OREGON STATE UNIVERSITY

engineering and technology

OSU a partner in $320 million “digital manufacturing” initiative

CORVALLIS, Ore. – Oregon State University and the Design Engineering Laboratory in its College of Engineering have been chosen as one of the key partners in a new Digital Manufacturing and Design Innovation Institute, just announced by President Obama with $70 million in federal support.

The UI Labs in Chicago, Ill., will be the lead institution in this initiative, which is also expected to attract $250 million in support from other academic, industry and government organizations. Collectively, about 70 academic and industry participants hope to revolutionize the way that things get built.

“This is a transformative opportunity to shape the future of American manufacturing,” said Warren Holtsberg, chairman of UI LABS. “We salute the vision of the president.”

OSU engineering experts have been working toward similar goals for several years now, and agree that the potential of the new initiative is extraordinary.

“We now can use sophisticated computer systems and advanced design methods to do mechanical design, testing, and error identification before anything is actually built,” said Rick Spinrad, vice president for research at OSU.

“The advantages in saving time and money on the road to manufacturing the products of the future could be profound,” Spinrad said. “This should increase productivity, make American manufacturing more competitive, and create more jobs – and new types of jobs - both in Oregon and across the nation. We’re excited to be a part of this.”

Key industry investors in the new project include General Electric, Rolls-Royce, Procter & Gamble, Dow, Lockheed Martin, Siemens, Boeing, Deere, Caterpillar, Microsoft, Illinois Tool Works and PARC. Thousands of small and mid-sized companies will also be involved. And OSU’s research in this field, which will continue to assist regional industries, includes such companies as Daimler Trucks, Blunt, PCC Structurals, ESCO, Intel, Xerox and HP.

Oregon industry members of the Northwest Collaboratory for Sustainable Manufacturing have also expressed interest in participating in the new institute.

“Within minutes of forwarding the news of the selection of UL Labs for the DMDI Institute and OSU’s participation in it, I had calls and emails from our industry partners in the Portland area wanting to know how to get involved,” said Rob Stone, head of the OSU School of Mechanical, Industrial and Manufacturing Engineering.

Digital design allows for new product development to be accelerated by up to 50 percent. Most of the initial federal support for this initiative is from the Department of Defense, which envisions ways to create needed military vehicles and other technology much faster and at less cost. But the concepts could ultimately be used to manufacture anything from a tank to an automobile, washing machine, jet aircraft or toaster oven.

According to Matt Campbell, an OSU professor of mechanical engineering and one of the university’s leaders in this field, digital manufacturing is a concept that greatly reduces physical prototypes and testing, as well as time to manufacture.

“In design, the idea is to fail early and often, so that we succeed sooner,” Campbell said. “Our digital tools will predict performance and where failure will occur, and reduce or eliminate the need for costly prototypes. Then we’ll use 3D printers and other tools to automate and streamline actual manufacturing.”

This approach, researchers say, will provide a fundamentally new way for digital information to flow among designers, suppliers, and customers, as well as to and from intelligent machines and workers on the factory floor.

In announcing the grant for this new initiative, President Obama said that digital manufacturing is critical to America’s future.

“The country that gets new products to market faster and at less cost, they’ll win the race for the good jobs of tomorrow,” Obama said. “And if you look at what’s happening in manufacturing, a lot of it is much more specific.  Companies want to keep their inventories low.  They want to respond to consumer demand faster.

“And what that means is, is that manufacturers who can adapt, retool, get something out, change for a particular spec of a particular customer, they’re going to win the competition every time,” Obama said.

Since the beginning of the Industrial Revolution, most manufacturing has been done by building a prototype based on an original design, then observe what does and doesn’t work. Clearly this approach can work, but it’s slow, wasteful and expensive.

The technology being created at OSU, and other partners in this initiative, is to translate almost every aspect of a mechanical system into data that can be mixed and matched in sophisticated computer systems – what a part will do, how it will perform, what materials it is made of, how much stress those materials can take before they fail, what will happen at the intersection where one component interacts with another, where failures might occur, and how those failures can be prevented.

“This field holds great promise to design and test completed machines on a computer before they are ever built,” said Irem Tumer, an OSU professor of mechanical engineering and associate dean for research and economic development in the College of Engineering. “We’ll see what works, identify and solve problems, make any changes desired, and then go straight to commercial production.”

In theory, a new machine should work perfectly the first time it is ever built – because that’s what the computer predicted.

Some strengths that the OSU team will bring to this initiative include virtual testing and performance; automated machining and assembly planning; innovation in conceptual design; automation of difficult design decisions; and process model prediction.

Advances already made at OSU include work on failure propagation analysis; a model repository; verification tools that will ensure the model should work; automated machining and assembly planning; and virtual performance of safety and reliability. Continuing work is studying fault behavior, to determine what will happen if a part fails.

“We’ve already done a lot of work with single parts and small groups of components,” Tumer said. “Now we’re taking that complexity to the level of a finished and completed machine, sometimes thousands of parts working together.

“That’s a much more difficult challenge,” she said. “But it’s also why the support from President Obama and the federal government is so important.

“This infusion of federal and private funding should significantly speed progress in the field,” Tumer said.  “We know these systems are going to work, and we really believe the impact on American manufacturing is going to be extraordinary.”

Media Contact: 
Source: 

Matt Campbell, 541-737-6549

Sustainable manufacturing system to better consider the human component

 

The study this story is based on is available online: http://bit.ly/1d1A4YE

 

CORVALLIS, Ore. – Engineers at Oregon State University have developed a new approach toward “sustainable manufacturing” that begins on the factory floor and tries to encompass the totality of manufacturing issues – including economic, environmental, and social impacts.

This approach, they say, builds on previous approaches that considered various facets of sustainability in a more individual manner. Past methods often worked backward from a finished product and rarely incorporated the complexity of human social concerns.

The findings have been published in the Journal of Cleaner Production, and reflect part of society’s growing demands for manufacturing systems that protect both people and the environment, while still allowing companies to be economically viable and make a profit on their products.

“People around the world – and many government policies – are now demanding higher standards for corporate social responsibility,” said Karl Haapala, an OSU assistant professor of industrial and manufacturing engineering. “In the early days, industry dealt with ‘end-of-pipe’ challenges to reduce pollution or increase efficiency. There’s still a place for that, but we’re trying to solve the problem at the source, to begin the process right at the drawing board or on the shop floor.”

“We want to consider a whole range of issues every step of the way,” Haapala added, “so that sustainability is built into the entire manufacturing process.”

The researchers demonstrated the approach with the production of stainless steel knives, based on an industry project. But the general concepts could be used for virtually any system or product, they said.

With every decision the method considers manufacturing techniques, speed of the operations, environmental impacts, materials, energy used and wastes. Decisions can be based on compliance with laws and regulations, and the effects of different approaches on worker safety and satisfaction.

“This is one of the few approaches to systematically consider the social aspects of the workplace environment, so that people are happy, productive, safe, and can contribute to their families and communities,” said Hao Zhang, a doctoral student in the College of Engineering and graduate research assistant on the study.

“Suppose we make changes that speed up the output of a manufacturing line,” Zhang said. “In theory that might produce more product, but what are the impacts on tool wear, increased down time or worker satisfaction with the job? What about risk of worker injury and the costs associated with that? Every change you make might affect many other issues, but too often those issues are not considered.”

Social components have often been left out in the past, Zhang said, because they were some of the most difficult aspects to scientifically quantify and measure. But health, safety and happiness that start on the workshop floor can ripple through the entire community and society, Haapala said, and they are too important to be pushed aside.

This approach incorporates previous concepts of sustainability that have been found to have proven value, such as “life cycle assessment” of systems that considers the totality of energy used, environmental impacts and other issues. And it lets manufacturers make value judgments about the issues most important to them, so that a system can prioritize one need over another as necessary.

OSU researchers are further developing these approaches in collaboration with Sheldon Manufacturing, Inc., of Cornelius, Ore., a designer and manufacturer of laboratory equipment. This work has been supported by Benchmade Knife Co., Sheldon Manufacturing and the Oregon Metals Initiative.

These demands are a special challenge to small and medium sized companies that may not always have the necessary broad range of engineering expertise, the OSU engineers said. They hope the systems being developed can be implemented at many levels of manufacturing.

Media Contact: 
Source: 

Karl Haapala, 541-737-3122

Multimedia Downloads
Multimedia: 

Sustainable manufacturing

On the shop floor

One step at a time, researchers learning how humans walk

 

 

The study this story is based on is available online: http://bit.ly/1d1KZ3u

 

CORVALLIS, Ore. – Humans and some of our hominid ancestors such as Homo erectus have been walking for more than a million years, and researchers are close to figuring out how we do it.

It’s never been completely clear how human beings accomplish the routine, taken-for-granted miracle we call walking, let alone running. But findings published last month in the Journal of Experimental Biology outline a specific interaction between the ankle, knee, muscles and tendons that improve the understanding of a leg moving forward in a way that maximizes motion while using minimal amounts of energy.

The research could find some of its earliest applications in improved prosthetic limbs, said researchers in the College of Engineering at Oregon State University. Later on, a more complete grasp of these principles could lead to walking or running robots that are far more agile and energy-efficient than anything that exists today.

“Human walking is extraordinarily complex and we still don’t understand completely how it works,” said Jonathan Hurst, an OSU professor of mechanical engineering and expert in legged locomotion in robots. There’s a real efficiency to it – walking is almost like passive falling. The robots existing today don’t walk at all like humans, they lack that efficiency of motion and agility.

“When we fully learn what the human leg is doing,” Hurst added, “we’ll be able to build robots that work much better.”

Researchers have long observed some type of high-power “push off” when the leg leaves the ground, but didn’t really understand how it worked. Now they believe they do. The study concluded there are two phases to this motion. The first is an “alleviation” phase in which the trailing leg is relieved of the burden of supporting the body mass.

Then in a “launching” phase the knee buckles, allowing the rapid release of stored elastic energy in the ankle tendons, like the triggering of a catapult.

“We calculated what muscles could do and found it insufficient, by far, for generating this powerful push off,” said Daniel Renjewski, a postdoctoral research associate in the Dynamic Robotics Laboratory at OSU. “So we had to look for a power-amplifying mechanism.

“The coordination of knee and ankle is critical,” he said. “And contrary to what some other research has suggested, the catapult energy from the ankle is just being used to swing the leg, not add large amounts of energy to the forward motion.”

Walking robots don’t do this. Many of them use force to “swing” the leg forward from something resembling a hip point. It can be functional, but it’s neither energy-efficient nor agile. And for more widespread use of mobile robots, energy use is crucially important, the researchers said.

“We still have a long way to go before walking robots can move with as little energy as animals use,” Hurst said. “But this type of research will bring us closer to that.”

The research was supported by the German Research Foundation. The Dynamic Robotics Laboratory at OSU is supported by the Human Frontier Science Program, the National Science Foundation and the Defense Advanced Research Projects Agency, and has helped create some of the leading technology in the world for robots that can walk and run.

One model can run a nine-minute mile and step off a ledge, and others are even more advanced. Robots with the ability to walk and maneuver over uneven terrain could ultimately find applications in prosthetic limbs, an exo-skeleton to assist people with muscular weakness, or use in the military, disaster response or any dangerous situation.

Media Contact: 
Source: 

Jonathan Hurst, 541-737-7010

Multimedia Downloads
Multimedia: 

How humans walk

Walking mechanics

Amber fossil reveals ancient reproduction in flowering plants

CORVALLIS, Ore. – A 100-million-year old piece of amber has been discovered which reveals the oldest evidence of sexual reproduction in a flowering plant – a cluster of 18 tiny flowers from the Cretaceous Period – with one of them in the process of making some new seeds for the next generation.

The perfectly-preserved scene, in a plant now extinct, is part of a portrait created in the mid-Cretaceous when flowering plants were changing the face of the Earth forever, adding beauty, biodiversity and food. It appears identical to the reproduction process that “angiosperms,” or flowering plants still use today.

Researchers from Oregon State University and Germany published their findings on the fossils in the Journal of the Botanical Institute of Texas.

The flowers themselves are in remarkable condition, as are many such plants and insects preserved for all time in amber. The flowing tree sap covered the specimens and then began the long process of turning into a fossilized, semi-precious gem. The flower cluster is one of the most complete ever found in amber and appeared at a time when many of the flowering plants were still quite small.

Even more remarkable is the microscopic image of pollen tubes growing out of two grains of pollen and penetrating the flower’s stigma, the receptive part of the female reproductive system. This sets the stage for fertilization of the egg and would begin the process of seed formation – had the reproductive act been completed.

“In Cretaceous flowers we’ve never before seen a fossil that shows the pollen tube actually entering the stigma,” said George Poinar, Jr., a professor emeritus in the Department of Integrative Biology at the OSU College of Science. “This is the beauty of amber fossils. They are preserved so rapidly after entering the resin that structures such as pollen grains and tubes can be detected with a microscope.”

The pollen of these flowers appeared to be sticky, Poinar said, suggesting it was carried by a pollinating insect, and adding further insights into the biodiversity and biology of life in this distant era. At that time much of the plant life was composed of conifers, ferns, mosses, and cycads.  During the Cretaceous, new lineages of mammals and birds were beginning to appear, along with the flowering plants. But dinosaurs still dominated the Earth.

“The evolution of flowering plants caused an enormous change in the biodiversity of life on Earth, especially in the tropics and subtropics,” Poinar said.

“New associations between these small flowering plants and various types of insects and other animal life resulted in the successful distribution and evolution of these plants through most of the world today,” he said. “It’s interesting that the mechanisms for reproduction that are still with us today had already been established some 100 million years ago.”

The fossils were discovered from amber mines in the Hukawng Valley of Myanmar, previously known as Burma. The newly-described genus and species of flower was named Micropetasos burmensis.

Media Contact: 
Source: 

George Poinar, 541-752-0917

Multimedia Downloads
Multimedia: 

Ancient flowers

Ancient flower


Pollen tubes

Pollen tubes

OSU spinoff company NuScale to receive up to $226 million to advance nuclear energy

CORVALLIS, Ore. – A promising new form of nuclear power that evolved in part from research more than a decade ago at Oregon State University today received a significant boost: up to $226 million in funding to NuScale Power from the United States Department of Energy.

NuScale began as a spinoff company based on the pioneering research of OSU professor Jose Reyes, and since has become one of the international leaders in the creation of small “modular” nuclear reactors.

This technology holds enormous promise for developing nuclear power with small reactors that can minimize investment costs, improve safety, be grouped as needed for power demands and produce energy without greenhouse gas emissions. The technology also provides opportunities for OSU nuclear engineering students who are learning about these newest concepts in nuclear power.

“This is a wonderful reflection of the value that OSU faculty can bring to our global economy,” said Rick Spinrad, vice president for research at OSU. “The research conducted by Professor Reyes, colleagues and students at OSU has been a fundamental component of the innovation at NuScale.”

NuScale has continued to grow and create jobs in Oregon, and is bringing closer to reality a nuclear concept that could revolutionize nuclear energy. The Obama administration has cited nuclear power as one part of its blueprint to rebuild the American economy while helping to address important environmental issues.

In the early 2000s at OSU, Reyes envisioned a nuclear power reactor that could be manufactured in a factory, be transported to wherever it was needed, grouped as necessary to provide the desired amount of power, and provide another option for nuclear energy. It also would incorporate “passive safety” concepts studied at OSU in the 1990s that are already being used in nuclear power plant construction around the world. The design allows the reactor to shut down automatically, if necessary, using natural forces including gravity and convection.

The Department of Energy announcement represents a milestone in OSU’s increasing commitment to university and business partnerships and its goals of using academic research discoveries to promote new industries, jobs, economic growth, environmental protection and public health.

“OSU has made a strong effort to build powerful partnerships between our research enterprise and the private sector,” said OSU President Edward J. Ray. “The DOE support for NuScale is a vote of confidence in the strategy of building these meaningful relationships, and they are only going to pick up speed with our newest initiative, the OSU Advantage.”

The Oregon State University Advantage connects business with faculty expertise, student talent and world-class facilities to provide research solutions and help bring ideas to market. This effort is in partnership with the Oregon State University Foundation.

News of the NuScale grant award was welcomed by members of Oregon’s Congressional delegation.

 

“Oregon State University deserves a lot of credit for helping to develop a promising new technology that the Energy Department clearly thinks holds a lot of potential,” said Sen. Ron Wyden, chairman of the U.S. Senate Energy and Natural Resources Committee. “Today’s award shows that investing in strong public universities leads to innovative technologies to address critical issues, like the need for low-carbon sources of energy, while creating private sector jobs.”

U.S. Rep. Peter De Fazio added, “Congratulations to NuScale and Oregon State University. This is a big win for the local economy.” 

“This is an exciting time for us, as our students and faculty get incredibly valuable real-world experience in taking an idea through the startup and commercialization process,” said Kathryn Higley, professor and head of the Department of Nuclear Engineering & Radiation Health Physics. “We continue to work with NuScale as it goes through its design certification process, and we are particularly proud of Jose Reyes for his vision, enthusiasm and unwavering commitment to this concept.”

OSU officials say the development of new technologies such as those launched from NuScale could have significant implications for future energy supplies.

“The nation’s investment in the research of small-scale nuclear devices is a significant step toward a diverse and secure energy portfolio,” said Sandra Woods, dean of the College of Engineering at OSU. “Collaborative research is actively continuing between engineers and scientists at Oregon State and NuScale, and we’re proud and grateful for the role Oregon State plays in assisting them in developing cleaner and safer ways to produce energy.

Media Contact: 
Source: 

Rick Spinrad, 541-737-0662 or 541-220-1915 (cell)

Cascadia Lifelines Program begun to aid earthquake preparation

CORVALLIS, Ore. – Oregon State University and eight partners from government and private industry this month began studies for the Cascadia Lifelines Program, a research initiative to help improve critical infrastructure performance during an anticipated major earthquake on the Cascadia subduction zone.

The program, coordinated by the OSU School of Civil and Construction Engineering, will immediately begin five research projects with $1.5 million contributed by the partners. Recent work such as the Oregon Resilience Plan has helped to define the potential problems, experts say, and this new initiative will begin to address them in work that may take 50 years or more to implement.

Looming in Oregon’s future is a massive earthquake of about magnitude 9.0, which could significantly damage Pacific Northwest roads, bridges, buildings, sewers, gas and water lines, electrical system and much more.

“Compared to the level of earthquake preparedness even in California and Washington, it’s clear that Oregon is bringing up the rear,” said Scott Ashford, director of the new program. He is the Kearney Professor of Engineering in the OSU College of Engineering, and an international expert who has studied the impact of subduction zone earthquakes in much of the Pacific Rim – including Japan’s major disaster of March, 2011.

“Most of Oregon’s buildings, roads, bridges and infrastructure were built at a time when it was believed the state was not subject to major earthquakes,” Ashford said. “Because of that we’re going to face serious levels of destruction. But with programs like this and the commitment of our partners, there’s a great deal we can do to proactively prepare for this disaster, and get our lifelines back up and running after the event.”

Those “lifelines,” Ashford said, are the key not just to saving lives and minimizing damage, but aiding in recovery of the region following a disaster that scientists say is a near certainty. The list of participating partners reflects agencies and companies that understand the challenges they will face, Ashford said.

The partners include the Oregon Department of Transportation, Portland General Electric, Northwest Natural Gas, the Bonneville Power Administration, Port of Portland, Portland Water Bureau, Eugene Water and Electric Board, and Tualatin Valley Water District.

“When I studied areas that had been hard-hit by earthquakes in Chile, New Zealand and Japan, it became apparent that money spent to prepare for and minimize damage from the earthquake was hugely cost-effective,” Ashford said. “One utility company in New Zealand said they saved about $10 for every $1 they had spent in retrofitting and rebuilding their infrastructure.

“This impressed upon me that we do not have to just wait for the earthquake to happen,” he said. “There’s a lot we can do to prepare for it right now that will make a difference. And we have the expertise right here at OSU – in engineering, business, earth sciences, health – to get these programs up and running.”

The initial subjects OSU researchers will focus on in the new program include:

  • Studies of soil liquefaction, which can greatly reduce the strength of soils and lead to road, bridge, building and other critical infrastructure facility failure;
  • Cost effective improvements that could be done to existing and older infrastructure;
  • Evacuation routes for Oregonians to use following a major earthquake;
  • Tools to plan for hazards and anticipate risks;
  • Where and how earthquakes could trigger landslides in Oregon.

Ashford said the consortium will seek additional federal support for the needed research, and also more partners both in government and private industry.

OSU will also continue its collaboration with PEER, the Pacific Earthquake Engineering Research Center, which includes work by the leading academic institutions in this field on the West Coast. The Cascadia Lifelines Program will add an emphasis on subduction zone earthquakes, which can behave quite differently and produce shaking that lasts for minutes, instead of the type of strike-slip quakes most common in California that last for tens of seconds. And the utility lifelines work will be focused on the specific challenges facing Oregon.

Aside from some of the infrastructure not being built to withstand major earthquakes, Oregon and the Willamette Valley may face particular risks from liquefaction, in which soil can develop the consistency of “pea soup” and lose much of its strength. Liquefaction helped cause much of the damage in Japan, which has still not recovered from the destruction more than two years after the event.

Media Contact: 
Source: 

Scott Ashford, 541-737-4934

Multimedia Downloads
Multimedia: 

Sinking structures

Sinking structures


Video of liquefaction in Japan:

http://bit.ly/dK6mfa

 

Breakthrough in study of aluminum should yield new technological advances

CORVALLIS, Ore. – Researchers at Oregon State University and the University of Oregon today announced a scientific advance that has eluded researchers for more than 100 years – a platform to study and fully understand the aqueous chemistry of aluminum, one of the world’s most important metals.

The findings, reported in Proceedings of the National Academy of Sciences, should open the door to significant advances in electronics and many other fields, ranging from manufacturing to construction, agriculture and drinking water treatment.

Aluminum, in solution with water, affects the biosphere, hydrosphere, geosphere and anthrosphere, the scientists said in their report. It may be second only to iron in its importance to human civilization. But for a century or more, and despite the multitude of products based on it, there has been no effective way to explore the enormous variety and complexity of compounds that aluminum forms in water.

Now there is.

“This integrated platform to study aqueous aluminum is a major scientific advance,” said Douglas Keszler, a distinguished professor of chemistry in the OSU College of Science, and director of the Center for Sustainable Materials Chemistry.

“Research that can be done with the new platform should have important technological implications,” Keszler said. “Now we can understand aqueous aluminum clusters, see what’s there, how the atomic structure is arranged.”

Chong Fang, an assistant professor of chemistry in the OSU College of Science, called the platform “a powerful new toolset.” It’s a way to synthesize aqueous aluminum clusters in a controlled way; analyze them with new laser techniques; and use computational chemistry to interpret the results. It’s simple and easy to use, and may be expanded to do research on other metal atoms.

“A diverse team of scientists came together to solve an important problem and open new research opportunities,” said Paul Cheong, also an OSU assistant professor of chemistry.

The fundamental importance of aluminum to life and modern civilization helps explain the significance of the advance, researchers say. It’s the most abundant metal in the Earth’s crust, but almost never is found in its natural state. The deposition and migration of aluminum as a mineral ore is controlled by its aqueous chemistry. It’s found in all drinking water and used worldwide for water treatment. Aqueous aluminum plays significant roles in soil chemistry and plant growth.

Aluminum is ubiquitous in cooking, eating utensils, food packaging, construction, and the automotive and aircraft industries. It’s almost 100 percent recyclable, but in commercial use is a fairly modern metal. Before electrolytic processes were developed in the late 1800s to produce it inexpensively, it was once as costly as silver.

Now, aluminum is increasingly important in electronics, particularly as a “green” component that’s cheap, widely available and environmentally benign.

Besides developing the new platform, this study also discovered one behavior for aluminum in water that had not been previously observed. This is a “flat cluster” of one form of aluminum oxide that’s relevant to large scale productions of thin films and nanoparticles, and may find applications in transistors, solar energy cells, corrosion protection, catalytic converters and other uses.

Ultimately, researchers say they expect new technologies, “green” products, lowered equipment costs, and aluminum applications that work better, cost less and have high performance.

The research was made possible, in part, by collaboration between chemists at OSU and the University of Oregon, through the Center for Sustainable Materials Chemistry. This is a collaboration of six research universities, which is sponsored and funded by the National Science Foundation.

Media Contact: 
Source: 

Douglas Keszler, 541-737-6736

Multimedia Downloads
Multimedia: 

Aluminum in manufacturing

Aluminum manufacturing

Phillips named director for OSU Office of Research Development

CORVALLIS, Ore. – Mary Phillips has been named director for the Office of Research Development, a new unit within the Research Office, effective Dec. 1.

Phillips is associate director for the Office for Commercialization and Corporate Development, where she oversees the management of intellectual property and licensing of OSU inventions. In her new role, Phillips will work with faculty and academic units to identify and pursue major funding opportunities, including federal, non-profit and corporate sources.

The creation of the Office for Research Development is a proactive step by the Research Office that addresses the challenge and goals articulated in the OSU research agenda by providing strategic institutional support for successful proposal development, Phillips said.

"What excites me about this position is the role I will play in developing new approaches that will enable our faculty to be highly competitive in securing grant funding in these times of dwindling federal funding and sequestration," Phillips noted. "This in itself is a grand challenge."

Vice President for Research Rick Spinrad said there is a lot of untapped potential for building OSU’s capacity and reputation.

“By establishing an Office of Research Development, we have created the structure to engage in strategic positioning of our research enterprise, long before specific solicitations for research are issued,” Spinrad said. “As part of OSU’s research agenda we are striving to diversify our sponsorship base.  We’ve done this very successfully with our industry engagement (40 percent increase in two years), now we have the staff and organization to start doing the same with other sponsors, notably federal agencies.”

Spinrad anticipates that OSU will dramatically increase the number of federal agencies supporting its research, and that OSU will take a much more forward-leaning posture in driving the research interests of traditional sponsors. 

“In addition, Mary’s role will allow us to be much more effective in strengthening our proposal efforts - for example by being more strategic in how we address ‘broader impacts,’” Spinrad said. “This is particularly important as general decreases in federal funding for research make for an even more competitive environment.”

Phillips will be supported by an advisory group that will consist of senior faculty representing each of the divisions within the university.

Prior to joining OSU in 2006, Phillips began her career in university technology transfer in 2001 at Oregon Health and Science University. She has a Ph.D. in physical chemistry from the University of London’s Imperial College of Science, Technology and Medicine and gained postdoctoral experience in the areas of laser spectroscopy and molecular biology at the University of Oregon. 

Media Contact: 
Source: 

Mary Phillips

541-737-4437

Electronics advance moves closer to a world beyond silicon

CORVALLIS, Ore. – Researchers in the College of Engineering at Oregon State University have made a significant advance in the function of metal-insulator-metal, or MIM diodes, a technology premised on the assumption that the speed of electrons moving through silicon is simply too slow.

For the extraordinary speed envisioned in some future electronics applications, these innovative diodes solve problems that would not be possible with silicon-based materials as a limiting factor.

The new diodes consist of a “sandwich” of two metals, with two insulators in between, to form “MIIM” devices. This allows an electron not so much to move through materials as to tunnel through insulators and appear almost instantaneously on the other side. It’s a fundamentally different approach to electronics.

The newest findings, published in Applied Physics Letters, have shown that the addition of a second insulator can enable “step tunneling,” a situation in which an electron may tunnel through only one of the insulators instead of both. This in turn allows precise control of diode asymmetry, non-linearity, and rectification at lower voltages.

“This approach enables us to enhance device operation by creating an additional asymmetry in the tunnel barrier,” said John F. Conley, Jr., a professor in the OSU School of Electrical Engineering and Computer Science. “It gives us another way to engineer quantum mechanical tunneling and moves us closer to the real applications that should be possible with this technology.”

OSU scientists and engineers, who only three years ago announced the creation of the first successful, high-performance MIM diode, are international leaders in this developing field. Conventional electronics based on silicon materials are fast and inexpensive, but are reaching the top speeds possible using those materials. Alternatives are being sought.

More sophisticated microelectronic products could be possible with the MIIM diodes – not only improved liquid crystal displays, cell phones and TVs, but such things as extremely high-speed computers that don’t depend on transistors, or “energy harvesting” of infrared solar energy, a way to produce energy from the Earth as it cools during the night.

MIIM diodes could be produced on a huge scale at low cost, from inexpensive and environmentally benign materials. New companies, industries and high-tech jobs may ultimately emerge from advances in this field, OSU researchers say.

The work by Conley and OSU doctoral student Nasir Alimardani has been supported by the National Science Foundation, the U.S. Army Research Laboratory and the Oregon Nanoscience and Microtechnologies Institute.

Media Contact: 
Source: 

John Conley, 541-737-9874

Multimedia Downloads
Multimedia: 

MIIM diode

MIIM diode

Pass the salt: Common condiment could enable new high-tech industry

CORVALLIS, Ore. – Chemists at Oregon State University have identified a compound that could significantly reduce the cost and potentially enable the mass commercial production of silicon nanostructures – materials that have huge potential in everything from electronics to biomedicine and energy storage.

This extraordinary compound is called table salt.

Simple sodium chloride, most frequently found in a salt shaker, has the ability to solve a key problem in the production of silicon nanostructures, researchers just announced in Scientific Reports, a professional journal.

By melting and absorbing heat at a critical moment during a “magnesiothermic reaction,” the salt prevents the collapse of the valuable nanostructures that researchers are trying to create. The molten salt can then be washed away by dissolving it in water, and it can be recycled and used again.

The concept, surprising in its simplicity, should open the door to wider use of these remarkable materials that have stimulated scientific research all over the world.

“This could be what it takes to open up an important new industry,” said David Xiulei Ji, an assistant professor of chemistry in the OSU College of Science. “There are methods now to create silicon nanostructures, but they are very costly and can only produce tiny amounts.

“The use of salt as a heat scavenger in this process should allow the production of high-quality silicon nanostructures in large quantities at low cost,” he said. “If we can get the cost low enough many new applications may emerge.”

Silicon, the second most abundant element in the Earth’s crust, has already created a revolution in electronics. But silicon nanostructures, which are complex structures much smaller than a speck of dust, have potential that goes far beyond the element itself.

Uses are envisioned in photonics, biological imaging, sensors, drug delivery, thermoelectric materials that can convert heat into electricity, and energy storage.

Batteries are one of the most obvious and possibly first applications that may emerge from this field, Ji said. It should be possible with silicon nanostructures to create batteries – for anything from a cell phone to an electric car – that last nearly twice as long before they need recharging.

Existing technologies to make silicon nanostructures are costly, and simpler technologies in the past would not work because they required such high temperatures. Ji developed a methodology that mixed sodium chloride and magnesium with diatomaceous earth, a cheap and abundant form of silicon.

When the temperature reached 801 degrees centigrade, the salt melted and absorbed heat in the process. This basic chemical concept – a solid melting into a liquid absorbs heat – kept the nanostructure from collapsing.

The sodium chloride did not contaminate or otherwise affect the reaction, researchers said. Scaling reactions such as this up to larger commercial levels should be feasible, they said.

The study also created, for the first time with this process, nanoporous composite materials of silicon and germanium. These could have wide applications in semiconductors, thermoelectric materials and electrochemical energy devices.

Funding for the research was provided by OSU. Six other researchers from the Department of Chemistry and the OSU Department of Chemical Engineering also collaborated on the work.

Media Contact: 
Source: 

David Xiulei Ji, 541-737-6798

Multimedia Downloads
Multimedia: 

Silicon nanostructure

Silicon nanostructures


Table salt

Table salt