OREGON STATE UNIVERSITY

engineering and technology

Chemical trickery corrals ‘hyperactive’ metal-oxide cluster

CORVALLIS, Ore. – After decades of eluding researchers because of chemical instability, key metal-oxide clusters have been isolated in water, a significant advance for growing the clusters with the impeccable control over atoms that’s required to manufacture small features in electronic circuits.

Oregon State University chemists created the aqueous cluster formation process. It yielded a polyoxocation of zinc, aluminum and chromium that is not protected by the organic ligand shell that is usually required to capture such molecules from water.

“Our discovery is exciting in that it provides both new fundamental understanding and new materials, and useful applications are always built on a foundation of fundamental understanding,” said May Nyman, a professor of chemistry at Oregon State.

Metal oxides – compounds produced when metals combine with oxygen – serve a variety of important purposes. For example, titanium dioxide is a catalyst that degrades pollutants, and aluminum oxides and iron oxides are coagulants used as the first step in purifying drinking water.

“Metal oxides influence processes everywhere,” Nyman said. “They control the spread of contaminants in the environment. They are the touchscreen of your cellphone. The metal-oxide cluster forms are in your body storing iron and in plants controlling photosynthesis. Most of these processes are in water. Yet scientists still know so little about how these metal oxides operate in nature, or how we can make them with the absolute control needed for high-performance materials in energy applications.” 

Results of the research by the OSU College of Science’s Center for Sustainable Materials Chemistry were recently published in the journal Chem.

“We devised some synthetic processes so we can trick the clusters into forming,” Nyman said. “The main thing that we do is control the chemistry so the clusters grow not in the solution where they are highly reactive, but only at the surface, where the water evaporates and they instantly crystallize into a solid phase. Once in the solid phase, there’s no danger of reacting and precipitating metal oxide or hydroxide in an uncontrolled way.”

The clusters created in the research are spherical, contain about 100 atoms, and measure 1 nanometer across.

“Once we have synthesized these, we can prepare a solution of them, and they’re all exactly the same size and contain the same number of atoms,” Nyman said. “This gives us control over making very small features.

“The size of the feature is controlled by the size of the cluster. All metals on the periodic table act differently, and only a few have the right chemistry that behaves well enough to yield these clusters. For the rest of them, we need to innovate new chemistries to discover their cluster forms. The transition metals are particularly hard to control, yet they are earth-abundant and some of the most important metals in energy and environmental technologies.”

Metal-oxo clusters are usually isolated from water with ligands – molecules that protect the cluster surface and prevent precipitation of metal hydroxides.

In this study, an OSU team that included graduate students Lauren Fullmer, Sara Goberna-Ferron and Lev Zakharov overcame the need for ligands with a three-pronged strategy: pH-driven hydrolysis by oxidative dissolution of zinc; metal nitrate concentrations 10 times higher than conventional syntheses; and azeotropic evaporation for driving simultaneous cluster assembly and crystallization at the surface of the solution.

Meanwhile, the team’s computational collaborators in Catalonia provided a deeper understanding of the most stable arrangement of metal and oxygen atoms in the cluster.

“Contrary to common cluster growth, the fully assembled cluster is never detected in the reaction solution,” Nyman said. “Because the reactive clusters do not persist in solution, uncontrolled precipitation of metal hydroxide is avoided. In this sense, we have discovered a new way metal oxides can grow.”

Media Contact: 

Steve Lundeberg, 541-737-4039

Source: 
Multimedia Downloads
Multimedia: 

ZnCrAl-crystals2

Metal-oxide crystals

Glucose-monitoring contact lens would feature transparent sensor

CORVALLIS, Ore. – Type 1 diabetes patients may one day be able to monitor their blood glucose levels and even control their insulin infusions via a transparent sensor on a contact lens, a new Oregon State University study suggests.

The sensor uses a nanostructured transistor – specifically an amorphous indium gallium oxide field effect transistor, or IGZO FET – that can detect subtle glucose changes in physiological buffer solutions, such as the tear fluid in eyes.

Type 1 diabetes, formerly known as juvenile diabetes, can lead to serious health complications unless glucose levels are carefully controlled. Problems can include retinopathy, blindness, neuropathy, kidney and cardiac disease.

Researchers in the OSU College of Engineering say sensors they fabricated using the IGZO FET will be able to transmit real-time glucose information to a wearable pump that delivers the hormones needed to regulate blood sugar: insulin and glucagon.

The sensor and pump would, in effect, act as an artificial pancreas.

“We have fully transparent sensors that are working,” said Greg Herman, an OSU professor of chemical engineering and corresponding author on this study. “What we want to do next is fully develop the communication aspect, and we want to use the entire contact lens as real estate for sensing and communications electronics.

“We can integrate an array of sensors into the lens and also test for other things: stress hormones, uric acid, pressure sensing for glaucoma, and things like that. We can monitor many compounds in tears – and since the sensor is transparent, it doesn’t obstruct vision; more real estate is available for sensing on the contact lens.”

The FET’s closely packed, hexagonal, nanostructured network resulted from complimentary patterning techniques that have the potential for low-cost fabrication. Those techniques include colloidal nanolithography and electrohydrodynamic printing, or e-jet, which is somewhat like an inkjet printer that creates much finer drop sizes and works with biological materials instead of ink.

The findings by postdoctoral scholar Xiaosong Du, visiting scholar Yajuan Li and,Herman were recently published online in the journal Nanoscale. The Juvenile Diabetes Research Foundation provided primary funding for the research.

Google has been working on a glucose-monitoring contact lens but its version is not fully transparent.

“It’s an amperometric sensor and you can see the chips -- that means it has to be off to the side of the contact lens,” Herman said. “Another issue is the signal is dependent on the size of the sensor and you can only make it so small or you won’t be able to get a usable signal. With an FET sensor, you can actually make it smaller and enhance the output signal by doing this.”

This research builds on earlier work by Herman and other OSU engineers that developed a glucose sensor that could be wrapped around a catheter, such as one used to administer insulin from a pump.

“A lot of type 1 diabetics don’t wear a pump,” Herman said. “Many are still managing with blood droplets on glucose strips, then using self-injection. Even with the contact lens, someone could still manage their diabetes with self-injection. The sensor could communicate with your phone to warn you if your glucose was high or low.”

The transparent FET sensors, Herman said, might ultimately be used for cancer detection, by sensing characteristic biomarkers of cancer risk. Their high sensitivity could also measure things such as pulse rate, oxygen levels, and other aspects of health monitoring that require precise control.

Media Contact: 

Steve Lundeberg, 541-737-4039

Source: 
Multimedia Downloads
Multimedia: 

3D AFM

Transistor's nanostructure

Grand opening of Johnson Hall planned at OSU

CORVALLIS, Ore. — Johnson Hall, a new, $40 million College of Engineering facility that will be home to the School of Chemical, Biological, and Environmental Engineering at Oregon State University, will celebrate its grand opening on Sept. 23.

Johnson Hall’s 58,000-square-foot interior includes a 125-seat lecture hall, state-of-the-art research and teaching laboratories, and a center focused on improving recruitment and retention of engineering students.

The three-story structure is supported by five, 52-foot, freestanding concrete shear walls, engineered to withstand earthquakes and winds up to 90 mph. This design also enabled the placement of many large windows, which supply ample natural light throughout the building. The open, bright aesthetic is continued inside, with floor-to-ceiling glass walls.

“The transparent glass walls to the labs make research visible to anyone walking by, and the open floor plan concept encourages interest, innovation, and interdisciplinary collaboration,” said Scott Ashford, Kearney Professor and dean of OSU’s College of Engineering. “I look forward to the research made possible here.”

The building is named for longtime College of Engineering supporters Peter and Rosalie Johnson. Pete Johnson, a 1955 chemical engineering alumnus, revolutionized battery manufacturing equipment with his patented invention for making battery separator envelopes. The Johnsons committed $7 million to begin construction of the new facility, leveraging an earlier gift of $10 million from an anonymous donor and $3 million in additional private funds, matched by $20 million in state funds.

“This beautiful new facility honors the Johnson family and the many contributions they have made to the College of Engineering,” Ashford said. “We are so pleased to carry on Pete’s legacy of innovation by dedicating this space to collaborative research and hands-on learning for students.”

James Sweeney, head of the School of Chemical, Biological, and Environmental Engineering, said the building will foster the school’s continued growth and will further accomplishments in research and education.

“Johnson Hall will increase our reputation and standing among our peer institutions, and it will help us to continue to attract the top faculty and students to OSU,” Sweeney said. “It will provide them with the tools they need to make high impact on Oregon, across our country, and around the world.”

The grand opening, which is free and open to the public, will begin with a ceremony from 3:30-4 p.m. in front of Johnson Hall, at the intersection of S.W. Park Terrace Place and Monroe Street in Corvallis. Speakers will include OSU President Edward J. Ray, college officials, representatives of the Johnson family, and State Sen. Sara Gelser. Visitors will be invited to tour the building immediately following the ceremony.

Johnson Hall was designed by architecture firm SRG Partnership. It was built by Hoffman Construction, led by OSU College of Engineering alumni Kevin Cady ’84, senior operations manager; and Nathan Moore ’10, project manager.

Media Contact: 

Keith Hautala, 541-737-1478

Source: 

James Sweeney, 541-737-3769

Multimedia Downloads
Multimedia: 

Johnson Hall
Johnson Hall

johnsonsouth

New technology could improve use of small-scale hydropower in developing nations

CORVALLIS, Ore. – Engineers at Oregon State University have created a new computer modeling package that people anywhere in the world could use to assess the potential of a stream for small-scale, “run of river” hydropower, an option to produce electricity that’s of special importance in the developing world.

The system is easy to use; does not require data that is often unavailable in foreign countries or remote locations; and can consider hydropower potential not only now, but in the future as projected changes in climate and stream runoff occur.

OSU experts say that people, agencies or communities interested in the potential for small-scale hydropower development can much more easily and accurately assess whether it would meet their current and future energy needs.

Findings on the new assessment tool have been published in Renewable Energy, in work supported by the National Science Foundation.

“These types of run-of-river hydropower developments have a special value in some remote, mountainous regions where electricity is often scarce or unavailable,” said Kendra Sharp, the Richard and Gretchen Evans Professor in Humanitarian Engineering in the OSU College of Engineering.

“There are parts of northern Pakistan, for instance, where about half of rural homes don’t have access to electricity, and systems such as this are one of the few affordable ways to produce it. The strength of this system is that it will be simple for people to use, and it’s pretty accurate even though it can work with limited data on the ground.”

The new technology was field-tested at a 5-megawatt small-scale hydropower facility built in the early 1980s on Falls Creek in the central Oregon Cascade Range. At that site, it projected that future climate changes will shift its optimal electricity production from spring to winter and that annual hydropower potential will slightly decrease from the conditions that prevailed from 1980-2010.

Small-scale hydropower, researchers say, continues to be popular because it can be developed with fairly basic and cost-competitive technology, and does not require large dams or reservoirs to function. Although all forms of power have some environmental effects, this approach has less impact on fisheries or stream ecosystems than major hydroelectric dams. Hydroelectric power is also renewable and does not contribute to greenhouse gas emissions.

One of the most basic approaches is diverting part of a stream into a holding basin, which contains a self-cleaning screen that prevents larger debris, insects, fish and objects from entering the system. The diverted water is then channeled to and fed through a turbine at a lower elevation before returning the water to the stream.

The technology is influenced by the seasonal variability of stream flow, the “head height,” or distance the water is able to drop, and other factors. Proper regulations to maintain minimum needed stream flow can help mitigate environmental impacts.

Most previous tools used to assess specific sites for their small-scale hydropower potential have not been able to consider the impacts of future changes in weather and climate, OSU researchers said, and are far too dependent on data that is often unavailable in developing nations.

This free, open source software program was developed by Thomas Mosier, who at the time was a graduate student at OSU, in collaboration with Sharp and David Hill, an OSU associate professor of coastal and ocean engineering. It is now available to anyone on request by contacting Kendra.sharp@oregonstate.edu

This system will allow engineers and policy makers to make better decisions about hydropower development and investment, both in the United States and around the world, OSU researchers said in the study.

Story By: 
Source: 

Kendra Sharp, 541-737-5246

kendra.sharp@oregonstate.edu

Multimedia Downloads
Multimedia: 

Small scale hydropower
Small scale hydropower

OSU to issue RFI on ship project after design completion

CORVALLIS, Ore. – The design phase for a project to construct a new regional class research vessel to replenish the United States academic fleet is complete and Oregon State University will issue a request for information (RFI) on Monday, May 2, to shipyards that may be interested in the vessel construction phase.

In January 2013, the National Science Foundation selected Oregon State as the lead institution to finalize the design and coordinate the construction of the vessel – and possibly up to two more – a project considered crucial to maintaining the country’s marine science research capabilities.

The design phase has been completed by The Glosten Associates, a naval architecture firm based in Seattle, and the RFI is a chance to generate market interest and to get feedback from industry on the design and other project documents. OSU plans to issue a Request for Proposals (RFP) in two phases beginning this summer – a technical phase to establish a competitive pool of qualified shipyards and a cost phase to elicit vessel cost proposals.

“The Request for Information issued on May 2 is a chance for us to make final tweaks in the preliminary design and to open up a dialogue with industry about the project,” said Demian Bailey, Oregon State University’s former marine superintendent and a co-leader on the project. “Once we issue the RFP this summer, it will become more difficult to alter the design or other project documents.”

Although similar in size, the new ship will differ greatly from the R/V Oceanus, built in 1975 and operated by OSU, and its sister ships, Endeavor, operated by the University of Rhode Island, and Wecoma (retired), according to Clare Reimers, a professor in the College of Earth, Ocean, and Atmospheric Sciences and project co-leader.

“This class of ships will enable researchers to work much more efficiently at sea because of better handling and stability, more capacity for instrumentation and less noise,” Reimers said. “The design also has numerous ‘green’ features, including an optimized hull form, waste heat recovery, LED lighting, and variable speed power generation.”

These “regional class research vessels” are designed for studying coastal waters out to beyond the continental rise as part of the U.S. academic fleet that is available to all ocean scientists conducting federal and state-funded research and educational programs.

Among the design features:

  • Each regional class research vessel will be 193 feet, with a range of 7,064 nautical miles;
  • Cruising speed is 11 knots with a maximum speed of 13 knots;
  • There are 16 berths for scientists and 13 for crew members;
  • The ships can stay out at sea for 21 days before coming back to port.

The 2017 President’s budget calls for building two RCRVs, but until a final budget is passed by Congress the plan is to make ready a shipyard contract to build one RCRV with options for additional vessels.

After reviewing the proposals from industry, OSU will select a shipyard in early 2017. The NSF will assume ownership of the regional class research vessels, but Oregon State expects to operate the first vessel constructed, which will conduct science missions primarily in the eastern North Pacific Ocean basin.

Additional vessels would be operated in the Atlantic and Gulf regions of the U.S. by other institutions that the NSF would select in late 2017.

“These ships will also have the ability to operate near ice and are considered ‘ice classed,’ although they are not ice-breakers,” Bailey said. The first ship will likely be delivered in 2020.

More information about the project, including renderings, is available at: http://ceoas.oregonstate.edu/ships/rcrv/

Story By: 
Source: 

Demian Bailey, 541-737-0460, dbailey@coas.oregonstate.edu;

Clare Reimers, 541-737-2426, creimers@coas.oregonstate.edu

Multimedia Downloads
Multimedia: 

 

 

This image of the ship is available at: https://flic.kr/p/FGRCR8

Tooth fillings of the future may incorporate bioactive glass

CORVALLIS, Ore. – A few years from now millions of people around the world might be walking around with an unusual kind of glass in their mouth, and using it every time they eat.

Engineers at Oregon State University have made some promising findings about the ability of “bioactive” glass to help reduce the ability of bacteria to attack composite tooth fillings – and perhaps even provide some of the minerals needed to replace those lost to tooth decay.

Prolonging the life of composite tooth fillings could be an important step forward for dental treatment, the researchers say, since more than 122 million composite tooth restorations are made in the United States every year. An average person uses their teeth for more than 600,000 “chews” a year, and some studies suggest the average lifetime of a posterior dental composite is only six years.

The new research was just published in the journal Dental Materials, in work supported by the National Institutes of Health.

“Bioactive glass, which is a type of crushed glass that is able to interact with the body, has been used in some types of bone healing for decades,” said Jamie Kruzic, a professor and expert in advanced structural and biomaterials in the OSU College of Engineering.

“This type of glass is only beginning to see use in dentistry, and our research shows it may be very promising for tooth fillings,” he said. “The bacteria in the mouth that help cause cavities don’t seem to like this type of glass and are less likely to colonize on fillings that incorporate it. This could have a significant impact on the future of dentistry.”

Bioactive glass is made with compounds such as silicon oxide, calcium oxide and phosphorus oxide, and looks like powdered glass. It’s called “bioactive” because the body notices it is there and can react to it, as opposed to other biomedical products that are inert. Bioactive glass is very hard and stiff, and it can replace some of the inert glass fillers that are currently mixed with polymers to make modern composite tooth fillings.

“Almost all fillings will eventually fail,” Kruzic said. “New tooth decay often begins at the interface of a filling and the tooth, and is called secondary tooth decay. The tooth is literally being eroded and demineralized at that interface.”

Bioactive glass may help prolong the life of fillings, researchers say, because the new study showed that the depth of bacterial penetration into the interface with bioactive glass-containing fillings was significantly smaller than for composites lacking the glass.

Fillings made with bioactive glass should slow secondary tooth decay, and also provide some minerals that could help replace those being lost, researchers say. The combination of these two forces should result in a tooth filling that works just as well, but lasts longer.

Recently extracted human molars were used in this research to produce simulated tooth restoration samples for laboratory experiments. OSU has developed a laboratory that’s one of the first in the world to test simulated tooth fillings in conditions that mimic the mouth.

If this laboratory result is confirmed by clinical research, it should be very easy to incorporate bioactive glass into existing formulations for composite tooth fillings, Kruzic said.

The antimicrobial effect of bioactive glass is attributed, in part, to the release of ions such as those from calcium and phosphate that have a toxic effect on oral bacteria and tend to neutralize the local acidic environment.

“My collaborators and I have already shown in previous studies that composites containing up to 15 percent bioactive glass, by weight, can have mechanical properties comparable, or superior to commercial composites now being used,” Kruzic said.

This work was done in collaboration with researchers from the School of Dentistry at the Oregon Health & Science University and the College of Dental Medicine at Midwestern University.

Story By: 
Source: 

Jamie Kruzic, 541-737-7027

Multimedia Downloads
Multimedia: 

Bioactive glass
Bioactive glass

Gift establishes professorship in “humanitarian engineering” at Oregon State

CORVALLIS, Ore. – Oregon State University’s humanitarian engineering program has received a major boost with a $1.5 million gift creating one of the nation’s only endowed professorships in this emerging field.

OSU alumni Richard and Gretchen Evans, of Northern California, made prior gifts that helped to launch OSU’s program two years ago, responding to growing interest among engineering students in making a lasting, positive impact on the world.

Humanitarian engineering seeks science- and engineering-based solutions to improve the human condition by increasing access to basic human needs such clean water or renewable energy, enhancing quality of life, and improving community resilience, whether in face of natural disasters or economic turmoil. Although the greatest needs often lie in developing countries, needs also exist locally.

Oregon State’s program is focused on disadvantaged communities in the Pacific Northwest as well as around the world.

“The technical skills of engineering are essential, but so are abilities we might call human skills – such as communication, problem-solving, leadership and the ability to work across cultures,” said Richard Evans, an OSU College of Engineering alumnus who was president and CEO of Alcan, a Fortune-100 mining company and aluminum manufacturer based in Montreal. “The humanitarian engineering curriculum is a structured way for engineers to practice those human skills in challenging, real world settings.”

Drawing on the humanities also encourages creative solutions by “thinking outside the box,” added Gretchen Evans, an artist and interior designer who graduated from OSU’s College of Education and subsequently completed master’s courses at Legon University in Ghana, West Africa. “Listening is so important – not just believing that we know all of the answers going into every situation.”

The first Richard and Gretchen Evans Professor in Humanitarian Engineering is mechanical engineering professor Kendra Sharp, who directs the program.

“One of the things that’s most exciting about humanitarian engineering is that it captures the interest of a more diverse group of prospective students than we typically see in engineering, including a significant number of women,” Sharp said. “We are thrilled that the Evans’ gift will help us channel students’ passion for making a better world. The stability provided by this endowment will make a huge difference as we move forward.”

Oregon State’s humanitarian engineering program is grounded in a campus-wide emphasis on engaged service that springs from the university’s historic land grant mission. Multiple student organizations, including OSU’s award-winning Engineers Without Borders chapter and the American Society of Civil Engineering student chapter, have been working on water, energy and other projects in under-served Oregon communities and the developing world.

Yet in contrast to humanitarian engineering programs that are primarily an extracurricular activity, Oregon State’s is one of a handful nationwide rooted in an academic curriculum. Exemplifying OSU’s commitment to collaborative, transdisciplinary research and education, the curriculum was put together by a diverse group of faculty led by the College of Engineering but also involving the humanities, public health and education. A new undergraduate minor in humanitarian engineering will be open for enrollment in the coming year.

OSU’s humanitarian engineering program is further differentiated by residing in a university that also offers a Peace Corps Master’s International program in engineering. OSU was the first university in Oregon to join this program, which allows a graduate student to get a master’s degree while doing a full 27-month term of service in the Peace Corps. In addition to PCMI degrees in other fields, Oregon State remains one of just 10 universities nationwide to offer this degree in engineering.

College of Engineering Dean and Kearney Professor of Engineering Scott Ashford said that the humanitarian engineering professorship positions Oregon State for national leadership in this area while supporting one the college’s highest goals.

“We are dedicated to purposefully and thoughtfully increasing the diversity of our students and faculty, building a community that is inclusive, collaborative and centered on student success,” Ashford said. “This is the community that will produce locally conscious, globally aware engineers equipped to solve seemingly intractable problems and contribute to a better world. That’s the Oregon State engineer.”

Richard Evans is a senior international business adviser and director of companies including non-executive chairman of both Constellium, producer of advanced aluminum engineered products, and Noranda Aluminum Holdings, a U.S. regional aluminum producer. He is an independent director of CGI, Canada’s largest IT consulting and outsourcing company. In addition to her art, primarily in acrylics and mixed media, Gretchen Evans volunteers as an art teacher in a low-income Oakland, California, school.

Over the last decade, donors have established 81 endowed faculty positions at Oregon State, an increase of 170 percent, through gifts to the OSU Foundation. These prestigious positions help the university recruit and retain world-class leaders in teaching and research, with earnings from the endowments providing support for the faculty and creating opportunities for undergraduate and graduate students in the programs as well.

Story By: 
Media Contact: 

Molly Brown, 541-737-3602

Source: 

Kendra Sharp, 541-737-5246

Multimedia Downloads
Multimedia: 

Evans_Sharp

Sharp with the Evanses

Sharp_India[1]

Sharp in India

OSU to outfit undersea gliders to “think like a fish”

CORVALLIS, Ore. – Oregon State University researchers have received a $1 million grant from the W.M. Keck Foundation that will allow them to outfit a pair of undersea gliders with acoustical sensors to identify biological “hot spots” in the coastal ocean.

They also hope to develop an onboard computing system that will program the gliders to perform different functions depending on what they encounter.

In other words, the scientists say, they want to outfit a robotic undersea glider to “think like a fish.”

“We spend all of this time on ships, deploying instrumentation that basically is designed to see how ocean biology aggregates around physical features – like hake at the edge of the continental shelf or salmon at upwelling fronts,” said Jack Barth, a professor in OSU’s College of Earth, Ocean, and Atmospheric Sciences and a principal investigator on the project. “But that just gives us a two-week window into a particular area.

“We already have a basic understanding of the ecosystem,” Barth added. “Now we want to get a better handle of what kind of marine animals are out there, how many there are, where they are distributed, and how they respond to phytoplankton blooms, schools of baitfish or oceanic features. It will benefit a variety of stakeholders, from the fishing industry and resource managers to the scientific community.”

Barth is a physical oceanographer who knows the physical processes of the coastal ocean. He’ll work with Kelly Benoit-Bird, a marine ecologist, who specializes in the relationships among marine organisms from tiny plankton to large whales. Her work utilizes acoustics to identify and track animals below the ocean surface – and it is these sensors that will open up a new world of research aboard the gliders.

“Our first goals are to understand the dynamics of the Pacific Northwest upwelling system, find the biological hotspots, and then see how long they last,” Benoit-Bird said. “Then we’d like to learn what we can about the distribution of prey and predators – and the relationship of both to oceanic conditions.”

Using robot-mounted acoustic sensors, the OSU researchers will be able to identify different kinds of marine animals using their unique acoustical signatures. Diving seabirds, for example, leave a trail of bubbles through the water like the contrail left by a jet. Zooplankton show up as a diffuse cloud. Schooling fish create a glowing, amoeba-shaped image.

“We’ve done this kind of work from ships, but you’re more or less anchored in one spot, which is limiting,” Benoit-Bird said. “By putting sensors on gliders, we hope to follow fish, or circle around a plankton bloom, or see how seabirds dive. We want to learn more about what is going on out there.”

Programming a glider to spend weeks out in the ocean and then “think” when it encounters certain cues, is a challenge that falls upon the third member of the research team, Geoff Hollinger, from OSU’s robotics program in the College of Engineering. Undersea gliders operated by Oregon State already can be programmed to patrol offshore for weeks at a time, following a transect, moving up and down in the water column, and even rising to the surface to beam data back to onshore labs via satellite.

But the instruments aboard the gliders that measure temperature, salinity and dissolved oxygen are comparatively simple and require limited power. Using sophisticated bioacoustics sensors that record huge amounts of data, and then programming the gliders to respond to environmental cues, is a significant technological advance.

“All of the technology is there,” Hollinger said, “but combining it into a package to perform on a glider is a huge robotics and systems engineering challenge. You need lots of computing power, longer battery life, and advanced control algorithms.”

Making a glider “think,” or respond to environmental cues, is all about predictive algorithms, he said.

“It is a little like looking at economic indicators in the stock market,” Hollinger pointed out. “Just one indicator is unlikely to tell you how a stock will perform. We need to develop an algorithm that essentially turns the glider into an autonomous vehicle that can run on autopilot.”

The three-year research project should benefit fisheries management, protection of endangered species, analyzing the impacts of new ocean uses such as wave energy, and documenting impacts of climate change, the researchers say.

Oregon State has become a national leader in the use of undersea gliders in research to study the coastal ocean and now owns and operates more than 20 of the instruments through three separate research initiatives. Barth said the vision is to establish a center for underwater vehicles and acoustics research – which would be a key component of its recently announced Marine Studies Initiative.

The university also has a growing program in robotics, of which Hollinger is a key faculty member. This collaborative project funded by Keck exemplifies the collaborative nature of research at Oregon State, the researchers say, where ecologists, oceanographers and roboticists work together.

“This project and the innovative technology could revolutionize how marine scientists study the world’s oceans,” Barth said.

Story By: 
Source: 

Jack Barth, 541-737-1607, barth@coas.oregonstate.edu;

Kelly Benoit-Bird, 541-737-2063, kbenoit@coas.oregonstate.edu;

Geoff Hollinger, 541-737-5906, Geoff.hollinger@oregonstate.edu

Multimedia Downloads
Multimedia: 

acoustic_image_benoit-bird smart_glider_OSU glider

Task force outlines major initiatives to prepare for Pacific Northwest earthquake, tsunami

CORVALLIS, Ore. – A task force that studied implementation of the Oregon Resilience Plan today submitted to the Oregon legislature an ambitious program to save lives, mitigate damage and prepare for a massive subduction zone earthquake and tsunami looming in the future of the Pacific Northwest.

The recommendations of the Governor’s Task Force on Resilience Plan Implementation, if enacted, would result in spending more than $200 million every biennium in a long-term initiative.

The program would touch everyone from energy providers and utility companies to their customers, parents and school children, businesses, builders, land use regulators, transportation planners and fire responders. It would become one of the most aggressive efforts in the nation to prepare for a costly, life-threatening disaster that’s seen as both catastrophic and inevitable.

“We have a clear plan for what needs to be done, and now is the time to take our first significant steps forward,” said Scott Ashford, dean of the College of Engineering at Oregon State University, chair of the Governor’s Task Force, and an expert on liquefaction and earthquake engineering who has studied disasters all over the world, similar to those that Oregon will face.

“The scope of the disaster that the Pacific Northwest faces is daunting,” Ashford said. “And we won’t be able to accomplish everything we need to do in one or two years, but hopefully we won’t have to. What’s important is to get started, and the time for that is now.”

The task force making these recommendations included members of the Oregon legislature; advisers to Gov. Kitzhaber; private companies; the Oregon Office of Emergency Management; Oregon Department of Transportation; the Oregon Health Authority; city, county  and business leaders; the Red Cross and others.

The Oregon Resilience Plan, which was completed in early 2013, outlines more than 140 recommendations to reduce risk and improve recovery from a massive earthquake and tsunami that’s anticipated on the Cascadia Subduction Zone, similar to the one that hit Fukushima, Japan, in 2011.

The newest analysis identified specific steps that are recommended for the 2015-17 biennium. They address not only earthquake damage, but also the special risks facing coastal residents from what is expected to be a major tsunami.

One of the largest single steps would be biennial funding of $200 million or more for the OBDD/IFA Seismic Rehabilitation Grant Program, with similar or higher levels of funding in the future. Funds could be used to rehabilitate existing public structures such as schools to improve their seismic safety; demolish unsafe structures; or replace facilities that must be moved out of a tsunami inundation zone.

It was recommended that additional revenue be identified to complete work within a decade on the most critical roads and bridges that form “backbone” transportation routes; that the state Department of Geology and Mineral Industries receive $20 million to update inventory and evaluate critical facilities; and that $5 million be made available through existing programs for tsunami resilience planning by coastal communities.

Utility companies regulated by the Oregon Public Utility Commission would also be required to conduct seismic assessments of their facilities, and be allowed through rate increases to recover their costs if they make prudent investments to mitigate vulnerabilities.

When I studied areas that had been hard-hit by earthquakes in Chile, New Zealand and Japan, it became apparent that money spent to prepare for and minimize damage from the earthquake was hugely cost-effective,” Ashford said.

“One utility company in New Zealand said they saved about $10 for every $1 they had spent in retrofitting and rebuilding their infrastructure,” he said. “There’s a lot we can do right now that will make a difference and save money in the long run.”

Other key recommendations included:

  • Establish a resilience policy adviser to the governor;
  • Use the most recent tsunami hazard maps to redefine the inundation zone for construction;
  • Provide $1 million annually for scientific research by Oregon universities, to provide matching funds for earthquake research supported by the state, federal government or private industry;
  • Provide $500,000 to the Office of Emergency Management for educational programs and training aimed at managers, agencies, businesses and the general public;
  • Provide $500,000 to the Department of Education to lead a K-12 educational program;
  • Require water providers and wastewater agencies to complete a seismic risk assessment and mitigation plan, as part of periodic updates to master plans;
  • Require firefighting agencies, water providers and emergency management officials to create joint standards to use in a firefighting response to a large seismic event.

“Our next steps will include a lot of discussion, with the legislature, with business and community leaders, with the general public all over the state,” Ashford said. “The challenges we face are enormous but I really believe Oregonians are ready to take an important step toward resilience. This is our chance.”

Story By: 
Source: 

Scott Ashford, 541-737-5232

Multimedia Downloads
Multimedia: 

Sinking structures

Japan liquefaction

YouTube video of damage done in the Japanese earthquake is available online: http://bit.ly/ZYH35d

NSF awards $200,000 to develop technology to treat sepsis, a global killer

CORVALLIS, Ore. – The National Science Foundation has just awarded $200,000 to engineers at Oregon State University who have developed a new technology that they believe could revolutionize the treatment and prevention of sepsis.

Sepsis is a “hidden killer” that in the United States actually kills more people every year than AIDS, prostate cancer and breast cancer combined.

More commonly called “blood poisoning,” sepsis can quickly turn a modest infection into a whole-body inflammation, based on a dysfunctional immune response to endotoxins that are released from the cell walls of bacteria. When severe, this can lead to multiple organ failure and death.

When treatment is begun early enough, sepsis can sometimes be successfully treated with antibiotics. But they are not always effective and the mortality rate for the condition is still 28-50 percent. About one in every four people in a hospital emergency room is there because of sepsis, and millions of people die from it around the world every year, according to reports in the New England Journal of Medicine and other studies.

In pioneering research, OSU experts have used microchannel technology and special coatings to create a small device through which blood could be processed, removing the problematic endotoxins and preventing sepsis. Several recent professional publications have reported on their progress.

“More work remains to be done, and the support from the National Science Foundation will be instrumental in that,” said Adam Higgins, principal investigator on the grant and an assistant professor in the OSU School of Chemical, Biological and Environmental Engineering. “When complete, we believe this technology will treat sepsis effectively at low cost, or even prevent it when used as a prophylactic treatment.”

This technology may finally offer a way to tackle sepsis other than antibiotics, the researchers said.

“This doesn’t just kill bacteria and leave floating fragments behind, it sticks to and removes the circulating bacteria and endotoxin particles that might help trigger a sepsis reaction,” said Karl Schilke, the OSU Callahan Faculty Scholar in Chemical Engineering.

“We hope to emboss the device out of low-cost polymers, so it should be inexpensive enough that it can be used once and then discarded,” Schilke said. “The low cost would also allow treatment even before sepsis is apparent. Anytime there’s a concern about sepsis developing – due to an injury, a wound, an operation, or an infection – you could get ahead of the problem.”

“A big part of the problem with sepsis is that it moves so rapidly,” said Joe McGuire, professor and head of the OSU Department of Chemical, Biological and Environmental Engineering. “By the time it’s apparent what the problem is, it’s often too late to treat it.

“If given early enough, antibiotics and other treatments can sometimes, but not always, stop this process,” McGuire said. “Once these bacterial fragments are in the blood stream the antibiotics won’t always work. You can have successfully eradicated the living bacteria even as you’re dying.”

The approach being developed at the OSU College of Engineering is to move blood through a very small processor, about the size of a coffee mug, and literally grab the endotoxins and remove them.

Microchannels make this possible. They can provide accelerated heat and mass transfer as fluids move through tiny tubes the width of a human hair. Applications are already being studied in everything from heat exchangers to solar energy. They can be produced in mass quantity at low cost, stamped onto a range of metals or plastics, and used to process a large volume of liquid in a comparatively short time.

In the system developed at Oregon State, blood can be pumped through thousands of microchannels that are coated with what researchers call “pendant polymer brushes,” with repeating chains of carbon and oxygen atoms anchored on the surface. This helps prevent blood proteins and cells from sticking or coagulating. On the end of each pendant chain is a peptide – or bioactive agent – that binds tightly to the endotoxin and removes it from the blood, which then goes directly back to the patient.

Sepsis is fairly common. It can develop after an injury from an automobile accident, a dirty wound, an extended operation in a hospital that carries a risk of infection, or infectious illnesses in people with weak or compromised immune systems.

In the U.S., more than $20 billion was spent on this problem in 2011. It’s the single most expensive cause of health problems that require hospitalization.

Story By: 
Source: 

Adam Higgins, 541-737-6245

Multimedia Downloads
Multimedia: 

Sepsis device

Sepsis device