OREGON STATE UNIVERSITY

environment and natural resources

New assessment identifies global hotspots for water conflict

CORVALLIS, Ore. – More than 1,400 new dams or water diversion projects are planned or already under construction and many of them are on rivers flowing through multiple nations, fueling the potential for increased water conflict between some countries.

A new analysis commissioned by the United Nations uses a comprehensive combination of social, economic, political and environmental factors to identify areas around the world most at-risk for “hydro-political” strife. This river basins study was part of the U.N.’s Transboundary Waters Assessment Program.

Researchers from the United States, Spain and Chile took part in the analysis, which has been recommended by the U.N. Economic Commission for Europe as an indicator for the U.N.’s sustainable development goals for water cooperation.

Results of the study have just been published in the journal Global Environment Change. 

The analysis suggests that risks for conflict are projected to increase over the next 15 to 30 years in four hotspot regions – the Middle East, central Asia, the Ganges-Brahmaputra-Meghna basin, and the Orange and Limpopo basins in southern Africa.

Additionally, the Nile River in Africa, much of southern Asia, the Balkans in southeastern Europe, and upper South America are all areas where new dams are under construction and neighboring countries face increasing water demand, may lack workable treaties, or worse, haven’t even discussed the issue.

“If two countries have agreed on water flow and distribution when there’s a dam upstream, there usually is no conflict,” said Eric Sproles, an Oregon State University hydrologist and a co-author on the study. “Such is the case with the Columbia River basin between the United States and Canada, whose treaty is recognized as one of the most resilient and advanced agreements in the world. 

“Unfortunately, that isn’t the case with many other river systems, where a variety of factors come into play, including strong nationalism, political contentiousness, and drought or shifting climate conditions.”

The conflict over water isn’t restricted to human consumption, the researchers say. There is a global threat to biodiversity in many of the world’s river systems, and the risk of species extinction is moderate to very high in 70 percent of the area of transboundary river basins.

Asia has the highest number of dams proposed or under construction on transboundary basins of any continent with 807, followed by South America, 354; Europe, 148; Africa, 99; and North America, 8. But Africa has a higher level of hydro-political tension, the researchers say, with more exacerbating factors.

The Nile River, for example, is one of the more contentious areas of the globe. Ethiopia is constructing several dams on tributaries of the Nile in its uplands, which will divert water from countries downstream, including Egypt. Contributing to the tension is drought and a growing population more dependent on a water source that may be diminishing.

“When you look at a region, the first thing you try to identify is whether there is a treaty and, if so, is it one that works for all parties and is flexible enough to withstand change,” Sproles said. “It’s easy to plan for water if it is the same every year – sometimes even when it’s low. When conditions vary – and drought is a key factor – the tension tends to increase and conflict is more likely to occur.”

In addition to environmental variability and lack of treaties, other factors leading to conflict include political and economic instability, and armed conflict, the analysis shows.

Sproles said one reason the Columbia River Basin treaty between the U.S. and Canada has worked well is the relative stability of the water supply. In contrast, climate models suggest that the Orinoco River Basin in northern Brazil and the Amazon Basin in upper South America may face drier conditions, which could lead to more strife.

Sproles is a courtesy faculty member in Oregon State’s College of Earth, Ocean, and Atmospheric Sciences, where he received his doctorate.

More information on the United Nations Transboundary Waters Assessment Program is available at: http://www.geftwap.org/.

A shorter version of the paper was published July 13 on the Sustainable Security website.

Story By: 
Media Contact: 

Mark Floyd, 541-737-0788

Source: 

OSU inks largest research grant in its history to begin ship construction

CORVALLIS, Ore. – Oregon State University has just received a grant of $121.88 million from the National Science Foundation to spearhead the construction of a new class of research vessels for the United States Academic Research Fleet. It is the largest grant in the university’s history.

This grant will fund the construction of the first of three planned vessels approved by Congress for research in coastal regions of the continental United States and Alaska. When funding for the next two vessels is authorized, the total grant to OSU could increase to as much as $365 million. The first vessel is slated to be operated by OSU for research missions focusing on the U.S. West Coast. The NSF will begin the competitive selection of operating institutions for the second and third vessels later this year – likely to universities or consortia for operations on the U.S. East Coast and the Gulf of Mexico.

“Oregon State University is extremely proud to lead this effort to create the next generation of regional ocean-going research vessels funded by NSF,” said OSU President Edward J. Ray. “Our exceptional marine science programs are uniquely positioned to advance knowledge of the oceans and to seek solutions to the threats facing healthy coastal communities – and more broadly, global ecological well-being – through their teaching and research.”

OSU was selected by the National Science Foundation in 2013 to lead the initial design phase for the new vessels, and to develop and execute a competitive selection for a shipyard in the United States to do the construction. Gulf Island Shipyards, LLC, in Louisiana was chosen and will conduct the detailed design verification over the next year. Officials hope to have a keel-laying ceremony for the first vessel in the spring of 2018, with the ship delivered to OSU for a year of extensive testing in 2020.

This new class of modern well-equipped ships is essential to support research encompassing marine physical, chemical, biological and geologic processes in coastal waters, said Roberta Marinelli, dean of Oregon State’s College of Earth, Ocean, and Atmospheric Sciences.

“Rising sea levels, ocean acidification, low-oxygen waters or ‘hypoxia,’ declining fisheries, offshore energy, and the threat of catastrophic tsunamis are issues not only in the Pacific Northwest but around the world,” Marinelli said. “These new vessels will provide valuable scientific capacity for better understanding our changing oceans.”

The ships will be equipped to conduct detailed seafloor mapping, to reveal geologic structures important to understanding processes such as subduction zone earthquakes that may trigger tsunamis. The Pacific Northwest is considered a high-risk region because of the Cascadia Subduction Zone, which has produced about two dozen major earthquakes of magnitude 8.0 or greater over the past 10,000 years.

The new ships will also be equipped with advanced sensors that will be used to detect and characterize harmful algal blooms, changing ocean chemistry, and the interactions between the sea and atmosphere. The emerging fields of wave, tidal and wind energy will benefit from ship observations. Oregon State is the site of the Northwest National Marine Renewable Energy Center, which in December was awarded a grant of up to $35 million from the U.S. Department of Energy to create the world’s premier wave energy test facility in Newport.

Some characteristics of the new regional class research vessels (RCRVs), which were designed by The Glosten Associates, a naval architecture firm based in Seattle:

  • 193 feet long with a 41-foot beam;
  • Range of approximately 7,000 nautical miles;
  • Cruising speed is 11.5 knots with a maximum speed of 13 knots;
  • 16 berths for scientists and 13 for crew members;
  • Ability to stay out at sea for at least 21 days before returning to port;
  • High bandwidth satellite communications for streaming data and video to shore;

“This class of ships will enable researchers to work much more safely and efficiently at sea because of better handling and stability, more capacity for instrumentation and less noise,” said Clare Reimers, a professor in the College of Earth, Ocean, and Atmospheric Sciences and project co-leader. “The design also has numerous ‘green’ features, including an optimized hull form, waste heat recovery, LED lighting, and variable speed power generation.”

Oregon State is expected to begin operating the first of the new ships in the fall of 2021, after a year of testing and then official Academic-Fleet designation by the University-National Oceanographic Laboratory System (UNOLS), according to Demian Bailey, also a project co-leader for OSU.

“There will be a full year of testing because there are many interconnected systems to try out,” Bailey said. “Any new ship needs to have shakedown cruises, but we’ll have to test all of the scientific instrumentation as well, from the acoustic multibeam seafloor mapping system to its seawater and meteorological data collection, processing and transfer capabilities.

“These ships will be very forward-looking and are expected to support science operations for 40 years or longer. They will be the most advanced ships of their kind in the country.”

OSU previously operated the 184-foot R/V Wecoma from 1975 until 2012, when it was retired. The university then assumed operations of Wecoma’s sister ship, R/V Oceanus, from Woods Hole Oceanographic Institution; that ship will be retired when the new ship is ready.

The tentative timetable for the new ships:

  • Ship No. 1 keel laying – spring 2018;
  • Ship No. 1 transition to OSU for a year of testing – fall 2020;
  • Ship No. 1 should be fully tested, have UNOLS designation and be fully operational by fall 2021;
  • Ship No. 2 – Keel laying in winter of 2018, delivery in spring 2021, and UNOLS designation in late spring 2022;
  • Ship No. 3 – Keel laying in fall 2020, delivery in spring 2022, and UNOLS designation in spring 2023.

More information on the ships and the project is available at: http://ceoas.oregonstate.edu/ships/rcrv/.

Story By: 
Media Contact: 

Mark Floyd, 541-737-0788

Multimedia Downloads
Multimedia: 

Regional class research vessel

Regional class research vessel

Krill hotspot fuels incredible biodiversity in Antarctic region

CORVALLIS, Ore. – There are so many Antarctic krill in the Southern Ocean that the combined mass of these tiny aquatic organisms is more than that of the world’s 7.5 billion human inhabitants.

Scientists have long known about this important zooplankton species, but they haven’t been certain why particular regions or “hotspots” in the Southern Ocean are so productive. One such hotspot exists off Anvers Island – along the western Antarctic Peninsula – where high densities of Antarctic krill episodically concentrate near the shore close to a number of Adélie penguin breeding colonies. 

As it turns out, a perfect combination of tides and wind is responsible, according to scientists who just published a study on the krill in the journal Deep Sea Research. The research was funded by the National Science Foundation.

“This region off the western Antarctic Peninsula has been a known breeding area for Adélie penguins for thousands of years,” said Kim Bernard, a biological oceanographer at Oregon State University and lead author on the study. “We know it today as a krill hotspot and it probably has been for some time.

“But despite their abundance, there is growing concern about krill not only because of climate change, but because they are now being harvested for human food, nutritional supplements and aquaculture feed. Yet historically we’ve known little about what makes this particular area so productive for krill. So we set out to learn more about it.”

Bernard and a team of colleagues spent four consecutive summer seasons in the Antarctic mapping the patterns in distribution and biomass of Antarctic krill, also known as Euphausia superba. They also sought to identify the environmental conditions responsible for the hotspot. 

What they discovered is a near-perfect system in which krill aggregations situated over the Palm Deep Canyon – a region of nutrient-rich waters that produce a lot of food for the krill – are delivered close to shore by tidal currents and winds. When the winds are westerly and the tides are diurnal – one high tide and one low tide each day – the krill biomass close to shore is at its peak and krill aggregations are huge.

“It’s neat – we can predict exactly when humpback whales will be close to shore off Palmer Station just based on the tides,” Bernard said. “When there are diurnal tides, you’ll see krill from the surface to the ocean floor – they are everywhere. And when they are, the whales are there, too.

“This concentration and transport toward shore are particularly important for the penguins that breed there. The farther they have to go to forage, the less their chicks have to eat and chick weight is a huge factor in their survival. A difference of a few hundred grams in chick weight is the difference between life and death.”

When the tides shift to semi-diurnal – two high and two low tides daily – currents move the krill away from shore and their predators follow. Likewise, a shift to southerly winds keeps the krill farther from shore and more spread out.

Antarctic krill can live five to seven years, and grow to a length of a little more than two inches. They don’t reach sexual maturity for two years, and when they reproduce, they must release their eggs in water roughly 1,000 meters (or about 3,200 feet) deep. That’s because they need a certain period of time to develop as they drift to the ocean floor, and another period of time to go through different life stages as they re-ascend to the surface.

Studies have shown that sea ice may be critical to their survival, but scientists are not exactly sure why, Bernard said.

“We see very strong correlations between krill biomass and sea ice,” she noted. “When the sea ice is low, the krill populations crash the next summer. It could be a change in algae or other food for them, or it could be that sea ice provides shelter from predators, or affects the currents in some way. We just don’t yet know.

“It would be nice to find out, because sea ice abundance may vary greatly in the future.”

Bernard is on the faculty of OSU’s College of Earth, Ocean, and Atmospheric Sciences.

Story By: 
Media Contact: 

Mark Floyd, 541-737-0788

Multimedia Downloads
Multimedia: 

Palmer_Dec2012_145

Penguins rely on close-to-shore krill

OSU researcher part of $14 million NSF program for improved genomic tools

CORVALLIS, Ore. – Coral researcher Virginia Weis of Oregon State University is one of eight researchers selected for a new $14 million National Science Foundation program aimed at helping scientists better understand the relationship between gene function and the physical and functional characteristics of organisms.

Weis, head of the Department of Integrative Biology in OSU’s College of Science, will use her $1.875 million EDGE program award to further study the microscale cellular, molecular and genetic mechanisms that underpin the symbiosis between corals and algae.

EDGE stands for Enabling Discovery through Genomic Tools. The NSF’s Biological Sciences Directorate administers the program, which funds projects that seek to develop new tools and teach researchers how to use them.

“It’s a tremendous honor to be selected for this important new program,” Weis said.

Corals are made up of interconnected animal hosts called polyps that house microscopic algae inside their cells, Weis said. The coral-algal symbiosis, or partnership, is the foundation of the entire coral reef ecosystem; the polyps receive food from the algae, and the polyps in turn provide nutrients and protection to the algae.

“Coral reefs are profoundly important, diverse ecosystems that are threatened worldwide by environmental variation and stress,” Weis said. “While a great deal of attention has been focused on the environmental threats to corals, there remains only a partial understanding of the regulation of the symbiosis, and more knowledge will provide a stronger foundation for studies of coral health and coral stress, such as coral bleaching, in which the host polyps lose their symbiotic algae.”

Weis’ project will bring together coral biologists, cell biologists and geneticists from Stanford University, the Carnegie Institution and Florida International University to study a small sea anemone that serves as a proxy for corals. Corals do not survive well in a laboratory setting, are slow growing and are difficult to collect.

The fast-growing, weedy sea anemone Aiptasia will allow researchers to make quick progress on the study of coral symbiosis.

“This award is focused on technique development and swift dissemination of results through online communication platforms to both the scientific community and the public,” Weis said. “A variety of genetic techniques will be developed, including gene editing in both partners, to be able to test hypotheses about the involvement of specific genes in coral health and stress. This award will contribute to the training of scientists and expose school-aged children and others in the general public to coral reef and symbiosis science.”

Oregon Health & Science University, the University of Texas, Massachusetts Institute of Technology, Michigan State University, Penn State, Virginia Tech and Boyce Thompson Institute are the home institutions of the other EDGE award recipients.

Media Contact: 

Steve Lundeberg, 541-737-4039

Source: 
Multimedia Downloads
Multimedia: 

Virginia Weis

Virginia Weis

Northwest researchers map out regional approach to studying food, energy, water nexus

CORVALLIS, Ore. – Natural resource researchers at Oregon State University, Washington State University and the University of Idaho are gearing up for a late-summer summit aimed at addressing food, energy and water challenges as interconnected, regional issues.

The August meeting in Hermiston, Ore. – centrally located to many National Science Foundation-funded research projects – represents the second step of a collaboration that began with an April workshop in Coeur d’Alene, Idaho.

Research offices at the three universities hosted the gathering, where scientists explored ways to partner with each other and with industry to address issues that affect regional economies as well as environmental and human health.

Stephanie Hampton from WSU and Andrew Kliskey from Idaho led the planning of the workshop, at which six teams combined to start five U.S. Department of Agriculture and NSF grant proposals on issues ranging from water conservation to energy infrastructure.

“We’re really building a critical mass of researchers and research experience in the region,” said Chad Higgins, an agricultural engineering professor leading OSU’s role in the partnership. “The workshop was awesome. It exceeded all expectations with mind-blowing scientific discussions, new collaborations formed and new proposals floated. And now we have to keep it going because that was just the opening salvo, not the crescendo.”

Topics for future exploration might be broad – such as, will the region have enough food in 2050? – or narrow, like tracing the impact of a single technology. For example, a more efficient system for irrigation could lead to less energy used for pumping and also result in more food being produced.

“The food, energy, water nexus is so huge that it’s scary, but it’s also exciting,” Higgins said. “There are so many opportunities to look at things either in detail or to try to be broad and think about how the region will be influenced. We can bring each person’s expertise together to predict pain points, like are we going to be scarce in any one resource in the future, and where?”

Janet Nelson, vice president for research and economic development at the University of Idaho, said the tri-state collaboration “will poise us to build relationships among researchers from all three universities with many areas of expertise in order to work toward solutions that improve communities, economies and lives.”

“The University of Idaho is committed to examining issues that are critical not only to the people of Idaho, but also to the entire Northwest region, with rippling effects around the world,” she said.

Those issues include how to best update aging hydropower plants and food production infrastructure.

Cynthia Sagers, vice president for research at Oregon State, notes that when it comes to food, energy and water challenges, a solution in one location can lead to problems hundreds of miles away.

“That’s why this demands regional cooperation,” she said. “I am proud that our three land grant institutions are working together on these issues for a healthy Pacific Northwest." 

Christopher Keane, vice president of research at WSU, echoed the sentiment and said he “looks forward to seeing the results of continued collaboration.”

“Working across disciplines and institutions to ensure a sustainable supply of food, energy and water for future generations is a top research priority for WSU,” he said.

In addition to the August event, the planning team is applying for external funding to support ongoing meetings to help sustain momentum. 

Media Contact: 

Steve Lundeberg, 541-737-4039

Multimedia Downloads
Multimedia: 

Sunflowers

Sunflower crop

International science team: Marine reserves can help mitigate climate change

CORVALLIS, Ore. – An international team of scientists has concluded that “highly protected” marine reserves can help mitigate the effects of climate change and suggests that these areas be expanded and better managed throughout the world.

Globally, coastal nations have committed to protecting 10 percent of their waters by 2020, but thus far only 3.5 percent of the ocean has been set aside for protection – and less than half of that (1.6 percent) is strongly protected from exploitation. Some scientists have argued that as much as 30 percent of the ocean should be set aside as reserves to safeguard marine ecosystems in the long-term. 

Results of the study, which evaluated 145 peer-reviewed studies on the impact of marine reserves, is being published this week in Proceedings of the National Academy of Sciences.

“Marine reserves cannot halt or completely offset the growing impacts of climate change,” said Oregon State University’s Jane Lubchenco, former National Oceanic and Atmospheric Administration (NOAA) Administrator and co-author on the study. “But they can make marine ecosystems more resilient to changes and, in some cases, help slow down the rate of climate change. 

“Protecting a portion of our oceans and coastal wetlands will help sequester carbon, limit the consequences of poor management, protect habitats and biodiversity that are key to healthy oceans of the future, and buffer coastal populations from extreme events,” Lubchenco said. “Marine reserves are climate reserves.”

The scientists say marine reserves can help protect ecosystems – and people – from five impacts of climate change that already are taking place: ocean acidification, rising sea levels, an increase in the severity of storms, shifts in the distribution of species, and decreased ocean productivity and availability of oxygen.

Lead author Callum Roberts, from the University of York, said that many studies already have shown that marine reserves can protect wildlife and support productive fisheries. The goal of this peer-reviewed literature-study was to see whether the benefits of marine reserves could ameliorate or slow the impacts of climate change. 

“It was soon quite clear that they can offer the ocean ecosystem and people critical resilience benefits to rapid climate change,” Roberts said.

The benefits are greatest, the authors say, in large, long-established and well-managed reserves that have full protection from fishing and mineral extraction, and isolation from other damaging human activities. 

The study notes that ocean surface waters have become on average 26 percent more acidic since pre-industrial times, and by the year 2100 under a “business-as-usual” scenario they will be 150 percent more acidic. The authors say coastal wetlands – including mangroves, seagrasses and salt marshes – have demonstrated a capacity for reducing local carbon dioxide concentrations because many contain plants with high rates of photosynthesis.

“Unfortunately,” Lubchenco said, “these ecosystems are some of the most threatened coastal areas and have experienced substantial reductions in the past several decades. Wetland protection should be seen as a key element in achieving greater resilience for coast communities.” 

Coastal wetlands, along with coral and oyster reefs, kelp forests and mud flats, can help ameliorate impacts of rising sea levels and storm surge. The average global sea level has risen about seven inches since 1900, and is expected to increase nearly three feet by the year 2100, threatening many low-lying cities and nations. The dense vegetation in coastal wetlands can also provide protection against severe storms, which are increasing in intensity in many parts of the world.

Climate change already is having a major impact on the abundance and distribution of marine species. Phytoplankton communities are changing in response to warming, acidification and stratifying oceans, and upper trophic level species are being affected, threatening global food security. Climate change interacts with and exacerbates other stressors like overfishing and pollution, the researchers say.

Reducing some stressors can increase the resilience of species and ecosystems to impacts of other stressors. 

“We have seen how marine reserves can be a haven for some species that are under duress from over-fishing or habitat loss, and as a ‘stepping-stone’ for other species that are recolonizing or moving into new areas,” Lubchenco said. “Reserves also promote genetic diversity and provide protection for older fish and other marine organisms. In short, reserves are one of the most powerful tools in our adaptation toolbox. Reserves enhance the resilience of marine ecosystems, and thus our resilience.”

Lubchenco, who recently completed a two-year term as the first U.S. Science Envoy for the Ocean, has been involved in research at Oregon State on the interactions between people and marine ecosystems. She has led pioneering studies on coastal hypoxia (so-called “dead zones”) and innovative ways to achieve sustainable fishing and other uses of the ocean. 

The authors point out that effectiveness of marine reserves is often challenged by lack of staff, equipment and funding; inconsistent management; lack of communication with industry and local communities; and concerns about displacing fishing activities. But, they point out, these challenges can be resolved. Their findings that reserves enhance the resilience of marine ecosystems suggests that reserves may offer the best hope to adapt to a changing climate.

“Marine reserves will not halt, change or stop many of the threats associated with climate change affecting communities within their boundaries,” they write. “We contend, however, that existing and emerging evidence suggests that (marine reserves) can serve as a powerful tool to help ameliorate some problems resulting from climate change, slow the development of others, and improve the outlook for continued ecosystem functioning and delivery of ecosystem services.”

Lubchenco is a distinguished professor in the College of Science at Oregon State and marine studies adviser to OSU President Ed Ray.

Story By: 
Source: 

Jane Lubchenco, 541-737-5337, lubchenco@oregonstate.edu

Multimedia Downloads
Multimedia: 

Photo at left: Marine life around Palau. Photo by Richard Brooks

“Narco-deforestation” study links loss of Central American tropical forests to cocaine

CORVALLIS, Ore. – Central American tropical forests are beginning to disappear at an alarming rate, threatening the livelihood of indigenous peoples there and endangering some of the most biologically diverse ecosystems in North America.

The culprit? Cocaine.

The problem is not the cultivation of the coca plant – which is processed into cocaine – that is causing this “narco-deforestation.” It results from people throughout the spectrum of the drug trade purchasing enormous amounts of land to launder their illegal profits, researchers say.

Results of the study, which was funded by the Open Society Foundations and supported by the National Socio-Environmental Synthesis Center, have just been published in the journal Environmental Research Letters.

“Starting in the early 2000s, the United States-led drug enforcement in the Caribbean and Mexico pushed drug traffickers into places that were harder to patrol, like the large, forested areas of central America,” said David Wrathall, an Oregon State University geographer and co-author on the study. “A flood of illegal drug money entered these places and these drug traffickers needed a way that they could spend it.

“It turns out that one of the best ways to launder illegal drug money is to fence off huge parcels of forest, cut down the trees, and build yourself a cattle ranch. It is a major, unrecognized driver of tropical deforestation in Central America.”

Using data from the Global Forest Change program estimating deforestation, the research team identified irregular or abnormal deforestation from 2001-2014 that did not fit previously identified spatial or temporal patterns caused by more typical forms of land settlement or frontier colonization. The team then estimated the degree to which narcotics trafficking contributes to forest loss, using a set of 15 metrics developed from the data to determine the rate, timing and extent of deforestation.

Strongly outlying or anomalous patches and deforestation rates were then compared to data from the Office of National Drug Control Policy – considered the best source for estimating cocaine flow through the Central American corridor, Wrathall pointed out.

“The comparisons helped confirm relationships between deforestation and activities including cattle ranching, illegal logging, and land speculation, which traffickers use to launder drug trafficking profits in remote forest areas of Central America,” Wrathall said.

They estimate that cocaine trafficking may account for up to 30 percent of the total forest loss in Honduras, Guatemala and Nicaragua over the past decade. A total of 30 to 60 percent of the forest losses occurred within nationally and internationally designated protected areas, threatening conservation efforts to maintain forest carbon sinks, ecological services, and rural and indigenous livelihoods.

“Imagine the cloud of carbon dioxide from all of that burning forest,” Wrathall said. “The most explosive change in land use happened in areas where land ownership isn’t clear – in forested, remote areas of Honduras, Guatemala and Nicaragua, where the question of who owns the land is murky.”

“In Panama, the financial system is built to launder cocaine money so they don’t need to cut down trees to build ranches for money laundering. In Honduras, land is the bank.”

Farming and cattle ranching aren’t the only money laundering methods threatening tropical forests, the researchers say. Mining, tourism ventures and industrial agriculture are other ways drug money is funneled into legitimate businesses.

Wrathall said the impact affects both people and ecosystems.

“The indigenous people who have lived sustainably in these environments are being displaced as the stewards of the land,” he said. “These are very important ecological areas with tremendous biodiversity that may be lost.”

The authors says the solutions include de-escalating and demilitarizing the war on drugs; strengthening the position of indigenous peoples and traditional forest communities to be stewards of the remaining forest lands; and developing regional awareness of the issue.

“We are cruising through the last of our wild spaces in Central America,” Wrathall said. “Obviously, ending the illegal drug trade would be the best solution, but that isn’t going to happen. In fact, when drug enforcement efforts are successful, they often push the activity into remote areas that haven’t had issues before, such as remote biodiversity hotspots.”

Wrathall is an assistant professor in Oregon State University’s College of Earth, Ocean, and Atmospheric Sciences. He specializes in the impact of climate change on the distribution of the human population and other factors that affect human migration.

“The surge of violence in Central America that has accompanied drug trafficking is recognized as a major driver of migration in the region.”

Story By: 
Source: 

David Wrathall, 541-737-8051, david.wrathall@coas.oregonstate.edu

Multimedia Downloads
Multimedia: 

DSCN0297
Central American forests are giving way to pasture land for cattle ranches.

Study provides detailed glimpse of predators’ effects on complex, subtidal food web

CORVALLIS, Ore. – Research using time-lapse photography in the Galapagos Marine Reserve suggests the presence of a key multilevel “trophic cascade” involving top- and mid-level predators as well as urchins and algae.

The findings are important because they include detailed information about interactions in a complex food web. Such information is crucial to knowing how to cause, prevent or reverse population changes within the web.

In the rocky, species-rich subtidal area off the Galapagos Islands, scientists from Oregon State University and Brown University examined the relationships among predatory fishes, urchins, the algae that the urchins graze on, and how the interactions among them were influenced by sea lions and sharks at the top of the food chain.

The key question: Do predators high up in the chain affect the abundance of the “primary producers” at the bottom – in this case algae – thus causing a trophic cascade?

Trophic level refers to a species’ position in the chain, and the cascade describes the series of effects that can occur.

Using GoPro cameras, the researchers made a number of key findings regarding triggerfish, Spanish hogfish, pencil urchins, the larger green urchins and algae, including:

  • Among a diverse guild of predatory fishes, triggerfish can control the abundance of pencil urchins and thus also the abundance of algae the urchins eat; the experiments showed grazing on algae was eliminated when the pencil urchins were exposed to triggerfish predation, meaning triggerfish are a candidate for protection because of their strong effects on ecosystem function.
  • Green urchins eat more algae than pencil urchins yet are not the urchin prey of choice for predatory fish. That suggests those fish aren’t controlling green urchin populations and thus that green-urchin barrens in the Galapagos – areas where the urchins have stripped the sea floor of algae – are not the result of the overfishing of predatory fish.
  • Spanish hogfish are not major predators of urchins as earlier, survey-based research had suggested. Hogfish mainly eat the smaller pencil urchins and also interfere with triggerfish feeding on large pencil urchins; the hassling hogfish cause triggerfish to spend more time to eat an urchin and in some cases force a fumble.
  • Statistical modeling of predation on pencil urchins indicates that two types of interference behavior – the hogfish harassing the triggerfish, and sea lions and sharks startling the triggerfish – could slow the rate of triggerfish predation on pencil urchins.

The researcher who did the modeling, Mark Novak of the College of Science at Oregon State, noted that historically, ecologists believed complex food webs typical of the tropics were more immune to trophic cascades than the simpler food webs of higher latitudes; the Galapagos straddle the equator.

Studies such as this one now suggest that is not the case, and that the dynamics of complex food webs can be as predictable as simpler ones provided you understand who the relevant players are.

“When the backbone of the system is strong, you can connect the top of the food chain to the bottom despite all of the indirect effects and the complexities of the system,” said Novak, assistant professor of integrative biology.

“It’s important to know individual species identity when you’ve got a suite of consumers,” Novak said. “The hogfish, the triggerfish, they all feed on very similar things, yet one of the two is most important, the one that drove that first link. And an urchin isn’t just an urchin – one was more immune to consumption from triggerfish, the other more susceptible. And one urchin was important for grazing, and another was not.”

Merely lumping species together at trophic levels would have caused researchers to miss a lot of the subtleties that the photographic study uncovered.

“If you just put urchins out and see how quickly they disappear, you can’t attribute that to any given predator,” Novak said. “We were able to identify those species that were responsible for transmitting the cascade.”

Findings were recently published in PLOS One. The National Science Foundation supported this research.

Media Contact: 

Steve Lundeberg, 541-737-4039

Source: 
Multimedia Downloads
Multimedia: 

Galapagos fish

Triggerfish, top, and hogfish

OSU to discuss Elliott State Forest with State Land Board

CORVALLIS, OR – Oregon State University has been asked by state Treasurer Tobias Read to engage in discussions with the State Land Board regarding options to retain public ownership of the Elliott State Forest.

“OSU and its College of Forestry have long advocated for investments in comprehensive, sustained research and data collection to better inform the relationship between forest management and conservation of listed species,” said OSU President Ed Ray. “With the right management structure, the Elliott State Forest could offer a great opportunity for research and education that would have long-term benefits for our state.”

Ray said that three principles have guided the university’s consideration of options involving the forest.

“First, the university has no interest in contributing to the disruption of a sale of the forest that previously received a majority of support by the State Land Board,” Ray said. “The university became actively involved in discussions regarding alternative plans only after it became clear that the governor and state treasurer would not support the sale of the forest.

“Second, since options involving the Elliott State Forest may involve the use of state bonding capacity, OSU’s potential involvement regarding the forest can not detract from our long-standing priority to secure bonding to finance the full expansion of the OSU-Cascades campus in Bend.

“Third, there must be a funding structure created by the state to support the research and education within the Elliott State Forest that is contemplated by the land board going forward.”

In an effort to ensure that the assets of the forest contribute to the state’s Common School Fund, the State Land Board over the past year has sought to sell the forest for a minimum of $220.8 million – an amount determined by appraisal.

Last year, the Lone Rock Timber Company and the Cow Creek Tribe made a joint bid of $220.8 million to purchase the Elliott State Forest. In February, over Gov. Kate Brown’s objections, the State Land Board voted 2-1 to accept that bid. Subsequently, Brown and Read undertook efforts to retain the public ownership of the forest and determine a financial instrument to contribute to the state’s Common School Fund, with the possibility of ultimately divesting the forest from the Common School Fund altogether.

On Thursday, Read issued a statement supporting involvement of OSU’s College of Forestry in research within the Elliott. In addition, he said he supported providing OSU a possible option to purchase the forest at some future date. The option to purchase would be at OSU’s discretion and would be partially based on the outcome of efforts to establish a Habitat Conservation Plan for the forest under the federal Endangered Species Act.

“Working with OSU’s College of Forestry provides the state of Oregon an opportunity to engage in comprehensive and sustained research to better inform the relationship between active forest management and conservation of listed species,” Ray said.

“OSU research could provide a scientific basis to help guide the development of a Habitat Conservation Plan and future management of the forest. This plan would provide greater certainty regarding the forest’s management and would need to support a well-defined and financially sustainable business plan.”

A purchase of the forest would be subject to review and approval by the OSU Board of Trustees.

Ray and Thomas Maness, dean of the College of Forestry, will provide testimony on OSU’s engagement in discussions about the Elliott State Forest during a May 9 meeting of the State Land Board.

Media Contact: 

Steve Clark, 541-737-3808; steve.clark@oregonstate.edu

Source: 

Steve Clark, 541-737-3808; steve.clark@oregonstate.edu

Multimedia Downloads
Multimedia: 


OSU President Ed Ray

OSU President Ed Ray

Maness
Forestry Dean Thomas Maness

Researchers identify evidence of oldest orchid fossil on record

CORVALLIS, Ore. – The orchid family has some 28,000 species – more than double the number of bird species and quadruple the mammal species. As it turns out, they’ve also been around for a while.

A newly published study documents evidence of an orchid fossil trapped in Baltic amber that dates back some 45 million years to 55 million years ago, shattering the previous record for an orchid fossil found in Dominican amber some 20-30 million years old.

Results of the discovery have just been published in the Botanical Journal of the Linnean Society.

“It wasn’t until a few years ago that we even had evidence of ancient orchids because there wasn’t anything preserved in the fossil record,” said George Poinar, Jr., a professor emeritus of entomology in the College of Science at Oregon State University and lead author on the study. “But now we’re beginning to locate pollen evidence associated with insects trapped in amber, opening the door to some new discoveries.”

Orchids have their pollen in small sac-like structures called pollinia, which are attached by supports to viscidia, or adhesive pads, that can stick to the various body parts of pollinating insects, including bees, beetles, flies and gnats. The entire pollination unit is known as a pollinarium.

In this study, a small female fungus gnat was carrying the pollinaria of an extinct species of orchid when it became trapped in amber more than 45 million years ago. The pollinaria was attached to the base of the gnat’s hind leg. Amber preserves fossils so well that the researchers could identify a droplet of congealed blood at the tip of the gnat’s leg, which had been broken off shortly before it was entombed in amber.

At the time, all of the continents hadn’t even yet drifted apart.

The fossil shows that orchids were well-established in the Eocene and it is likely that lineages extended back into the Cretaceous period. Until such forms are discovered, the present specimen provides a minimum date that can be used in future studies determining the evolutionary history and phylogeny of the orchids.

How the orchid pollen in this study ended up attached to the fungus gnat and eventually entombed in amber from near the Baltic Sea in northern Europe is a matter of speculation. But, Poinar says, orchids have evolved a surprisingly sophisticated system to draw in pollinating insects, which may have led to the gnat’s demise.

“We probably shouldn’t say this about a plant,” Poinar said with a laugh, “but orchids are very smart. They’ve developed ways to attract little flies and most of the rewards they offer are based on deception.”

Orchids use color, odor and the allure of nectar to draw in potential pollinating insects. Orchids will emit a scent that suggests to hungry insects the promise of food, but after entering the flower they will learn that the promise of nourishment was false.

Likewise, female gnats may pick up a mushroom-like odor from many orchids, which attracts them as a place to lay their eggs because the decaying fungal tissue is a source of future nutrition. Alas, again it is a ruse. In frustration, they may go ahead and lay their eggs, dooming their offspring to a likely death from a lack of food.

Finally, male insects are attracted by the ersatz scent of female flies and they actually will attempt to copulate with a part of the orchid they think is a potential mate.

All three of these processes are based on deception, Poinar said, and they all have the same end result.

“Though the deception works in different ways, the bottom line is that the orchid is able to draw in pollinating insects, which unwittingly gather pollen that becomes attached to their legs and other body parts, and then pass it on to the next orchid flowers that lure them in,” he said.

“Orchids are, indeed, pretty smart.”

Story By: 
Source: 

George Poinar, Jr., poinarg@science.oregonstate.edu

Multimedia Downloads
Multimedia: 

Fig. 1

A fungus gnat trapped in amber some 45-55 million years ago is carrying on the upper portion of its severed leg a pollen sac from an orchid – the oldest evidence of the flower ever discovered.


Fig. 4 insert

This microscopic view shows pollinarium – a cluster of pollen found in orchids – that will stick to the legs and body of pollinating insects.