OREGON STATE UNIVERSITY

environment and natural resources

OSU Press publishes “Ricky’s Atlas,” a sequel to its first children’s book

CORVALLIS, Ore. – The Oregon State University Press has published “Ricky’s Atlas: Mapping a Land on Fire,” a sequel to its first book aimed at children, written by two OSU faculty members.

In 2013, the press published “Ellie’s Log: Exploring the Forest Where the Great Tree Fell,” the story of two children exploring an old-growth forest in the Oregon Cascades. Written by Judith Li, and illustrated by M.L. Herring, the book received several honors, including the Green Earth Book Award Short List for books aimed at children., and an honorable mention from the John Burroughs Riverby Award Committee.

“Ricky’s Atlas” continues to explore the nature of Oregon, this time east of the Cascade Mountains, where Ricky Zamora and his friend Ellie delve further into the relationship between people, plants and animals, while dealing with a wildfire sparked by lightning.

The two young explorers hike across a natural prairie, climb a fire tower, study historical photos and maps, and learn about the role of fire in nature. Ricky’s love of map-making and his natural curiosity help shape the story.

“Upper elementary kids will enjoy the mixture of amazing adventures with actual historical, physical and ecological data about the region,” said Marty Brown, marketing manager for the OSU Press. “Woven into the story are the small pleasures of ranch life, intriguing stories of Native Americans and early settlers, and almost unbelievable views of ancient fossils.

“Ricky and Ellie’s explorations, accompanied by their hand-written notes, introduce readers to a very special landscape and history east of the Cascades.”

Li is a retired associate professor in the Department of Fisheries and Wildlife at OSU, where she worked as a stream ecologist and participated in the National Science Foundation-sponsored Long-Term Ecological Research program at the H.J. Andrews Experimental Forest.

Herring is a science writer and illustrator who heads the communications program in OSU’s College of Agricultural Sciences.

“Ricky’s Atlas” is available at book stores and for order at http://osupress.oregonstate.edu

Story By: 
Source: 

Marty Brown, 541-737-3866, marty.brown@oregonstate.edu

Multimedia Downloads
Multimedia: 

An image of the book cover is available at: https://flic.kr/p/J5Fiyq

“Weather@Home” offers precise new insights into climate change in the West

CORVALLIS, Ore. – Tens of thousands of “citizen scientists” have volunteered some use of their personal computer time to help researchers create one of the most detailed, high resolution simulations of weather ever done in the Western United States.

The data, obtained through a project called Weather@Home, is an important step forward for scientifically sound, societally relevant climate science, researchers say in a an article published in the Bulletin of the American Meteorological Society. The analysis covered the years 1960-2009 and future projections of 2030-49.

“When you have 30,000 modern laptop computers at work, you can transcend even what a supercomputer can do,” said Philip Mote, professor and director of the Oregon Climate Change Research Institute at Oregon State University, and lead author on the study.

“With this analysis we have 140,000 one-year simulations that show all of the impacts that mountains, valleys, coasts and other aspects of terrain can have on local weather,” he said. “We can drill into local areas, ask more specific questions about management implications, and understand the physical and biological climate changes in the West in a way never before possible.”

The sheer number of simulations tends to improve accuracy and reduce the uncertainty associated with this type of computer analysis, experts say. The high resolution also makes it possible to better consider the multiple climate forces at work in the West – coastal breezes, fog, cold air in valleys, sunlight being reflected off snow – and vegetation that ranges from wet, coastal rain forests to ice-covered mountains and arid scrublands within a comparatively short distance.

Although more accurate than previous simulations, improvements are still necessary, researchers say. Weather@Home tends to be too cool in a few mountain ranges and too warm in some arid plains, such as the Snake River plain and Columbia plateau, especially in summer. While other models have similar errors, Weather@Home offers the unique capability to improve simulations by improving the physics in the model.

Ultimately, this approach will help improve future predictions of regional climate. The social awareness of these issues has “matured to the point that numerous public agencies, businesses and investors are asking detailed questions about the future impacts of climate change,” the researchers wrote in their report.

This has led to a skyrocketing demand for detailed answers to specific questions – what’s the risk of a flood in a particular area, what will be future wind speeds as wind farms are developed, how should roads and bridges be built to handle extremely intense rainfall?  There will be questions about heat stress on humans, the frequency of droughts, future sea levels and the height of local storm surges.

This type of analysis, and more like it, will help answer some of those questions, researchers say.

New participants in this ongoing research are always welcome, officials said. If interested in participating, anyone can go online to “climateprediction.net” and click on “join.” They should then follow the instructions to download and install BOINC, a program that manages the tasks; create an account; and select a project. Participation in climateprediction.net is available, as well as many others.

The work has been supported by Microsoft Corp., the U.S. Bureau of Land Management, the California Energy Commission, the U.S. Geological Survey and the USDA.

Collaborators on the report were from OSU, Oxford University in the United Kingdom, and the Met Office Hadley Centre in the United Kingdom.

Story By: 
Source: 

Phil Mote, 541-913-2274

pmote@coas.oregonstate.edu

Multimedia Downloads
Multimedia: 

Elevation map
Elevation map

Coral reefs fall victim to overfishing, pollution aggravated by ocean warming

CORVALLIS, Ore. – Coral reefs are declining  around the world because a combination of factors – overfishing, nutrient pollution, and pathogenic disease – ultimately become deadly in the face of higher ocean temperatures, researchers have concluded.

A study published today in Nature Communications, based on one of the largest and longest field experiments done on this topic, suggests that the widespread coral deaths observed in recent decades are being caused by this combination of multiple local stressors and global warming.

These forces greatly weaken corals, and allow opportunistic pathogens to build to such levels that corals cannot survive.

The findings were made by researchers from six institutions following a three-year experiment that simulated both overfishing and nutrient pollution on a coral reef in the Florida Keys. The large body of field data collected over an extended period of time helped resolve some of the fundamental questions about the cause of coral reef declines, scientists said.

“This is grim news, but at least it will help settle the argument over why corals are dying,” said Rebecca Vega Thurber, an assistant professor in the College of Science at Oregon State University and corresponding author on the study.

“This makes it clear there’s no single force that’s causing such widespread coral deaths. Loss of fish that help remove algae, or the addition of excess nutrients like those in fertilizers, can cause algal growth on reefs. This changes the normal microbiota of corals to become more pathogenic, and all of these problems reach critical levels as ocean temperatures warm.”

The end result, scientists say, is a global decline of coral reefs that is now reaching catastrophic proportions.

“We need to know how human activities are affecting coral reef ecosystems,” says David Garrison, program director in the National Science Foundation’s Division of Ocean Sciences, which funded the research.  “Coral reefs are among the most sensitive indicators of the health of the oceans. This report is a major contribution toward understanding how reefs will fare in the future.”

Scientists say the problems caused by bacterial infections due to local stressors and warm temperatures are in addition to damage from mass coral bleaching events already under way. Only in the early 1980’s did researchers observe the first mass bleaching event in recorded history. There have now been three such events just in the past 20 years.

“About 25-35 percent of the corals on the Great Barrier Reef are dying right now,” Vega-Thurber said. “In 2014-16 large portions of tropical reef across the planet experienced bleaching, and this past April, 90 percent of the Great Barrier Reef bleached as part of a massive El Nino event. Corals everywhere seem to be dying.”

In addition to helping to sort out the effects of known stressors like overfishing and nutrient pollution, the researchers made one bizarre and totally unexpected finding.

In normal conditions, parrotfish, like many other species, are essential to the health of coral reefs, nibbling at them to remove algae and causing no permanent damage. But in one part of the experiment corals were so weakened by nitrogen and phosphorus pollution that when parrot fish would bite them, 62 percent of the corals would die. A normally healthy fish-coral interaction had been turned into a deadly one.

“Normally benign predation by the parrotfish turned into coral murder,” said Deron Burkepile, also a corresponding author on the study at the University of California – Santa Barbara. “But it’s not the parrotfishes, they’re like the reef janitors, keeping it clean. Those extra nutrients — nutrient pollution — turn parrotfishes into an actual source of mortality by facilitating pathogens in the wounds left by their bites. Excess nutrients turn a coral accomplice into a coral killer.”

The researchers said they want to make it clear that parrotfish are not the problem, they are an essential part of healthy reef ecosystems.

“The problem is when corals are so weakened they cannot withstand normal impacts,” Vega-Thurber said. “And the solution will be to help those corals recover their health, by ensuring that their local environment is free of nutrient pollution and that fish stocks are not depleted.”

Among the findings of the study:

  • Overfishing, nutrient pollution and increased temperature all lead to an increase in pathogens;
  • The sheer abundance of pathogens is more important than what particular type or species they are;
  • Coral reef mortality mirrors the abundance of pathogens;
  • Heat exacerbates these problems, with 80 percent of coral deaths coming in the summer or fall, but only when fish are removed or nutrient pollution is present;
  • While high thermal stress has received the most attention, even modest temperature increases make corals more vulnerable to bacteria;
  • Loss of fish can increase algal cover up to six times;
  • In a distressed system with many algae, coral disease levels double and coral mortality increases eight times;
  • Increased algal cover or elevated temperature can reduce levels of naturally-secreted antibiotics that help protect corals from harmful bacteria;
  • Direct algal contact driven by overfishing and nutrient pollution destabilizes the coral microbiome, in some cases leading to a 6- to 9-time increase in mortality.

The findings, researchers say, make it clear that in the face of global warming, some of the best opportunities to protect coral reefs lie in careful management of fishing and protection of water quality. This would give corals their best chance to have a healthy microbiome and resist warmer conditions without dying.

Collaborators on this research were from Florida International University, the University of California/Santa Barbara, Penn State University, Rice University, the University of Florida/Gainsville, SymbioSeas and Marine Applied Research Center, and the Laboratoire d’Excellence.

-30-

Editor Notes: Video and audio are available to illustrate this story.

 

Interview with Rebecca Vega-Thurber:  http://bit.ly/1TSUe1N

Link to audio-only version of same interview: http://bit.ly/24ubTg0

YouTube view-only link of same video: https://youtu.be/dq8jtyuYp_U

Story By: 
Source: 

Rebecca Vega-Thurber, 541-737-1851

rebecca.vega-thurber@oregonstate.edu

Multimedia Downloads
Multimedia: 

Coral surveys

Divers in field study


Sampling coral microbiome


Testing coral microbiome


Experimental design


Study design


Parrot fish on coral reefs
Parrot fish cleaning coral

“Eve” and descendants shape global sperm whale population structure

NEWPORT, Ore. – Although sperm whales have not been driven to the brink of extinction as have some other whales, a new study has found a remarkable lack of diversity in the maternally inherited mitochondrial DNA within the species.

In fact, the mitochondrial DNA from more than a thousand sperm whales examined during the past 15 years came from a single “Eve” sperm whale tens of thousands of years ago, the researchers say.

Results of the study are being published this week in the journal Molecular Ecology.

While the exact origins of this sperm whale “Eve” remain uncertain, the study shows the importance of her female descendants in shaping global population structure, according to Alana Alexander, a University of Kansas Biodiversity Institute researcher who conducted the study while a doctoral student at Oregon State University.

“Although the male sperm whale is more famous in literature and cinema through ‘Moby Dick’ and ‘In the Heart of the Sea,’ the patterns in mitochondrial DNA show that female sperm whales are shaping genetic differentiation by sticking close to home,” Alexander said.

Working in the genetic lab of Scott Baker, associate director of Oregon State’s Marine Mammal Institute, Alexander combined DNA information from 1,091 previously studied samples with 542 newly obtained DNA profiles from sperm whales. The new samples were part of a global sampling of sperm whale populations made possible by the Ocean Alliance’s “Voyage of the Odyssey,” a five-and-a-half year circumnavigation of the globe, including some of the most remote regions of the world.

The new sampling, including sperm whales from the previously un-sampled Indian Ocean, revealed global patterns of genetic differentiation and diversity.

“Sperm whales have been in the fossil record for some 20 million years,” said Baker, a co-author on the study, “so the obvious question is how one maternal lineage could be so successful that it sweeps through the global population and no other lineages survive? At this point, we can only speculate about the reasons for this success, but evolutionary advances in feeding preferences and social strategies are plausible explanations.”

The researchers say female sperm whales demonstrate strong fidelity to local areas, and both feeding habits and social structure are important to determine to better manage the species. “There is a real risk of long-term declines in response to current anthropogenic threats, despite the sperm whale’s large worldwide population,” the authors wrote.

“One concern is that this very strong local fidelity may slow expansion of the species following whaling,” said Baker, a professor of fisheries and wildlife who works at OSU’s Hatfield Marine Science Center in Newport, Oregon. “The Sri Lanka sperm whales, for example, don’t seem to mix with the Maldives whales, thus local anthropogenic threats could have a negative impact on local populations.”

The researchers note that while males are important for describing patterns in the nuclear DNA of sperm whales, ultimately the females shape the patterns within the species’ mitochondrial DNA.

“Although there is low mitochondrial DNA diversity there are strong patterns of differentiation, which implies that the global population structure in the sperm whale is shaped by females being ‘home-bodies’ – at the social group, regional and oceanic level,” Alexander said.

The study was funded by a Mamie Markham Award and a Lylian Brucefield Reynolds Award from the Hatfield Marine Science Center; a 2008-11 International Fulbright Science & Technology award to Alexander; and co-funded by the ASSURE program of the Department of Defense in partnership with the National Science Foundation REU Site program. Publication of the paper was supported in part by the Thomas G. Scott Publication Fund.

Other authors include Debbie Steel of OSU’s Marine Mammal Institute; Kendra Hoekzema, OSU Department of Fisheries and Wildlife; Sarah Mesnick, NOAA’s Southwest Fisheries Science Center; Daniel Engelhaupt, HDR Inc.; and Iain Kerr and Roger Payne, Ocean Alliance.

Story By: 
Source: 

Scott Baker, 541-867-0255, scott.baker@oregonstate.edu;

Alana Alexander, 785-864-9886, alana.alexander@ku.edu

Multimedia Downloads
Multimedia: 

 

 

This photo of a sperm whale pod was taken by Gabriel Barathieu: commons.wikimedia.org/wiki/File:Sperm_whale_pod.jpg

Study shows forest thinning changes movement patterns, habitat use by martens

CORVALLIS, Ore. – Scientists who for the first time used global positioning system (GPS) telemetry to monitor the movements of reclusive Pacific martens have discovered that these fierce, tiny mammals tend to avoid open stands of trees resulting from forest thinning.

That could put conservation efforts to protect martens at odds with modern forest management, but the researchers say there is a prescription that may work for both interests: maintaining forest thinning at lower elevations, which are less favored by martens, and preserve more high-elevation forests – which are at less risk for catastrophic wildfire – as complex, marten-friendly stands.

Results of the research, which was conducted in northern California, have just been published in the Journal of Wildlife Management.

“There are two main reasons that martens avoid open forests,” said Katie Moriarty, a post-doctoral research biologist with the U.S. Forest Service, who conducted the research as a doctoral student at Oregon State University. “Martens eat a lot of food – up to a quarter of their body weight a day. It would be like you eating 100 hamburgers. They need downed logs and dense sapling cover to hunt successfully.

“Since they are the size of a gray squirrel, the woods are a dangerous place. They need to avoid being eaten. And for them, a wide-open forest is like being dropped into Jurassic Park filled with velociraptors. They just won’t stay in those areas.”

The study is important because Pacific martens are considered an indicator species for ecosystem health, said Clinton Epps, an associate professor in OSU’s Department of Fisheries and Wildlife and co-author on the study. The key to the research was the use of GPS to observe a finer scale of the martens’ movements.

“We were able to collect the locations of tagged martens so frequently that we could infer their movements through tree stands rather than relying on a typical radio telemetry study,” Epps said. “There was clear evidence that their movement is affected by forest characteristics in different seasons.

“The spatial configuration of habitat is very important in these systems, even at the scale of an individual animal’s movement. The martens typically avoided simplified stands and they behaved differently if they used them.”

Much of the research was conducted in Lassen National Forest, which has the lowest documented annual survival rates for martens in North America – about 37 percent of them die each year. Forest lands are actively thinned, Moriarty said, although there is no established link between the survival rate and forest management practices. “We can’t assume a causal relationship,” she said.

What the researchers can document is how martens move through different forest types.

“Martens strongly selected complex forest stands over simple stands and openings,” said Moriarty, who is with the Forest Service’s Pacific Northwest Research Station in Olympia, Washington. “Their movements were slower and more sinuous in complex stands with lots of cover. When they were in the open, their movements were more erratic and linear. Those altered patterns of movement in open forests appear to negatively affect the ability of martens to forage without increase risk of predation.”

Martens are one of the smaller members of the weasel family, weighing between one and two-and-a-half pounds – and they look something like a cross between a fox and a mink. Martens are “smaller than a Chihuahua,” Moriarty said, “but have the attitude of a pit bull. They really have a little man’s complex.”

Small but fierce predators, martens feast on snowshoe hare, chipmunks, voles and other small mammals, and also consume bird eggs and berries. They can survive rugged winters with snow more than a dozen feet deep.

“If martens are thriving in an area, that usually is a sign of a healthy ecosystem,” Moriarty said.

Moriarty’s work has paid off in more than one way. In 2008, while studying martens in Tahoe National Forest, she gathered photographic evidence of a wolverine – the first sighting of the animal in California in 75 years.

The marten research was funded by Lassen National Forest with assistance from the Pacific Southwest Research Station and OSU’s Department of Fisheries and Wildlife.

Story By: 
Source: 

Katie Moriarty, 360-753-7716, kmoriarty02@fs.fed.us;

Clint Epps, 541-737-2478, Clinton.epps@oregonstate.edu

Five years after tsunami, scientists cross fingers on invasive species establishment

CORVALLIS, Ore. – Five years after a massive earthquake struck Japan and triggered a tsunami that is still washing debris onto the West Coast of the United States, scientists are unsure whether any of the 200-plus non-native species that hitchhiked over on that debris have gained a foothold in Northwest waters.

Four separate findings of barred knifejaws (Oplegnathus fasciatus) – a fish native to Japan – have been reported over the past three years, and Mediterranean blue mussels have been ubiquitous on tsunami debris. Yet no populations of non-native species that arrived with the tsunami debris are known to have established reproductive populations.

“Maybe we dodged the bullet, although it is still too early to tell,” said John Chapman, an Oregon State University invasive species expert who has investigated tsunami debris along the Pacific coastline. “It is possible that we have not yet discovered these reproductive populations, or that some species from Japan may be cross-breeding with our own species.”

Scientists have not had adequate resources to look extensively up and down the Pacific coast for evidence of establishment by non-native species – especially along long stretches of rugged shoreline.

The magnitude-9 earthquake that struck Japan on March 11, 2011, was the largest in that country’s history and generated a tsunami that had waves estimated as high as 133 feet. The power of these two events, combined with the growth of human settlement over the past two to three centuries, created a new paradigm, said Samuel Chan, an expert in aquatic ecosystem health and invasive species with the Oregon Sea Grant program at Oregon State.

“A tsunami 300 years ago, or even just 60 years ago, would not have created as much marine debris that became a vehicle for moving species across the Pacific Ocean that could become invasive,” Chan said. “What makes these major tsunami-driven events different in modern times is the substantial human industrial infrastructure that we have built along the Pacific coast.”

The first indication that a potential problem loomed came in June of 2012, when a large concrete dock that originated in Misawa, Japan, washed ashore near Newport, Oregon – just a stone’s throw from OSU’s Hatfield Marine Science Center.

The 165-ton dock – which was 66 feet long, 19 feet wide and seven feet high – was covered with nearly 200 species of plant and animal life, including a species of brown algae (Undaria pinnatifida) that nearly covered the structure. Chapman and colleague Jessica Miller also found Northern Pacific sea stars, Japanese shore crabs, at least eight species of mollusk, an anemone, a sponge, an oyster, a solitary tunicate, three or more species of amphipods, four or more species of barnacles and worms, bryozoans, a European blue mussel known as Mytilus galloprovincialis, and a sea urchin.

“Frankly,” Chapman said, “we were blown away. We had always thought these organisms would not be able to survive the long trip across the Pacific Ocean, the middle of which is a biological desert. Yet here they were.”

In March of 2013, a boat from Japan containing five barred knifejaws washed ashore in the state of Washington; one is still on display in the Seaside Aquarium. A second knifejaw was filmed in a shipwreck near Monterey, California. Then a third knifejaw was found trapped in a crab pot near Port Orford, Oregon, in February 2015. Just two months later, another was discovered in a boat tank from Japanese tsunami debris near Seal Rock, Oregon.

“Those knifejaws all survived,” Chapman said. “Theoretically, the water temperatures north of Point Conception, California, are too cold for them to spawn. But it’s hard to know for sure.”

Chan has been working with colleagues from Japan’s Tottori University for Environmental Studies on a project that launched dozens of transponders into the waters off that country and traced their path across the Pacific Ocean to North America. The researchers’ goal is to find out what routes the tsunami debris might have taken and how that may influence the type of organisms found aboard the debris.

“Some species have been discovered that are not native to Japan, and others have not even been identified,” Chan noted. “The transponders bobbed around off Japan for some time and then went fairly quickly across the Pacific. But once they arrived here, they moved in and out of near-shore waters, and up and down the coast.

“Satellite tracking of transponders and their discovery by beachcombers indicates that they floated for 2-3 years before they beached on land,” Chan added. “The movement patterns of the transponders within the continental shelves of Japan and North American – where nutrients and food are relatively available – could be one piece of a complex puzzle that have allowed these organisms to survive the trans-Pacific journey.”

Chan said international exchanges in the five years since the Tohoku earthquake and tsunami have been a bright point, resulting in close collaboration and a shared sense of discovery among Japanese and American scientists.

“The debris still arriving five years later is a reminder that has raised awareness among people – many of whom have been complacent or unaware – about the power and destruction that earthquakes and tsunamis can cause on both sides of the Pacific,” Chan said.

Story By: 
Source: 

Sam Chan, 541-737-1583, Samuel.chan@oregonstate.edu;

John Chapman, 541-867-0235, john.chapman@oregonstate.edu

Multimedia Downloads
Multimedia: 

 

 

 

 

(Left: OSU's John Chapman examines a mussel-encrusted boat from Japan.)

 

 

Natural Resources Leadership Academy 2012

Sam Chan informs coastal visitors about the Japanese dock (background) that washed ashore from Japan.

 

knifejaws

A barred knifejaw from Japan survived its trans-Pacific Ocean journey.

 

seacritter_0346b

OSU's Jessica Miller examines a sea star.

Scientists say window to reduce carbon emissions is small

CORVALLIS, Ore. – At the rate humans are emitting carbon into the atmosphere, the Earth may suffer irreparable damage that could last tens of thousands of years, according to a new analysis published this week.

Too much of the climate change policy debate has focused on observations of the past 150 years and their impact on global warming and sea level rise by the end of this century, the authors say. Instead, policy-makers and the public should also be considering the longer-term impacts of climate change.

“Much of the carbon we are putting in the air from burning fossil fuels will stay there for thousands of years – and some of it will be there for more than 100,000 years,” said Peter Clark, an Oregon State University paleoclimatologist and lead author on the article. “People need to understand that the effects of climate change on the planet won’t go away, at least not for thousands of generations.”

The researchers’ analysis is being published this week in the journal Nature Climate Change.

Thomas Stocker of the University of Bern in Switzerland, who is past-co-chair of the IPCC’s Working Group I, said the focus on climate change at the end of the 21st century needs to be shifted toward a much longer-term perspective.

“Our greenhouse gas emissions today produce climate-change commitments for many centuries to millennia,” said Stocker, a climate modeler and co-author on the Nature Climate Change article. “It is high time that this essential irreversibility is placed into the focus of policy-makers.

“The long-term view sends the chilling message (about) what the real risks and consequences are of the fossil fuel era,” Stocker added. “It will commit us to massive adaptation efforts so that for many, dislocation and migration becomes the only option.”

Sea level rise is one of the most compelling impacts of global warming, yet its effects are just starting to be seen. The latest IPCC report, for example, calls for sea level rise of just one meter by the year 2100. In their analysis, however, the authors look at four difference sea level-rise scenarios based on different rates of warming, from a low end that could only be reached with massive efforts to eliminate fossil fuel use over the next few decades, to a higher rate based on the consumption of half the remaining fossil fuels over the next few centuries.

With just two degrees (Celsius) warming in the low-end scenario, sea levels are predicted to eventually rise by about 25 meters. With seven degrees warming at the high-end scenario, the rise is estimated at 50 meters, although over a period of several centuries to millennia.

“It takes sea level rise a very long time to react – on the order of centuries,” Clark said. “It’s like heating a pot of water on the stove; it doesn’t boil for quite a while after the heat is turned on – but then it will continue to boil as long as the heat persists. Once carbon is in the atmosphere, it will stay there for tens or hundreds of thousands of years, and the warming, as well as the higher seas, will remain.”

Clark said for the low-end scenario, an estimated 122 countries have at least 10 percent of their population in areas that will be directly affected by rising sea levels, and that some 1.3 billion – or 20 percent of the global population – live on lands that may be directly affected. The impacts become greater as the warming and sea level rise increases.

“We can’t keep building seawalls that are 25 meters high,” noted Clark, a professor in OSU’s College of Earth, Ocean, and Atmospheric Sciences. “Entire populations of cities will eventually have to move.”

Daniel Schrag, the Sturgis Hooper Professor of Geology at Harvard University, said there are moral questions about “what kind of environment we are passing along to future generations.”

“Sea level rise may not seem like such a big deal today, but we are making choices that will affect our grandchildren’s grandchildren – and beyond,” said Schrag, a co-author on the analysis and director of Harvard’s Center for the Environment. “We need to think carefully about the long time-scales of what we are unleashing.”

The new paper makes the fundamental point that considering the long time scales of the carbon cycle and of climate change means that reducing emissions slightly or even significantly is not sufficient. “To spare future generations from the worst impacts of climate change, the target must be zero – or even negative carbon emissions – as soon as possible,” Clark said.

“Taking the first steps is important, but it is essential to see these as the start of a path toward total decarbonization,” Schrag pointed out. “This means continuing to invest in innovation that can someday replace fossil fuels altogether. Partial reductions are not going to do the job.”

Stocker said that in the last 50 years alone, humans have changed the climate on a global scale, initiating the Anthropocene, a new geological era with fundamentally altered living conditions for the next many thousands of years.

“Because we do not know to what extent adaptation will be possible for humans and ecosystems, all our efforts must focus on a rapid and complete decarbonization –the only option to limit climate change,” Stocker said.

The researchers’ work was supported by the U.S. National Science Foundation, the U.S. Department of Energy, the Natural Sciences and Engineering Research Council of Canada, the German Science Foundation and the Swiss National Science Foundation.

Story By: 
Source: 

Peter Clark, 541-737-1247, clarkp@geo.oregonstate.edu;

Thomas Stocker, +41 31 631 44 62, stocker@climate.unibe.ch;

Daniel Schrag, 617-233-2554, schrag@eps.harvard.edu

Multimedia Downloads
Multimedia: 

 

 

Rising sea levels will threaten residents of many countries.

Over-hunting in Amazon threatens global carbon budget

CORVALLIS, Ore. – The vast forests of the Amazon store enormous amounts of carbon that help moderate the Earth’s temperature, but a new study shows that this carbon-storing capacity is being threatened by over-hunting.

Wide-scale reduction of fruit-eating large mammals – especially primates and tapirs – is changing the way seeds are dispersed in the Amazon and changing the composition of forests, the researchers say.

Results of the study are being published this week in Proceedings of the National Academy of Sciences.

“Large mammals including spider monkeys and wooly monkeys are fruit-eaters that historically have made up most of the frugivore (or fruit-eating) biomass in these forests,” said Taal Levi, an Oregon State University ecologist and author on the study. “There are many tree species with large seeds that rely on these primates to spread seeds through the forest.

“These large-seeded fruit trees are also slow-growing and populate the forest with dense wood that sequesters a great deal more carbon than in typically stored in trees dispersed by wind or smaller frugivores,” Levi added.

As technology has advanced and firearms have spread through tropical forests, hunting success has improved and these primates have been extirpated from vast areas, Levi pointed out.

“When large primates and tapirs, which are the largest frugivores in the neo-tropics, are lost, forests are eventually populated by plants whose seeds are more likely dispersed by wind, rodents or birds,” Levi said. “It is not the same aggregation of plants and it is affecting the Amazon’s carbon-storing ability.”

In fact, the researchers say, over-hunting occurs over much larger areas than the total area of the Amazon forest affected by deforestation. A relatively small loss in the amount of carbon stored in trees can lead to enormous declines in the amount of carbon stored in these vast forests.

The analysis of 166 wildlife surveys across the Amazon basin documents the loss of large primates. Levi’s computer model projects that this will result in more than three out of four plots losing forest biomass, with a (conservatively) estimated average loss of 2.5 to 3 percent.

Tapirs are another key seed disperser that is sensitive to over-hunting. When tapirs are lost in addition to large primates, nearly nine out of 10 plots will lose forest biomass with the loss (conservatively) projected to average about 5.8 percent.

“The loss of 2.5 to 5.8 percent of biomass may not sound like a lot,” Levi said, “but in an area as vast as the Amazon, the impact could be huge – a projected 313 billion kilograms of carbon not being absorbed.”

Levi said the economic value of such a loss on the world carbon markets could range between $5.91 trillion and $13.65 trillion.

The researchers studied data from 2,345 one-hectare forest plots scattered across the Brazilian Amazon containing nearly 130,000 large trees. Simulations showed that 77 to 88 percent of these plots will lose above-ground forest biomass when the forests are over-hunted and trees that require large primates or tapirs to regenerate are replaced by other trees on the same plots.

Carlos Peres, a research ecologist with the University of East Anglia and lead author on the study, said the research uncovers an important – and perhaps under-appreciated – link between wildlife and climate change.

“Amazonian forest wildlife has been declining through a combination of habitat destruction, habitat degradation and overhunting since the 1950s,” Peres said, “but until now there was a poor understanding of the status of wildlife populations in hunted forests that otherwise remain intact and free of human disturbance.

“We show that dense-wooded, large-seeded Amazonian tree species are replaced by light-wooded trees that produce smaller seeds, which continue to be dispersed in over-hunted forests by more resilient smaller mammal and bird species,” he added.

Levi said trying to manage the forests by manually dispersing seeds would be impractical because of the vastness of the Amazonian forests. There also is evidence that seeds that go through the digestive tract of large mammals are more likely to germinate having been cleansed of flesh that attracts fungal pathogens and other natural enemies.

“Seeds that fall from trees contain a lot of pulp,” Levi said, “and in tropical climates become excellent petri dishes for fungus to colonize.”

The researchers say the key to protecting optimal forest composition is to recognize the importance of hunting and better manage it.

“These findings highlight an urgent need to manage the sustainability of game hunting in both protected and unprotected tropical forests, and place full biodiversity integrity, including populations of large frugivorous vertebrates, firmly in the agenda of reducing emissions from deforestation and forest degradation (REDD+) programs,” the authors noted in the article.

Other authors on the PNAS article are from the National Institute of Amazonian Research and Fiocruz Amazonia.

 

Story By: 
Source: 

Taal Levi, 541-737-4067, taal.levi@oregonstate.edu

Multimedia Downloads
Multimedia: 

 

 

 

 

 

Photo of grey wooly monkey (by Carlos Peres): https://flic.kr/p/Crcxvt

2015 goes down as the warmest in Oregon history

CORVALLIS, Ore. – A mild winter, an early spring and warmer-than-average temperatures every season have contributed to a record-breaking year, as 2015 will go down as the warmest in Oregon since state records began in 1895.

Oregon’s previous record high average temperature of 49.9 degrees was set in 1934 – the height of the Dust Bowl – when the entire country was plagued by hot, dry weather.

Despite a cold, icy end to December in Oregon, the average temperature in 2015 was 50.4 degrees, not only a record but far above the average yearly temperature for the 20th century, which was 47.8 degrees, according to Oregon State University’s Philip Mote, who directs the Oregon Climate Change Research Institute on campus.

“In previous years, we’ve had periods where the weather was warmer for differing spells,” Mote said. “In 2015, though, it was warmer than average almost all the way through the year.” A combination of meteorological conditions and greenhouse gases led to the record warm year, he added.

The statistics are from the National Oceanic and Atmospheric Administration’s National Centers for Environmental Information.

Oregon was not alone in experiencing a warm 2015, according to Kathie Dello, deputy director of the Oregon Climate Service at OSU. Washington, Montana and Florida also experienced record high temperatures, and in several other states 2015 went down in the top five of all time.

It appears this will be yet another record warm year for average global temperature, Dello pointed out, and it is officially the second warmest year in the United States, despite blizzards and Arctic temperatures in the Northeast.

“If you are 31 years of age, you have not lived through a single month in which the global temperature was below average,” Dello said. “And if you are 31 and living in Oregon, you have only experienced three years here that were cooler than the 20th-century average.”

Researchers calculate the average temperature for each day by looking at the highest and lowest temperatures. If the high reaches 90 degrees and the low is 60, that day’s average temperature is 75 degrees. They then calculate the average monthly temperature, and finally, the average yearly temperature.

The average for the state is done by analyzing temperatures at a series of long-established weather stations throughout the state.

 “We had a ridge of high pressure that set up and kept the weather warm and dry throughout most of the summer and fall,” Mote said. “That followed a winter in which we got nearly average precipitation, but much of it came from the south and it fell as rain instead of snow.”

Mote said the record-setting 2015 weather was a combination of meteorological phenomena and the Earth gradually getting warmer because of human activities.

Through rigorous statistical analysis, scientists are able to tease out the impacts of El Niño, greenhouse gas emissions, volcanic activity and solar activity on temperatures. Mote said 2015 would have been a warm year because of meteorological conditions, but the 1-2 degrees (F) attributable to greenhouse gases pushed temperatures into record territory.

“There’s little doubt that the insulation of the planet from greenhouse gas emissions played a role in the warming throughout the year,” he said.

The OSU researchers say expect more of the same in 2016.

“With El Niño and the remnants of The Blob (a huge warm patch of water in the North Pacific Ocean), it should be another warm year for the Earth, and for Oregon,” Dello said.

Story By: 
Source: 

Phil Mote, 541-737-5694, pmote@coas.oregonstate.edu;

Kathie Dello, 541-737-8927, kdello@coas.oregonstate.edu

 

 

 

 

 

A 72-degree day in January (2015) at Yachats on the Oregon Coast. (photo by Theresa Hogue)

Selina Heppell named head of OSU Fisheries and Wildlife Department

CORVALLIS, Ore. – Selina Heppell, an Oregon State University conservation biologist, has been named head of the Department of Fisheries and Wildlife in OSU’s College of Agricultural Sciences.

She is the first woman to hold that position in the department’s 80-year history.

Heppell succeeds former department head W. Daniel “Dan” Edge, who earlier this year was named associate dean of the College of Agricultural Sciences. A faculty member in fisheries and wildlife since 2001, Heppell has served as associate and interim head of the department.

“Selina has provided terrific leadership during her term as interim head of the Department of Fisheries and Wildlife and I am delighted that she will continue to lead the department, which is one of the best in the nation,” said Dan Arp, dean of the College of Agricultural Sciences. “She is a distinguished researcher and teacher with a demonstrated commitment to excellence.”

Heppell will lead one of the largest natural sciences programs at OSU, with more than 600 registered undergraduate majors in Corvallis and online, 180 graduate students and eight degrees and certificates. There are about 140 (non-student) employees in the department, which brought in about $7.4 million in research grants and contracts in 2015.

“We’re a big family,” Heppell said, “and I am very happy to work with such a fantastic group of faculty, staff and students.”

Heppell came to OSU after a post-doctoral appointment at the Environmental Protection Agency in Corvallis. Much of her research has been devoted to the study and protection of some of the slowest-growing animals in the sea, including sturgeon, sea turtles, sharks and West Coast rockfish. She uses computer models and simulations to examine how these species respond to human impacts – and how they may respond to future climate change.

She shares a laboratory with her husband, Scott Heppell, on campus and at OSU’s Hatfield Marine Science Center in Newport. The Heppells teach a conservation biology course in Eastern Europe, and have done field research on fish in the Caribbean, in addition to their West Coast research.

Story By: 
Source: 

Selina Heppell, 541-737-9039, Selina.Heppell@oregonstate.edu;

Dan Arp, 541-737-2331, dan.arp@oregonstate.edu

Multimedia Downloads
Multimedia: 










selinaheppell2015
OSU's Selina Heppell