OREGON STATE UNIVERSITY

college of science

Marine incentives programs may replace 'doom and gloom' with hope

CORVALLIS, Ore. – Incentives that are designed to enable smarter use of the ocean while also protecting marine ecosystems can and do work, and offer significant hope to help address the multiple environmental threats facing the world’s oceans, researchers conclude in a new analysis.

Whether economic or social, incentive-based solutions may be one of the best options for progress in reducing impacts from overfishing, climate change, ocean acidification and pollution, researchers from Oregon State University and Princeton University say in a new report published this week in Proceedings of the National Academy of Sciences.

And positive incentives – the “carrot” – work better than negative incentives, or the “stick.”

Part of the reason for optimism, the researchers report, is changing awareness, attitudes and social norms around the world, in which resource users and consumers are becoming more informed about environmental issues and demanding action to address them. That sets the stage for economic incentives that can convert near-disaster situations into sustainable fisheries, cleaner water and long-term solutions.

“As we note in this report, the ocean is becoming higher, warmer, stormier, more acidic, lower in dissolved oxygen and overfished,” said Jane Lubchenco, the distinguished university professor in the College of Science and advisor in marine studies at Oregon State University, lead author of the new report, and U.S. science envoy for the ocean at the Department of State.

“The threats facing the ocean are enormous, and can seem overwhelming. But there’s actually reason for hope, and it’s based on what we’ve learned about the use of incentives to change the way people, nations and institutions behave. We believe it’s possible to make that transition from a vicious to a virtuous cycle. Getting incentives right can flip a disaster to a resounding success.”

Simon A. Levin, the James S. McDonnell distinguished university professor in ecology and evolutionary biology at Princeton University and co-author of the publication, had a similar perspective.

“It is really very exciting that what, until recently, was theoretical optimism is proving to really work,” Levin said. “This gives me great hope for the future.”

The stakes are huge, the scientists point out in their study.

The global market value of marine and coastal resources and industries is about $3 trillion a year; more than 3 billion people depend on fish for a major source of protein; and marine fisheries involve more than 200 million people. Ocean and coastal ecosystems provide food, oxygen, climate regulation, pest control, recreational and cultural value.

“Given the importance of marine resources, many of the 150 or more coastal nations, especially those in the developing world, are searching for new approaches to economic development, poverty alleviation and food security,” said Elizabeth Cerny-Chipman, a postdoctoral scholar working with Lubchenco.  “Our findings can provide guidance to them about how to develop sustainably.”

In recent years, the researchers said in their report, new incentive systems have been developed that tap into people’s desires for both economic sustainability and global environmental protection. In many cases, individuals, scientists, faith communities, businesses, nonprofit organizations and governments are all changing in ways that reward desirable and dissuade undesirable behaviors.

One of the leading examples of progress is the use of “rights-based fisheries.” Instead of a traditional “race to fish” concept based on limited seasons, this growing movement allows fishers to receive a guaranteed fraction of the catch, benefit from a well-managed, healthy fishery and become part of a peer group in which cheating is not tolerated.

There are now more than 200 rights-based fisheries covering more than 500 species among 40 countries, the report noted. One was implemented in the Gulf of Mexico red snapper commercial fishery, which was on the brink of collapse after decades of overfishing. A rights-based plan implemented in 2007 has tripled the spawning potential, doubled catch limits and increased fishery revenue by 70 percent.

“Multiple turn-around stories in fisheries attest to the potential to end overfishing, recover depleted species, achieve healthier ocean ecosystems, and bring economic benefit to fishermen and coastal communities,” said Lubchenco.  “It is possible to have your fish and eat them too.”

A success story used by some nations has been combining “territorial use rights in fisheries,” which assign exclusive fishing access in a particular place to certain individuals or communities, together with adjacent marine reserves. Fish recover inside the no-take reserve and “spillover” to the adjacent fished area outside the reserve. Another concept of incentives has been “debt for nature” swaps used in some nations, in which foreign debt is exchanged for protection of the ocean.

“In parallel to a change in economic incentives,” said Jessica Reimer, a graduate research assistant with Lubchenco, “there have been changes in behavioral incentives and social norms, such as altruism, ethical values, and other types of motivation that can be powerful drivers of change.”

The European Union, based on strong environmental support among its public, has issued warnings and trade sanctions against countries that engage in illegal, unregulated and unreported fishing. In the U.S., some of the nation’s largest retailers, in efforts to improve their image with consumers, have moved toward sale of only certified sustainable seafood.

Incentives are not a new idea, the researchers noted. But they emphasize that their power may have been under-appreciated.

“Recognizing the extent to which a change in incentives can be explicitly used to achieve outcomes related to biodiversity, ecosystem health and sustainability . . .  holds particular promise for conservation and management efforts in the ocean,” they wrote in their conclusion.

Funding was provided by OSU and the National Science Foundation.

Story By: 
Source: 

Jane Lubchenco, 541-737-5337

lubchenco@oregonstate.edu

Multimedia Downloads
Multimedia: 

Catch share
Catch share program

Rockfish siblings shed new light on how offspring diffuse and disperse

CORVALLIS, Ore. – A splitnose rockfish’s thousands of tiny offspring can stick together in sibling groups from the time they are released into the open ocean until they move to shallower water, research from Oregon State University shows.

The study conducted in the OSU College of Science sheds new light on how rockfish, a group of multiple species that contribute to important commercial and recreational fisheries in the Northwest, disperse through the ocean and “recruit,” or take up residence in nearshore habitats. Previously it was believed rockfish larvae dispersed chaotically to wherever currents carried them.

“When you manage populations, it’s really important to understand where the young are going to and where the young are coming from – how populations are connected and replenished,” said Su Sponaugle, a professor of integrative biology based at OSU’s Hatfield Marine Science Center. “This research helps us better understand what’s possible about offspring movement. We don’t know fully by what mechanisms the larvae are staying together, but these data are suggestive that behavior is playing a role.”

The findings were published today in Proceedings of the National Academy of Sciences. Primary funding came from the Hatfield Marine Science Center’s Mamie L. Markham Research Award.

The discovery of “spatial cohesion” among the larvae came via the collection of newly settled rockfish in a shallow nearshore habitat off the central Oregon coast. Nearly 500 juvenile fish that had started out up to six months earlier as transparent larvae at depths of a few hundred meters were collected and genetically analyzed, with the results showing that 11.6 percent had at least one sibling in the group.

“That’s much higher than we would have expected if they were randomly dispersing,” Sponaugle said.

Bearing live young – a female can release thousands of able-to-swim larvae at a time – and dwelling close to the sea floor in the benthic zone, rockfishes make up a diverse genus with many species.

Adult splitnose rockfish live in deep water – usually 100 to 350 meters – but juveniles often settle in nearshore habitats less than 20 meters deep after spending up to a year in the open sea. Taking into account dynamic influences such as the California Current, siblings recruiting to the same area suggest they remained close together as larvae rather than diffusing randomly and then reconnecting as recruits.

“This totally changes the way we understand dispersal,” said lead author Daniel Ottmann, a graduate student in integrative biology at the Hatfield Marine Science Center. “We’d thought larvae were just released and then largely diffused by currents, but now we know behavior can substantially modify that.”

Splitnose rockfish range from Alaska to Baja California and can live for more than 100 years. Pelagic juveniles – juveniles in the open sea – often aggregate to drifting mats of kelp, and the large amount of time larvae and juveniles spend at open sea is thought to enable them to disperse great distances from their parental source.

“This research gives us a window into a stage of the fishes’ life we know so little about,” added Kirsten Grorud-Colvert, an assistant professor of integrative biology at OSU’s Corvallis campus. “We can’t track the larvae out there in the ocean; we can’t look at their behavior early and see where they go. But this genetic technique allows us to look at how they disperse, and it changes the conversation. Now that we know that siblings are ending up in the same places, we can consider how to more effectively manage and protect these species.”

Because larval aggregation shapes the dispersal process more than previously thought, Ottmann said, it highlights the need to better understand what happens in the pelagic ocean to affect the growth, survival and dispersal of the larvae.

“Successful recruitment is critical for the population dynamics of most marine species,” he said. “Our findings have far-reaching implications for our understanding of how populations are connected by dispersing larvae.”

In addition, Grorud-Colvert adds, there’s the simple and substantial “gee whiz” factor of the findings.

“These tiny little fish, a few days old, out there in the humongous ocean, instead of just going wherever are able to swim and stay close together on their epic journey,” she said. “These tiny, tiny things, sticking together in the open ocean – it’s cool.”

Media Contact: 

Steve Lundeberg, 541-737-4039

Multimedia Downloads
Multimedia: 

SplitnoseRockfish_DanielOttmann

Splitnose rockfish

Bacteria discovery offers possible new means of controlling crop pest

CORVALLIS, Ore. – A bacterium common in insects has been discovered in a plant-parasitic roundworm, opening up the possibility of a new, environmentally friendly way of controlling the crop-damaging pest.

The worm, Pratylenchus penetrans, is one of the “lesion nematodes” -- microscopic animals that deploy their mouths like syringes to extract nutrients from the roots of plants, damaging them in the process. This particular nematode uses more than 150 species as hosts, including mint, raspberry, lily and potato.

The newly discovered bacterium is a strain in the genus Wolbachia, one of the world’s most widespread endosymbionts – organisms that live within other organisms. Wolbachia is present in roughly 60 percent of the globe’s arthropods, among them insects, spiders and crustaceans, and also lives in nematodes that cause illness in humans.

Postdoctoral scholar Amanda Brown in the Oregon State University Department of Integrative Biology was the lead author on the study, and recently accepted an assistant professor position at Texas Tech. Findings were published in the journal Scientific Reports.

Depending on the host species, Wolbachia can be an obligate mutualist – the bacteria and the host need each other for survival – or a reproductive parasite that manipulates the host’s reproductive outcomes in ways that harm the host and benefit the bacteria. Parasitic Wolbachia can cause its host populations to heavily skew toward female.

In the case of the crop-pest nematode, Pratylenchus penetrans, that Brown and her colleagues studied, the bacteria-host relationship appears to not be one of obligate mutualism – many examples of non-infected worms have been found, meaning the worm doesn’t rely on Wolbachia to survive.

But more study is needed to determine the exact nature of the relationship, said Dee Denver, an associate professor in the Department of Integrative Biology in the College of Science.

Whatever the relationship, simply discovering Wolbachia in Pratylenchus penetrans opens up the potential for managing the roundworm’s population via biocontrol rather than environment-damaging fumigants, such as methyl bromide, that are being phased out by the U.S. Environmental Protection Agency.

“We can use what’s already infecting them against them,” Denver said.

Nematode biocontrol would involve releasing Wolbachia-infected worms into farm fields whose worm populations weren’t infected. From there, a couple of situations, both favorable to the crops, might arise:

  •  The bacterium could hinder the worms’ ability to reproduce;
  •  It also might force the worm to devote energy to dealing with the bacterium, effectively distracting it from being as damaging to the crops as it otherwise would be.

Wolbachia is already being used as a biocontrol strategy in Colombia and Brazil, where infected mosquitoes are being released in an effort to control the Zika, dengue and malaria viruses. Mosquitoes are a vector for those diseases, but Wolbachia-infected mosquitoes pass the bacteria to their offspring, who lose their ability to transmit the diseases. Wolbachia also can interfere with the mosquitoes’ ability to reproduce at all.

“We can see where all of that goes and learn from it to help our decision making on how the strategy might get deployed to control the population of plant-parasitic nematodes,” Denver said. “One big thing with nematodes is the load. Many crops have some, but once you get above certain thresholds, fields go down and there are economic losses.”

In addition to the potential for an environmentally safe way to deal with a crop pest, the research is noteworthy for providing genomic evidence that nematodes, not arthropods, were the original Wolbachia hosts. The strain that OSU researchers discovered – known as wPpe – proved to be the earliest diverging Wolbachia, meaning the bacteria adapted to arthropods and then later evolved to reinvade nematodes.

“Were they originally reproductive parasites or play-nice mutualists?” Dee said. “These are outside the range of better-studied Wolbachia, so we don’t know, but we have preliminary data and we think they’re reproductive parasites.”

Another unanswered question: How widespread is Wolbachia among plant-parasitic nematodes?

“There are thousands of nematode species infecting plants,” Denver said. “Wolbachia has always been thought of as an arthropod thing, an insect thing. It was kind of a serendipitous discovery for us. We were sequencing genomes from nematodes for the purpose of understanding nematodes, and the mapping went to Wolbachia.”

Media Contact: 

Steve Lundeberg, 541-737-4039

Source: 
Multimedia Downloads
Multimedia: 

Pratylenchus penetrans

Pratylenchus penetrans

Kelp forests globally resilient, but may need local solutions to environmental threats

CORVALLIS, Ore. – The first global assessment of marine kelp ecosystems shows that these critically-important habitats have exhibited a surprising resilience to environmental impacts over the past 50 years, but they have a wide variability in long-term responses that will call for regional management efforts to help protect their health in the future.

The findings were published today in Proceedings of the National Academy of Sciences.

Scientists noted that kelp forests have a remarkable ability to recover quickly from extreme damage, but they can still be overwhelmed in some instances by the combination of global and local pressures.

This points to the need for regional management efforts that carefully consider local conditions when trying to offset human-caused impacts from climate change, overfishing and direct harvests, researchers said.

Kelp forests, the largest species of algae in shallow, coastal waters almost everywhere except the tropics, are a globally important foundation species that occupy almost half of the world’s marine ecoregions. Often harvested directly, they help support commercial fisheries, nutrient cycling, shoreline protection, and are valued in the range of billions of dollars annually.

The new research was conducted by an international team of 37 scientists who analyzed changes in kelp abundance in 34 regions of the planet that had been monitored over the past 50 years.

“Kelp forests are cold-water, fast-growing species that can apparently withstand many types of environmental disturbances,” said Mark Novak, an assistant professor of integrative biology in the College of Science at Oregon State University, co-author of the study, and an organizer of the international group at the National Center for Ecological Analysis and Synthesis that conducted this research.

“The really surprising thing in this study was how much region-to-region variation we found, which is quite different from many other ecosystems. Thus, despite global threats like climate change and ocean acidification, the battle to protect our kelp forests of the future may best be fought locally – in the U.S., by states, counties, even individual cities and towns.”

These forests can grow fast, tall, and are highly resilient – but also are often on the coastal front line in exposure to pollution, sedimentation, invasive species, fishing, recreation and harvesting. Even though “they have some of the fastest growth rates of any primary producer on the planet,” the researchers wrote, there are limits to what they can take.

In their study the scientists concluded that of the kelp ecosystems that have been studied, 38 percent are in decline; 27 percent are increasing; and 35 percent show no detectable change. On a global scale, they are declining at 1.8 percent per year.

Where kelp resilience is eroding and leading to declines in abundance, impacts to ecosystem health and services can be far-reaching, the researchers wrote in their report.

This research was supported by the National Science Foundation, the University of California/Santa Barbara, and the state of California.

Story By: 
Source: 

Mark Novak, 541-737-3610

mark.novak@oregonstate.edu

Multimedia Downloads
Multimedia: 

Kelp Forest
Kelp forests

Discovery of new bacteria complicates problem with salmon poisoning in dogs

CORVALLIS, Ore. – Researchers at Oregon State University have identified for the first time another bacterium that can cause symptoms similar to “salmon poisoning” in dogs - and may complicate the efforts of Pacific Northwest pet owners to keep their dogs protected and healthy.

The Pacific Northwest, from northern California to central Washington, is the only region of the world in which dogs face this potentially deadly health threat. It’s caused by a complicated life cycle that includes a common freshwater snail that harbors a fluke worm, and the fluke, in turn, carries the bacterium Neorickettsia helminthoeca. The bacterium is the actual cause of salmon poisoning.

The underlying problem is not new. Dogs that died after eating uncooked, infected salmon were first noted in the Astoria Journal in 1814, not long after Lewis and Clark visited the region.

The conventional wisdom, however, has been that dogs are usually immune to salmon poisoning after they have once been infected, treated with antibiotics and recovered – giving pet owners at least some assurance that it’s a problem they no longer need be concerned about.

The new discovery makes it clear the issue is not that simple.

In the infectious process that leads to salmon poisoning, the fluke is released from snails, which then infect salmon and other freshwater fishes. The life cycle is completed when a mammal eats an infected fish – in this case, dogs get sick from eating raw or undercooked salmon. The possible occurrence of “salmon poisoning” is actually dictated by the geographic distribution of the snail.

Another bacterium called “SF agent,” however, has been found for the first time in a salmonid fish anywhere in the world, researchers report in a recent study in Veterinary Parasitology. The fluke host for this bacterium is Stellanchasmus falcatus.

“SF agent can infect dogs that eat salmon or trout, and it can cause a mild fever in dogs and other symptoms that can resemble salmon poisoning,” said Michael Kent, a professor of microbiology in the OSU College of Science and College of Veterinary Medicine, and co-author of the study. “It can also be treated with antibiotics, but may not offer immunity to dogs that could be later exposed to the actual salmon poisoning bacterium. A pet owner might believe their dog is protected, when it isn’t.”

The larval stages of the worm that carries Neorickettsia helminthoeca were first associated with the disease in 1911, and in 1950 the actual bacterium was confirmed as the cause of salmon poisoning. It’s in the same bacterial family as SF agent – meaning pet owners must now understand their dogs may face two related Neorickettsia pathogens – but one causes only a mild illness, while the other can be deadly.

Veterinary doctors, Kent said, routinely have treated animals based on their [mlk1] clinical signs, because the eggs of the fluke may be hard to find in dog feces, and the bacterium is difficult to culture from dog blood. Left untreated, dogs with salmon poisoning can die in a week to 10 days, often from severe hemorrhaging and internal ruptures. The ultimate fatality rate can approach 90 percent of untreated cases.

The bottom line, he said, is that pet owners should not make any assumptions about whether or not their dogs may have immunity to salmon poisoning. Kent said he has received several reports from local veterinarians documenting dogs contracting salmon poisoning more than once.

With the new awareness that different bacteria can cause similar initial symptoms, pet owners should know that dogs displaying such symptoms may or may not have a serious health problem.

The fluke worm, but not the bacterium, can also infect humans.  Humans do not contract salmon poisoning, but may develop a relatively mild gastrointestinal illness. Either freezing or cooking infected fish will kill the worms.

This research was supported by the National Institutes of Health and done in collaboration with researchers from the University of North Dakota, Georgia Southern University, and the Woodburn Veterinary Clinic in Woodburn, Ore.


Story By: 
Source: 

Michael Kent, 541-737-8652

michael.kent@oregonstate.edu

Multimedia Downloads
Multimedia: 

Salmon poisoning of dogs
Dogs at play

Boosting levels of known antioxidant may help resist age-related decline

CORVALLIS, Ore. – Researchers at Oregon State University have found that a specific detoxification compound, glutathione, helps resist the toxic stresses of everyday life – but its levels decline with age and this sets the stage for a wide range of age-related health problems.

A new study, published in the journal Redox Biology, also highlighted a compound – N-acetyl-cysteine, or NAC – that is already used in high doses in medical detoxification emergencies. But the researchers said that at much lower levels NAC might help maintain glutathione levels and prevent the routine metabolic declines associated with aging.

In that context, the research not only offers some profound insights into why the health of animals declines with age, but specifically points to a compound that might help prevent some of the toxic processes involved.

Decline of these detoxification pathways, scientists say, are causally linked to cardiovascular disease, diabetes and cancer, some of the primary causes of death in the developed world.

“We’ve known for some time of the importance of glutathione as a strong antioxidant,” said Tory Hagen, lead author on the research and the Helen P. Rumbel Professor for Health Aging Research in the Linus Pauling Institute at OSU.

“What this study pointed out was the way that cells from younger animals are far more resistant to stress than those from older animals,” said Hagen, also a professor of biochemistry in the OSU College of Science. “In young animal cells, stress doesn’t cause such a rapid loss of glutathione. The cells from older animals, on the other hand, were quickly depleted of glutathione and died twice as fast when subjected to stress.

“But pretreatment with NAC increased glutathione levels in the older cells and largely helped offset that level of cell death.”

Glutathione, Hagen said, is such an important antioxidant that its existence appears to date back as far as oxygen-dependent, or aerobic life itself – about 1.5 billion years. It’s a principal compound to detoxify environmental stresses, air pollutants, heavy metals, pharmaceuticals and many other toxic insults.

In this study, scientists tried to identify the resistance to toxins of young cells, compared to those of older cells. They used a toxic compound called menadione to stress the cells, and in the face of that stress the younger cells lost significantly less of their glutathione than older cells did. The glutathione levels of young rat cells never decreased to less than 35 percent of its initial level, whereas in older rat cells glutathione levels plummeted to 10 percent of their original level.

NAC, the researchers said, is known to boost the metabolic function of glutathione and increase its rate of synthesis. It’s already used in emergency medicine to help patients in a toxic crisis, such as ingestion of poisonous levels of heavy metals. It’s believed to be a very safe compound to use even at extremely high levels – and the scientists are hypothesizing that it might have significant value at much lower doses to maintain glutathione levels and improve health.

“I’m optimistic there could be a role for this compound in preventing the increased toxicity we face with aging, as our abilities to deal with toxins decline,” Hagen said. “We might be able to improve the metabolic resilience that we’re naturally losing with age.”

Also of interest, Hagen said, is the wide range of apparent detoxification potential offered by glutathione. Higher levels of it – boosted by NAC – might help reduce the toxicity of some prescription drugs, cancer chemotherapies, and treat other health issues.

“Using NAC as a prophylactic, instead of an intervention, may allow glutathione levels to be maintained for detoxification in older adults,” the researchers wrote in their conclusion.

This research was supported by the National Institutes of Health, the National Science Foundation and the Medical Research Foundation of Oregon.

Story By: 
Source: 

Tory Hagen, 541-737-5083

tory.hagen@oregonstate.edu

Multimedia Downloads
Multimedia: 

Glutathione
Structure of glutathione

Larvae from fat fish on deep reefs help keep shallower populations afloat

CORVALLIS, Ore. – Populations of coral reef fish in shallower, more vulnerable habitats likely owe at least some of their sustainability to the prodigious reproductive abilities of large, old counterparts that dwell at greater depths, a recent study suggests.

Researchers found that fish in the mesophotic zone – 30 to 150 meters underwater, the depth limit for reefs that depend on photosynthesis – are present in lower densities than at other depths, but consisted of larger, older fish with better than average reproductive capabilities.

That mesophotic population, research suggests, is heavy on what are known as BOFFFFs: big, old, fat, fecund, female fish.

Results of the study were recently published at nature.com. Primary funding for the research came from the National Oceanic and Atmospheric Administration Center for Sponsored Coastal Ocean Research.

Su Sponaugle, a professor of integrative biology at Oregon State University’s Hatfield Marine Science Center, teamed up with two other researchers, lead author Esther D. Goldstein and Evan K. D’Alessandro, both of the University of Miami, to study the demographics of bicolor damselfish populations across three reef depths off the Florida coast.

The team studied bicolor damselfish at shallow (less than 10 meters); deep shelf (20 to 30 meters); and mesophotic reef locations, looking at population density and individuals’ structure, growth, size and reproductive output. The damselfish is a small, short-lived plankton feeder that’s closely associated with reef habitat. At mesophotic depths, however, the fish can live more than a dozen years.

The researchers sought to assess the potential of mesophotic reefs to support robust fish populations. Because of their greater depth, those reefs are less susceptible to both human-caused and natural habitat disturbances such as temperature increases.

The scientists found that as water depth increased, the bicolor damsel fish population density decreased and age distributions shifted toward older, and larger, individuals. Among those individuals are the BOFFFFs that produce lots of large eggs that likely hatch high-condition larvae.

The larval stage for the bicolor damselfish lasts 30 days, during which time the larvae are carried by water currents to eventually settle to a reef. At whatever depth they settle to, within 24 hours, larvae will metamorphosize into juveniles and then remain in close proximity to the reef for the duration of their lives.

“They’re very site attached,” Sponaugle said. “Once they settle somewhere, that’s where they live, grow and reproduce – that is, until they’re eaten.”

Across all depths, the fish are genetically similar, meaning it’s probable that shallow water and mesophotic reefs exchange young.

“Mesophotic reefs are sort of a warehouse for future fish in the shallower reefs,” Goldstein said. “The fish are older and larger on average, and they invest a lot into reproduction, which is good.

“So even though there are not as many of them on these deep reefs, their offspring hatch from larger eggs and likely experience higher survivorship, so it would seem they have the capacity to contribute more than their fair share to the shallow-water environments.” 

Media Contact: 

Steve Lundeberg, 541-737-4039

Multimedia Downloads
Multimedia: 

Damselfish

Bicolor damselfish

A better battery: one-time pollutant may become valued product to aid wind, solar energy

CORVALLIS, Ore. - Chemists at Oregon State University have discovered that one or more organic compounds in a family that traditionally has been known as pollutants could offer an important advance to make cheap, reliable batteries.

Such batteries might be of particular value to store electricity from some clean energy systems. The inability to easily and cheaply store energy from the wind and sun, which is highly variable and intermittent, has been a key constraint to wider use of those forms of energy.

Although pumped hydro systems or compressed air facilities comprise almost all of the alternative energy storage capacity of this type, they have limitations. There is a tremendous demand, scientists say, for energy storage solutions that are modular and particularly suited to community storage, “smart grid” and micro-grid uses.

A new advance, published in ACS Energy Letters, has shown that at least one, and probably more compounds known as polycyclic aromatic hydrocarbons, or PAHs, can function as a potentially low-cost, long-lasting and high-performance cathode in “dual-ion” batteries.

Such batteries would contain a carbon electrode as the anode and solid PAH as the cathode, with no need for the rare or costly metal elements now usually used.

Traditionally thought of as pollutants, PAHs are usually products of combustion – anything from a campfire to an automobile exhaust or coal-burning power plant – and pose significant concerns as toxins and carcinogens, often when inhaled.

But in this study, scientists found that at least one PAH compound called coronene, in a safe, crystallized solid form, makes a high-functioning electrode material with promising characteristics in dual-ion batteries.

“Prior to this work, PAHs were not considered stable when storing large anions,” said Xiulei (David) Ji, an assistant professor of chemistry in the OSU College of Science, and recipient of a 2016 National Science Foundation CAREER Award, the most prestigious award for junior faculty.

“We found that coronene crystalline solid, a PAH, can lose electrons and provide a good capacity of anion storage while being structurally and chemically stable. Coronene had good performance as an electrode and the ability to have a very long cycle life, or the number of charges and discharges it can handle.”

Avoiding the use of metals in the electrodes is a huge advantage for dual-ion batteries and makes them much more sustainable, Ji said. Graphite cathodes can do this, but a serious challenge that has held them back for two decades is that they operate at levels hostile to the non-aqueous solvents in the electrolyte. The batteries based on coronene largely eliminate this problem, and would significantly improve the maintenance cost and sustainability of a stationary battery system.

The researchers in this study demonstrated the potential of coronene, but also said that other PAH compounds as well may have similar potential.

This research opens the door to an entirely new concept in battery construction, they said, which might take what had once been an unwanted pollutant and turn it into a safe, valued product.

Primary collaborators on this project in OSU’s Department of Chemistry included lead author and graduate student Ismael Rodriguez-Perez, and professors Michael Lerner and Rich Carter.

The research was supported by the American Chemical Society Petroleum Research Fund.

 

Story By: 
Source: 

David Ji, 541-737-6798

david.ji@oregonstate.edu

Multimedia Downloads
Multimedia: 

New battery
New battery

Ancient wingless wasp, now extinct, is one of a kind

CORVALLIS, Ore. – Researchers have identified a bizarre, parasitic wasp without wings preserved in 100-million-year-old amber, which seems to borrow parts of its anatomy from a range of other insects but actually belongs to no other family ever identified on Earth.

The specimen, which is spectacularly well preserved, probably crawled along the ground at the base of trees trying to find other insects and a place to lay its eggs. While dinosaurs strolled around above it, it looked for an insect grub of some kind it could sting.

But for reasons unknown – maybe because it couldn’t fly, maybe because it died off from pathogens or habitat loss – it eventually disappeared and is now extinct.

After considerable debate, citing first one body part and then another, researchers created a new family for the specimen, called Aptenoperissidae, as part of the larger Order of Hymenoptera, which includes modern bees and wasps. Within that family, this insect, named Aptenoperissus burmanicus, is now the only known specimen.

The findings have been reported in the journal Cretaceous Research, by scientists from Russia, England and the United States.

“When I first looked at this insect I had no idea what it was,” said George Poinar, Jr., a professor emeritus in the College of Science at Oregon State University, co-author on the study and one of the world’s leading experts on plant and animal life forms found preserved in amber.

“You could see it’s tough and robust, and could give a painful sting. We ultimately had to create a new family for it, because it just didn’t fit anywhere else. And when it died out, this created an evolutionary dead end for that family.”

The insect, Poinar said, brings to mind the old parable – which now has been adapted among various world religions - about six blind men being asked to touch an elephant and describe what it looked like. One who felt the tail described it as a rope; one who touched the leg said it resembled a pillar; and so on.

“We had various researchers and reviewers, with different backgrounds, looking at this fossil through their own window of experience, and many of them saw something different,” Poinar said. “If you focused on its strong hind legs you could call it a grasshopper. The antenna looked like an ant, the thick abdomen more like a cockroach. But the face looked mostly like a wasp, and we finally decided it had to be some kind of Hymenoptera.”

The insect is a female, and its long legs may have helped it pull out of cavities into which it had burrowed, seeking pupae of other insects into which to lay its eggs. With that lifestyle, wings would have been a hindrance, researchers noted in the study. It may have attacked other beetles with its sharp and jagged stinger, and it would have had a pretty strong leaping ability. It did have a cleaning mechanism on the tip of its antenna that is characteristic of Hymenoptera.

The fossil came from what is now the Hukawng Valley in Myanmar on the continent of Asia, where arthropods from 252 families have been found, one of the richest such deposits in all Cretaceous amber.

 

Story By: 
Source: 

George Poinar, Jr.

poinarg@science.oregonstate.edu

Multimedia Downloads
Multimedia: 

Wingless wasp
Wingless wasp

Scientists outline biochemistry of xanthohumol - an avenue to treat metabolic syndrome

CORVALLIS, Ore. – Researchers at Oregon State University have made a fundamental advance in understanding xanthohumol – a compound found in hops that’s of significant interest to prevent or treat the lipid and metabolic disorders that are a primary killer of people in the developed world.

The scientists identified for the first time more precisely how xanthohumol works, and why it may have such significant promise in addressing the high cholesterol, blood sugar, obesity and other issues that are collectively referred to as “metabolic syndrome.”

The findings were recently published in BBA – Proteins and Proteomics, a professional journal, by researchers from several OSU departments and the Linus Pauling Institute. The work was supported in part by the National Institutes of Health.

More than 25 percent of the adults in the United States meet the criteria for metabolic syndrome, putting them at significantly increased risk for cardiovascular disease and type-2 diabetes. That syndrome is defined by diagnosis of three or more of several conditions, including abdominal obesity, elevated lipids, high blood pressure, pro-inflammatory state, a pro-thrombotic state and insulin resistance or impaired glucose tolerance.

The new research was based on mass spectrometry in combination with a chemical labeling technique. In it, the scientists concluded that several “prenylflavonoids,” particularly xanthohumol, clearly are a ligand, or have a binding mechanism that promotes the activity of the Farnesoid X Receptor, or FXR. FXR, in turn, is a master regulator of lipid and glucose metabolism – in simpler terms, the body’s processing of fats and sugar.

“There’s already interest in targeting FXR as a possible approach to a therapy for fatty liver disease, type2 diabetes and obesity,” said Claudia Maier, a professor of chemistry in the OSU College of Agricultural Sciences. “With this work we’ve identified a unique binding mechanism and chemical structure that could make that possible. This is really very interesting, and very promising.”

This new understanding of the FXR receptor at the molecular level, researchers said, could, in theory, facilitate the use of compounds that take advantage of it – such as xanthohumol – or development of other compounds with a similar chemical structure that work even better.

“We now see how these prenylflavonoids are working, and with modification through computational approaches it might be possible to even improve upon that,” said Liping Yang, the lead author on the new study and faculty research assistant in the OSU Department of Chemistry. “The end result might be either supplements or a prescription drug, with the potential to address metabolic syndrome, non-alcoholic liver disease, diabetes and other metabolic disorders.”

The FXR receptor, the scientists said, is a part of normal lipid and glucose metabolism, working in collaboration with appropriate diet, weight, exercise and other healthy activities. However, its function can be eroded by intake of too much fat and sugar. Restoring that function, by contrast, may help address metabolic problems.

In previous research, published earlier this year by OSU scientists Cristobal Miranda and Fred Stevens, scientists studied laboratory animals that were on a high-fat diet. When they were given a high dosage of xanthohumol, it reduced their LDL, or “bad” cholesterol by 80 percent; their insulin level by 42 percent; and their level of IL-6, a biomarker of inflammation, by 78 percent.

Weight gain was also constrained, compared to animals not given xanthohumol. The levels of xanthohumol used in the research far exceeded any amount that could be obtained by normal dietary intake, but could be easily obtained through supplements.

In that study, researchers pointed out that direct health care costs arising from obesity or related disorders account for up to 10 percent of U.S. health care expenditures.

Story By: 
Source: 

Claudia Maier, 541-737-9533

claudia.maier@oregonstate.edu

Multimedia Downloads
Multimedia: 

Source of xanthohumol
Hops - source of xanthohumol