDT, a pesticide that has been banned for 40 years. Although it was detected at very small amounts, “the fact that it is still present in organisms four decades later shows why it was banned,” Henkel said.
  • No significant bioaccumulation could be attributed to the G-P outfall. In fact, fish, crabs and shrimp collected from subtidal sites away from the outfall often had higher concentrations of metals than those adjacent to the pipe, though still at levels safe for human consumption.
  • Two DDT derivatives (2,4’-DDE and 4,4’-DDD) were found in a single crab sample. Another, hexochloro-benzene, was detected in just two crab samples – at concentrations some 10,000 times less than the toxicity level listed as potentially affecting the crabs themselves.

“It is worth noting that the instrumentation today is so sensitive it can detect trace amounts of compounds at concentrations not possible just a few years ago,” Heppell said.

The OSU researchers praised the City of Newport for seeking data that potentially could have been damaging, yet was important to know.

“This is one of those reports that, thankfully, turns out to be rather boring,” Henkel said.

Other researchers on the project included Selina Heppell, a biologist with the OSU Department of Fisheries and Wildlife; and OSU faculty research assistants Kristin Politano and Vincent Politano.

Story By: 

Sarah Henkel, 541-867-0316, sarah.henkel@oregonstate.edu; Scott Heppell, 541-737-1086, scott.heppell@oregonstate.edu

OSU scientists part of national APLU report outlining research challenges

CORVALLIS, Ore. – The national Association of Public and Land-grant Universities released a report today outlining six “grand challenges” facing the United States over the next decade in the areas of sustainability water, climate change, agriculture, energy and education.

The APLU project was co-chaired by W. Daniel Edge, head of the Department of Fisheries and Wildlife at Oregon State University. The report is available online at: http://bit.ly/1ksH2ud

The “Science, Education, and Outreach Roadmap for Natural Resources” is the first comprehensive, nationwide report on research, education and outreach needs for natural resources the country’s university community has ever attempted, Edge said.

“The report identifies critical natural resources issues that interdisciplinary research programs need to focus on over the next 5-10 years in order to address emerging challenges,” Edge noted. “We hope that policy-makers and federal agencies will adopt recommendations in the roadmap when developing near-term research priorities and strategies.”

The six grand challenges addressed in the report are: 

  • Sustainability: The need to conserve and manage natural landscapes and maintain environmental quality while optimizing renewable resource productivity to meet increasing human demands for natural resources, particularly with respect to increasing water, food, and energy demands.
  • Water: The need to restore, protect and conserve watersheds for biodiversity, water resources, pollution reduction and water security.
  • Climate Change: The need to understand the impacts of climate change on our environment, including such aspects as disease transmission, air quality, water supply, ecosystems, fire, species survival, and pest risk. Further, a comprehensive strategy is needed for managing natural resources to adapt to climate change.
  • Agriculture: The need to develop a sustainable, profitable, and environmentally responsible agriculture industry.
  • Energy: The need to identify new and alternative renewable energy sources and improve the efficiency of existing renewable resource-based energy to meet increasing energy demands while reducing the ecological footprint of energy production and consumption.
  • Education: The need to maintain and strengthen natural resources education at our schools at all levels in order to have the informed citizenry, civic leaders, and practicing professionals needed to sustain the natural resources of the United States.


Three other OSU researchers were co-authors on the report, including Hal Salwasser, a professor and former dean of the College of Forestry; JunJie Wu, the Emery N. Castle Endowed Chair in Resource and Rural Economics; and George Boehlert, former director of OSU’s Hatfield Marine Science Center.

Wu played a key role in the climate change chapter in identifying the need to better understand the tradeoffs between investing now in climate change adaptation measures versus the long-term risk of not adopting new policies.

Edge and Boehlert contributed to the energy chapter, which focuses primarily on renewable energy.

“The natural resources issues with traditional sources of energy already are well-understood,” Boehlert said, “with the possible exception of fracking. As the country moves more into renewable energy areas, there are many more uncertainties with respect to natural resources that need to be understood and addressed. There are no energy sources that do not have some environmental issues.”

Salwasser was an author on the sustainability chapter that identifies many issues associated with natural resource use, including rangelands, forestry, fisheries and wildlife and biodiversity. The authors contend the challenge is to use these resources in a sustainable manner meeting both human and ecosystem needs.

The project was sponsored by a grant from the U.S. Department of Agriculture to Oregon State University, which partnered with APLU and authors from numerous institutions.


Story By: 

Dan Edge, 541-737-2810; Daniel.edge@oregonstate.edu

Scientists successfully use krypton to accurately date ancient Antarctic ice

CORVALLIS, Ore. – A team of scientists has successfully identified the age of 120,000-year-old Antarctic ice using radiometric krypton dating – a new technique that may allow them to locate and date ice that is more than a million years old.

The ability to discover ancient ice is critical, the researchers say, because it will allow them to reconstruct the climate much farther back into Earth’s history and potentially understand the mechanisms that have triggered the planet to shift into and out of ice ages.

Results of the discovery are being published this week in the Proceedings of the National Academy of Sciences. The work was funded by the National Science Foundation and the U.S. Department of Energy.

“The oldest ice found in drilled cores is around 800,000 years old and with this new technique we think we can look in other regions and successfully date polar ice back as far as 1.5 million years,” said Christo Buizert, a postdoctoral researcher at Oregon State University and lead author on the PNAS article. “That is very exciting because a lot of interesting things happened with the Earth’s climate prior to 800,000 years ago that we currently cannot study in the ice core record.”

Krypton dating is much like the more-heralded carbon-14 dating technique that measures the decay of a radioactive isotope – which has constant and well-known decay rates – and compares it to a stable isotope. Unlike carbon-14, however, krypton is a noble gas that does not interact chemically and is much more stable with a half-life of around 230,000 years. Carbon dating doesn’t work well on ice because carbon-14 is produced in the ice itself by cosmic rays and only goes back some 50,000 years.

Krypton is produced by cosmic rays bombarding the Earth and then stored in air bubbles trapped within Antarctic ice. It has a radioactive isotope (krypton-81) that decays very slowly, and a stable isotope (krypton-83) that does not decay. Comparing the proportion of stable-to-radioactive isotopes provides the age of the ice.

Though scientists have been interested in radiokrypton dating for more than four decades, krypton-81 atoms are so limited and difficult to count that it wasn’t until a 2011 breakthrough in detector technology that krypton-81 dating became feasible for this kind of research. The new atom counter, named Atom Trap Trace Analysis, or ATTA, was developed by a team of nuclear physicists led by Zheng-Tian Lu at Argonne National Laboratory near Chicago.

In their experiment at Taylor Glacier in Antarctica, the researchers put several 300-kilogram (about 660 pounds) chunks of ice into a container and melted it to release the air from the bubbles, which was then stored in flasks. The krypton was isolated from the air at the University of Bern, Switzerland, and sent to Argonne for krypton-81 counting.

“The atom trap is so sensitive that it can capture and count individual atoms,” said Buizert, who is in OSU’s College of Earth, Ocean, and Atmospheric Sciences. “The only problem is that there isn’t a lot of krypton in the air, and thus there isn’t much in the ice, either. That’s why we need such large samples to melt down.”

The group at Argonne is continually improving the ATTA detector, researchers there say, and they aim to perform analysis on an ice sample as small as 20 kilograms in the near future.

The researchers determined from the isotope ratio that the Taylor Glacier samples were 120,000 years old, and validated the estimate by comparing the results to well-dated ice core measurements of atmospheric methane and oxygen from that same period.

Now the challenge is to locate some of the oldest ice in Antarctica, which may not be as easy as it sounds.

“Most people assume that it’s a question of just drilling deeper for ice cores, but it’s not that simple,” said Edward Brook, an Oregon State University geologist and co-author on the study. “Very old ice probably exists in small isolated patches at the base of the ice sheet that have not yet been identified, but in many places it has probably melted and flowed out into the ocean.”

There also are special regions where old ice is exposed at the edges of an ice field, Brook pointed out.

“The international scientific community is really interested in exploring for old ice in both types of places and this new dating will really help,” Brook said. “There are places where meteorites originating from Mars have been pushed out by glaciers and collect at the margins. Some have been on Earth for a million years or more, so the ice in these spots may be that old as well.”

Buizert said reconstructing the Earth’s climate back to 1.5 million years is important because a shift in the frequency of ice ages took place in what is known as the Middle Pleistocene transition. The Earth is thought to have shifted in and out of ice ages every 100,000 years or so during the past 800,000 years, but there is evidence that such a shift took place every 40,000 years prior to that time.

“Why was there a transition from a 40,000-year cycle to a 100,000-year cycle?” Buizert said. “Some people believe a change in the level of atmospheric carbon dioxide may have played a role. That is one reason we are so anxious to find ice that will take us back further in time so we can further extend data on past carbon dioxide levels and test this hypothesis.”

In addition to Buizert and Brook, the research team included Daniel Baggenstos and Jeffrey Severinghaus of the Scripps Institution of Oceanography; Zheng-Tian Lu, Wei Jiang and Peter Müller, Argonne National Laboratory; Roland Purtschert, University of Bern; Vasilii Petrenko, University of Rochester; Tanner Kuhl, University of Wisconsin; James Lee, Oregon State University.

Story By: 

Christo Buizert, 541-737-1209; buizertc@science.oregonstate.edu; Ed Brook, 541-737-8197, brooke@geo.oregonstate.edu

OSU names Lubchenco adviser for marine sciences

CORVALLIS, Ore. – Former National Oceanic and Atmospheric Administration (NOAA) Administrator Jane Lubchenco is back on the faculty of Oregon State University where she has a new role – adviser to the university on marine studies issues.

OSU has named Lubchenco Distinguished University Professor and Adviser in Marine Studies – a position that will help coordinate and expand Oregon State’s international prominence in marine-related studies, which are spread across several disciplines and account for nearly $100 million annually in research funding.

“After four years at the helm of the nation’s premier agency for the ocean and atmosphere, I’m delighted to be back at OSU, and even more pleased to see the new energy focused on marine science, education, policy and outreach,” Lubchenco said. “From my time at NOAA, I know both the high caliber of marine sciences at OSU and the strong potential for a more robust, visible and effective marine studies program that can provide much-needed global leadership by our faculty and students.

“I’m energized by OSU’s commitment to elevate ocean stewardship and to expand the range and quality of opportunities available to students,” she added.

Oregon State’s growth in the marine sciences in recent years has been significant and Lubchenco has played a key role with her seminal research in marine ecology. OSU boasts one of the strongest marine ecology and biology programs in the nation in the College of Science; a formidable oceanography program in the College of Earth, Ocean, and Atmospheric Sciences; and one of the most highly regarded marine research and education facilities in the country in the Hatfield Marine Science Center in Newport.

The university’s strength in marine studies is broad and deep, according to Rick Spinrad, OSU’s vice president for research, who pointed out that Oregon State’s national leadership in wave energy research and tsunami studies are based in OSU’s College of Engineering. The College of Agricultural Sciences has one of the nation’s top fisheries programs as well as a leading oyster breeding research program. OSU-based Oregon Sea Grant is an acclaimed research, education and outreach program tied to Extension, and Lubchenco’s own faculty appointment is in Integrative Biology, which is in OSU’s College of Science.

Other OSU colleges, including Veterinary Medicine, Pharmacy, Education, Liberal Arts, and Public Health and Human Sciences, also have ties to marine research and education.

“A primary goal for Dr. Lubchenco in her new position will be to engage the entire university in OSU’s expanding marine studies mission, and advise university leadership on marine studies matters,” Spinrad said. “We are delighted to welcome Jane back and look forward to her strategic contributions in building OSU’s global marine studies program.”

Last year, OSU President Ray announced the launch of an initiative to create a marine studies campus at OSU, including developments at the Hatfield Marine Science Center in Newport that would eventually host as many as 500 students. Planning is under way for how such a campus might be developed, according to Sabah Randhawa, OSU provost and executive vice president. “Jane Lubchenco’s insights into the national and international needs for marine science education will be invaluable as we go forward with our plans,” Randhawa said.

OSU also provides leadership on a number of other marine studies initiatives, including:

  • The Ocean Observatories Initiative, a $386 million project funded by the National Science Foundation to monitor changes in the world’s oceans – led by a handful of universities, including Oregon State University;
  • An initiative to design and oversee construction of as many as three new coastal research vessels to bolster the United States research fleet. OSU was chosen as lead institution for the NSF-funded project, which could total $290 million over 10 years;
  • The Partnership for Interdisciplinary Studies of Coastal Oceans, a multi-institutional research consortium established 15 years ago and led by OSU, with funding from the David and Lucile Packard Foundation and the Gordon and Betty Moore Foundation totaling more than $56 million.


Lubchenco said she looks forward to working with OSU faculty, staff and students across the university on marine studies issues.

“I’m immensely proud of what we were able to accomplish during the four years I was at NOAA,” she said. “I return to OSU with new insights, contacts and energy to help strengthen our ability to be positioned for the challenges that lie ahead.”

Under Lubchenco’s leadership, NOAA focused on restoring sustainability and economic viability to fisheries, restoring oceans and coasts to a healthy state, protecting marine mammals and endangered species, conducting and disseminating information on climate science, providing timely weather forecasts and warnings, and maintaining the nation’s weather and environmental satellites.

Lubchenco is one of the most highly cited ecologists in the world and is past-president of the American Association for the Advancement of Science, the Ecological Society of America, and the International Council for Science; she is an elected member of the National Academy of Sciences and was a National Science Board member for 10 years; she served on numerous international commissions; and she is a recipient of a MacArthur Fellowship, or “genius award.”

Prior to her NOAA appointment, Lubchenco and her husband, Bruce Menge, shared the Wayne and Gladys Valley Chair in Marine Biology. Menge, who also has the title of Distinguished Professor of Integrative Biology, will continue as the Valley Chair, teaching marine biology and ecology, and leading interdisciplinary research teams focused on ocean acidification and coastal ocean dynamics.

Sastry Pantula, dean of OSU’s College of Science, said Lubchenco’s return to campus will benefit students interested in marine studies.

“Jane’s wealth of international experience and the College of Science’s strong foundation in marine science research and education will be key for OSU as a global leader in marine studies,” Pantula said.  “I am thrilled to see Jane in this role helping to build future leaders and policy makers in marine studies. It is a win-win for our students and for the university."

Story By: 

Rick Spinrad, 541-737-0662; rick.spinrad@oregonstate.edu; Sabah Randhawa, 541-737-2111; Sabah.randhawa@oregonstate.edu; Jane Lubchenco, 541-737-5337; lubchenco@oregonstate.edu

Multimedia Downloads

Jane Lubchenco 1

Researchers find evidence of bighorn sheep on island – now what?

CORVALLIS, Ore. – A research team has found evidence that bighorn sheep inhabited Tiburón Island in the Gulf of California some 1,500 years ago – a surprising find that calls into question just how to manage the population of bighorns that were introduced to the island in 1975.

The experimental introduction almost 40 years ago of what was thought to be a non-native species was intended to create a large breeding population of bighorn sheep at a site safe from predators that could be used to restock bighorn populations on the mainland. The discovery that bighorn sheep previously had lived on the island raises philosophical questions, the researchers say.

They report on the dilemma, which they call “unintentional rewilding,” this week in the journal PLOS ONE.

“This is a microcosm for situations in which animals regarded as non-natives are introduced into an area where they actually lived in the past,” said Clinton Epps, a wildlife ecologist at Oregon State University and co-author on the PLOS ONE article. “There are some interesting implications.

“If, for example, one goal was to restore native habitat and it looked like the introduced animals were having an impact on the flora, the solution might be to remove the animals,” Epps pointed out. “But now you’d have to say, ‘not so fast.’ What is the right thing to do? Does it matter if the animals lived there 10, a hundred, or a thousand years ago?”

The development first began to unfold with the incidental discovery by lead author Ben Wilder of the University of California, Riverside, of a dung mat on the floor of a small cave in the Sierra Kumkaak, a rugged mountain range on the east side of Tiburón Island. Samples of the sheep pellets were sent for DNA sequencing to Oregon State.

“The first thing we had to do was eliminate the possibility that the material had come from deer, mountain goats, domestic sheep or cows, or some other animals,” said Rachel Crowhurst, a faculty research assistant in OSU’s Department of Fisheries and Wildlife. “It closely matched bighorn sheep. Then we used a second genetic marker to compare it to the modern population of bighorns on the island – and it was completely different.”

The OSU researchers determined that the sequences from the bighorn sheep that lived on the island some 1,500 years ago exactly matched sequences from desert bighorn sheep living today in Arizona.

In 1975, 16 female and four male bighorn sheep were introduced to Tiburón Island, which is a large, mostly uninhabited island just off the coast of Sonora Mexico. On the mainland, historical land use had decimated populations of wild bighorn sheep. By the mid-1990s, the Tiburon herd had grown to some 500 animals and was considered one of the most successful large mammal introductions in the world.

As it turns out, this supposed introduction was actually an “unintentional rewilding” – a phrase coined by the authors and a concept that has implications for future research, according to Julio Betancourt, a paleo-ecologist with the United State Geological Survey and co-author on the paper.

“Molecular studies will become more than an afterthought in paleo-ecological studies to address previously unanswerable questions about evolutionary responses to climate change,” Betancourt said.

The research by Epps and Crowhurst was supported by Oregon State University.

Story By: 

Clint Epps, 541-737-2478; Clinton.Epps@oregonstate.edu

Study confirms link between salmon migration and magnetic field

CORVALLIS, Ore. – A team of scientists last year presented evidence of a correlation between the migration patterns of ocean salmon and the Earth’s magnetic field, suggesting it may help explain how the fish can navigate across thousands of miles of water to find their river of origin.

This week, scientists confirmed the connection between salmon and the magnetic field following a series of experiments at the Oregon Hatchery Research Center in the Alsea River basin. Researchers exposed hundreds of juvenile Chinook salmon to different magnetic fields that exist at the latitudinal extremes of their oceanic range. Fish responded to these “simulated magnetic displacements” by swimming in the direction that would bring that toward the center of their marine feeding grounds.

The study, which was funded by Oregon Sea Grant and the Oregon Department of Fish and Wildlife, will be published this month in the forthcoming issue of Current Biology.

“What is particularly exciting about these experiments is that the fish we tested had never left the hatchery and thus we know that their responses were not learned or based on experience, but rather they were inherited,” said Nathan Putman, a postdoctoral researcher in Oregon State University’s Department of Fisheries and Wildlife and lead author on the study.

“These fish are programmed to know what to do before they ever reach the ocean,” he added.

To test the hypothesis, the researchers constructed a large platform with copper wires running horizontally and vertically around the perimeter. By running electrical current through the wires, the scientists could create a magnetic field and control both the intensity and inclination angle of the field. They then placed 2-inch juvenile salmon called “parr” in 5-gallon buckets and, after an acclimation period, monitored and photographed the direction in which they were swimming.

Fish presented with a magnetic field characteristic of the northern limits of the oceanic range of Chinook salmon were more likely to swim in a southerly direction, while fish encountering a far southern field tended to swim north. In essence, fish possess a “map sense” determining where they are and which way to swim based on the magnetic fields they encounter.

“The evidence is irrefutable,” said co-author David Noakes of OSU, senior scientist at the Oregon Hatchery Research Center and the 2012 recipient of the American Fisheries Society’s Award of Excellence. “I tell people: The fish can detect and respond to the Earth’s magnetic field. There can be no doubt of that.”

Not all of the more than 1,000 fish swam in the same direction, Putman said. But there was a clear preference by the fish for swimming in the direction away from the magnetic field that was “wrong” for them. Fish that remained in the magnetic field of the testing site – near Alsea, Ore. – were randomly oriented, indicating that orientation of fish subjected to magnetic displacements could only be attributable to change in the magnetic field.

“What is really surprising is that these fish were only exposed to the magnetic field we created for about eight minutes,” Putman pointed out. “And the field was not even strong enough to deflect a compass needle.”

Putman said that salmon must be particularly sensitive because the Earth’s magnetic field is relatively weak. Because of that, it may not take much to interfere with their navigational abilities. Many structures contain electrical wires or reinforcing iron that could potentially affect the orientation of fish early in their life cycle, the researchers say.

“Fish are raised in hatcheries where there are electrical and magnetic influences,” Noakes said, “and some will encounter electrical fields while passing through power dams. When they reach the ocean, they may swim by structures or cables that could interfere with navigation. Do these have an impact? We don’t yet know.”

Putman said natural disruptions could include chunks of iron in the Earth’s crust, though “salmon have been dealing with that for thousands of years.”

“Juvenile salmon face their highest mortality during the period when the first enter the ocean,” Putman said, “because they have to adapt to a saltwater environment, find food, avoid predation, and begin their journey. Anything that makes them navigate less efficiently is a concern because if they take a wrong turn and end up in a barren part of the ocean, they are going to starve.”

The magnetic field is likely not the only tool salmon use to navigate, however, Putman noted.

“They likely have a whole suite of navigational aids that help them get where they are going, perhaps including orientation to the sun, sense of smell and others,” Putman said.

The Oregon Hatchery Research Center is funded by the Oregon Department of Fish and Wildlife and jointly run by ODFW and Oregon State University.

Story By: 

Nathan Putman, 205-218-5276; Nathan.putman@oregonstate.edu

David Noakes, 541-737-1953; david.noakes@oregonstate.edu

Multimedia Downloads


Orientation of

salmon to field