OREGON STATE UNIVERSITY

college of earth

Study: Fish assemblages can change rapidly along coast as water warms

CORVALLIS, Ore. – A modest warming of coastal waters can have a significant impact on juvenile fish assemblages in a period of just a few years, a newly published study has found, raising concern about the potential effects of climate change.

Such a shift is taking place on the Skagerrak coast of Norway, where more warm-water fish species have begun appearing over the past two decades while many populations of resident cold-water fish species have declined.

Results of the study have just been published in the journal Global Change Biology.

Studying the potential impact of climate change on coastal fishes has been difficult, researchers say, because few long-term records adequately address species diversity. But researchers at Norway’s Institute of Marine Research have been conducting what has to be one of the longest, most consistent surveys of near-shore waters ever undertaken – a key to understanding climate change effects.

“What we’re seeing is a clear influence of ocean temperature on the region’s juvenile fish community, which has changed in what is a very important fish nursery area,” said Caren Barceló, an Oregon State University doctoral candidate and lead author on the study. “It has implications for nursery habitats that have been around for decades.”

Barceló, who worked with Norwegian researchers on their beach seine surveys, said no new species had appeared in the waters of Skagerrak for nearly three decades beginning in the mid-1960s. Within the next 15 years, however, several pelagic, planktivorou species more characteristic of the Mediterranean arrived – for example, European anchovy (Engraulis encrasicolus) and European pilchard (Sardina pilchardus).

Other warm-water species of fish present now were documented once before in the area, such as juvenile horse mackerel (Trachurus trachurus), when the water warmed in the 1930s and ‘40s and then became less prevalent when it cooled. The corkwing wrasse (Symphodus melops) is another fish species that appeared during the earlier warm period, then became less prevalent for more than half a century – before returning during the latest warming.

Cold-water species that have been caught less frequently in this dataset over the past two decades include cod (Gadus morhua), pollack (Pollachius pollachius), and European eel (Anguilla anguilla).

One concern, the researchers say, is that the present warming is not an anomaly, rather a symptom of climate change that may worsen instead of going away. There may be other factors involved in the introduction of new species, noted Lorenzo Ciannelli, an Oregon State marine ecologist and co-author on the study.

“There are some unique elements happening today that distinguish the situation from the 1930s and ‘40s,” Ciannelli said. “Winds and currents are pushing warm water into the area in such a way that it suggests the pattern might be here to stay.

“Some fish will move into a new area as adults, while other species disperse their eggs or larva and they then ride into new regions on the currents,” he added. “To make them ‘stick’ there may need to be a seeding process that allows the local population to develop.”

The key to understanding the assemblage shift in Norway is the extraordinary data set collected by Norwegian researchers. For the past 96 years, they have conducted an extensive coast-wide seine survey during the last two weeks of September, using the same style boats, the same locations and nets that were exactly the same size.

Only five survey leaders have coordinated the effort over 96 years, each one having trained with the previous leader for at least 10 years on the operation of setting and hauling the beach seine before taking over the project themselves.

“It began as a project to analyze the recruitment of juvenile cod in the region,” Barceló said, “but someone had the foresight a century ago to document all of the species  brought up in the nets – and they’ve kept it up ever since.”

Barceló, who worked with the Norwegians over two summers, is also analyzing fish surveys off the Oregon coast, investigating the long-term environmental variability and shifting marine fish assemblages.

She and Ciannelli are in OSU’s College of Earth, Ocean, and Atmospheric Sciences.

Media Contact: 
Source: 

Caren Barceló, 541-737-3965, caren.barcelo@gmail.com;

Lorenzo Ciannelli, 541-737-3142, lciannelli@coas.oregonstate.edu

Multimedia Downloads
Multimedia: 

 

 

 

 

 

 

 

 

 

 

 

strandnot2012-20

Caren Barcelo works with Norwegian researchers.

2015 goes down as the warmest in Oregon history

CORVALLIS, Ore. – A mild winter, an early spring and warmer-than-average temperatures every season have contributed to a record-breaking year, as 2015 will go down as the warmest in Oregon since state records began in 1895.

Oregon’s previous record high average temperature of 49.9 degrees was set in 1934 – the height of the Dust Bowl – when the entire country was plagued by hot, dry weather.

Despite a cold, icy end to December in Oregon, the average temperature in 2015 was 50.4 degrees, not only a record but far above the average yearly temperature for the 20th century, which was 47.8 degrees, according to Oregon State University’s Philip Mote, who directs the Oregon Climate Change Research Institute on campus.

“In previous years, we’ve had periods where the weather was warmer for differing spells,” Mote said. “In 2015, though, it was warmer than average almost all the way through the year.” A combination of meteorological conditions and greenhouse gases led to the record warm year, he added.

The statistics are from the National Oceanic and Atmospheric Administration’s National Centers for Environmental Information.

Oregon was not alone in experiencing a warm 2015, according to Kathie Dello, deputy director of the Oregon Climate Service at OSU. Washington, Montana and Florida also experienced record high temperatures, and in several other states 2015 went down in the top five of all time.

It appears this will be yet another record warm year for average global temperature, Dello pointed out, and it is officially the second warmest year in the United States, despite blizzards and Arctic temperatures in the Northeast.

“If you are 31 years of age, you have not lived through a single month in which the global temperature was below average,” Dello said. “And if you are 31 and living in Oregon, you have only experienced three years here that were cooler than the 20th-century average.”

Researchers calculate the average temperature for each day by looking at the highest and lowest temperatures. If the high reaches 90 degrees and the low is 60, that day’s average temperature is 75 degrees. They then calculate the average monthly temperature, and finally, the average yearly temperature.

The average for the state is done by analyzing temperatures at a series of long-established weather stations throughout the state.

 “We had a ridge of high pressure that set up and kept the weather warm and dry throughout most of the summer and fall,” Mote said. “That followed a winter in which we got nearly average precipitation, but much of it came from the south and it fell as rain instead of snow.”

Mote said the record-setting 2015 weather was a combination of meteorological phenomena and the Earth gradually getting warmer because of human activities.

Through rigorous statistical analysis, scientists are able to tease out the impacts of El Niño, greenhouse gas emissions, volcanic activity and solar activity on temperatures. Mote said 2015 would have been a warm year because of meteorological conditions, but the 1-2 degrees (F) attributable to greenhouse gases pushed temperatures into record territory.

“There’s little doubt that the insulation of the planet from greenhouse gas emissions played a role in the warming throughout the year,” he said.

The OSU researchers say expect more of the same in 2016.

“With El Niño and the remnants of The Blob (a huge warm patch of water in the North Pacific Ocean), it should be another warm year for the Earth, and for Oregon,” Dello said.

Media Contact: 
Source: 

Phil Mote, 541-737-5694, pmote@coas.oregonstate.edu;

Kathie Dello, 541-737-8927, kdello@coas.oregonstate.edu

 

 

 

 

 

A 72-degree day in January (2015) at Yachats on the Oregon Coast. (photo by Theresa Hogue)

OSU/NOAA study: Warm-water years are tough on juvenile salmon

NEWPORT, Ore. – A new analysis of juvenile Chinook salmon in the Pacific Ocean documents a dramatic difference in their foraging habits and overall health between years of warm water and those when the water is colder.

The study found that when the water is warmer than average – by only two degrees Celsius – young salmon consume 30 percent more food than during cold-water regimes. Yet they are smaller and skinnier during those warm-water years, likely because they have to work harder to secure food and the prey they consume has less caloric energy.

Results of the research, conducted by researchers from Oregon State University and the National Oceanic and Atmospheric Administration, are being published this week in the journal PLOS One.

“When young salmon come out to sea and the water is warm, they need more food to keep their metabolic rate up, yet there is less available food and they have to work harder,” said Elizabeth Daly, an Oregon State senior faculty research assistant with the Cooperative Institute for Marine Resources Studies, a joint program of OSU and NOAA.

“Our long-term data set contradicts the long-held assumption that salmon eat less during warm-water regimes,” Daly added. “They actually eat more. But they still don’t fare as well. When the water is warm, salmon are smaller and thinner.”

Daly teamed with Richard Brodeur, a NOAA Northwest Fisheries Science Center researcher, to examine 19 years of juvenile salmon surveys, from 1981-85 and 1998-2011. The rich, long-term data set revealed the trophic habits, size and condition of yearling Chinook salmon caught soon after they migrated to the ocean. The researchers found that during both warm- and cold-water regimes, the diet of the salmon is primarily fish, but when the water is cold, they also consume more lipid-rich krill and Pacific sand lance. When the water is warmer, the salmon’s diet had more juvenile rockfish and crab larvae.

Previous research led by Bill Peterson, a NOAA fisheries biologist and courtesy professor in OSU’s College of Earth, Ocean, and Atmospheric Sciences (CEOAS), found that the makeup of copepods during cold-water years differs greatly than during warm-water years. In cold years, these small crustaceans drift down from the north and are lipid-rich, with much higher nutrient levels than copepods from the south.

And though salmon may not directly consume these copepods, they are eating the fish that do consume them, noted Brodeur, also a courtesy faculty member in CEOAS.

“The warm years typically have less upwelling that brings the cold, nutrient-rich water to the surface,” Brodeur said. “Or in the case of 2005, the upwelling was so late that many of the salmon died because there was no food when they entered the ocean.”

“Salmon populations may be able to handle one year of warm temperatures and sparse food,” Brodeur added. “But two or three years in a row could be disastrous – especially for wild fish populations. They may have to travel much farther north to find any food.”

Hatchery-raised salmon that are released in similar numbers in warm- or cold-water years may fare slightly better during bad ocean conditions, the researchers noted, because they tend to be larger when they enter the marine environment.

Daly and Brodeur, who work out of OSU’s Hatfield Marine Science Center in Newport, Oregon, said that the 19 survey years they analyzed included 10 warm-water years and nine cold-water years. In some cases, the warm water was a result of an El Niño, while in other years it was a lack of upwelling.

During the last two years, an unusually large, warm body of water has settled into the ocean off the Pacific Northwest that scientists have dubbed “The Blob,” which is forecast to be followed this winter by a fairly strong El Niño event. Though recent spring Chinook salmon runs have been strong due to cooler ocean conditions in 2012-13, the impact of this long stretch of warm water on juvenile fish may bode poorly for future runs.

“So far this year, we’ve seen a lot of juvenile salmon with empty stomachs,” Daly said. “The pressure to find food is going to be great. Of those fish that did have food in their stomachs, there was an unusual amount of juvenile rockfish and no signs of Pacific sand lance or krill.

“Not only does this warm water make it more difficult for the salmon to find food, it increases the risk of their own predation as they spend more time eating and less time avoiding predators,” she added.

Media Contact: 
Source: 

Elizabeth Daly, 541-867-0404; elizabeth.daly@oregonstate.edu;

Ric Brodeur, 541-867-0335, Richard.Brodeur@noaa.gov

Multimedia Downloads
Multimedia: 

OLYMPUS DIGITAL CAMERA

72 scientists ink letter to U.S. presidential candidates urging leadership on clean energy

CORVALLIS, Ore. – A group of 72 leading climate change scientists have written a letter to major United States presidential candidates urging strong American leadership on clean energy – and calling for a “vibrant economy free from carbon pollution by mid-century.”

The effort began as a letter from nine scientists from Harvard University, Stanford University, University of California at Berkeley, Tufts and elsewhere – part of the Union of Concerned Scientists. Other scientists, including Philip Mote of Oregon State University, recently joined the initiative.

Mote, who directs the Oregon Climate Change Research Institute at Oregon State, and also provides leadership on two joint federal climate change centers at the university, said focusing on clean, renewable sources of energy is not a choice between a strong economy and a healthy environment.

“These are not mutually exclusive,” said Mote, a professor in OSU’s College of Earth, Ocean, and Atmospheric Sciences. “Many of the largest and most influential companies in the world are using energy from renewable sources, including Apple, Google and others. It’s not just a good environmental strategy – they see it as a good business strategy.”

“Oregon’s emission of greenhouse gases peaked in 1999 and has been declining, showing that we can grow the economy and reduce emissions,” Mote added.

In their letter, the climate scientists point to the gradual shift away from non-sustainable fossil fuels to solar and wind power – in part because of rapidly advancing technology. The next U.S. president “will be uniquely positioned to ensure that our nation sustains and accelerates this transition,” they wrote. “The dangers of inaction are also increasingly apparent and lend great urgency to this appeal.”

The letter is being released this week as policy-makers and others convene in Paris for the annual international climate summit.  Limiting carbon emissions from fossil fuels is critical in slowing the rate of warming the Earth is experiencing, the scientists note, and the effects are being seen world-wide – from rapidly warming and acidifying oceans to melting glaciers.

Yet much of the public – and many political leaders – has been slow to accept what many scientists say is overwhelming evidence that our planet is in peril, Mote said.

“This week, as some of Oregon’s rivers are rising, we are reminded that a warming climate accentuates existing risks like flooding,” Mote said.  “Additional risks for the region include increased wildfires and coastal inundation. Limiting emissions will reduce the size of future changes."

The scientists call for the next president to pursue key goals, including:

  • Following through on the U.S. commitment to reduce carbon emissions by 26 to 28 percent below 2005 levels by the year 2025;
  • Phasing out fossil energy subsidies and putting a price on carbon to “ensure a level playing field” for renewable energy, nuclear power and other low- or zero-carbon technologies;
  • Modernizing antiquated energy transmission, distribution and transportation systems;
  • Increasing investment in clean energy research.

Mote was a lead author on the 2007 Intergovernmental Panel on Climate Change report, which led to a Nobel Prize, and a lead author for the fifth IPCC report in 2013 in a chapter focusing on the cryosphere.

Media Contact: 
Source: 

Phil Mote, 541-737-5692, pmote@coas.oregonstate.edu

Report: Willamette Valley water future mostly bright, though gaps may need to be addressed

CORVALLIS, Ore. – During the next 85 years, temperatures in Oregon’s Willamette River basin are expected to rise significantly, mountain snowpack levels will shrink dramatically, and the population of the region and urban water use may double – but there should be enough water to meet human needs, a new report concludes.

Fish may not be so lucky. Although ample water may be available throughout most of the year, the Willamette Valley and its tributaries likely will become sufficiently warm as to threaten cold-water fish species, including salmon and steelhead, the scientists say.

These are among the key findings of the Willamette Water 2100 Project, a five-year, $4.3 million study funded by the National Science Foundation and led by Oregon State University, in partnership with researchers from the University of Oregon, Portland State University and University of California at Santa Barbara.

“The Willamette River basin today is characterized by abundant annual water and sometime seasonal shortages,” said Anne Nolin, an OSU professor of environmental sciences and principal investigator on the study. “That should continue into 2100, despite much warmer temperatures, more people and a substantial loss of snowpack.

“The reason for optimism is the region’s 11 storage reservoirs coordinated by the Army Corps of Engineers that act as a valve for seasonal differences and preserve water for times of need,” Nolin added. “Without them, the picture would look quite a bit different.”

Analysis of global circulation models suggest that the Willamette River basin will warm between two and 13 degrees (Fahrenheit) by the year 2100, thus scientists used three separate scenarios to look at potential impacts based on low, medium and high rates of temperature increase. These temperature increases will result in a dramatic decline in snowpack – from 63 to 95 percent lower than average – changing seasonal water flow patterns.

Scientists also explored results from a range of population, economic and policy scenarios that allowed them to ask “what if?” questions for different human changes and interactions with climate changes. Much of the climate modeling for the project was developed through a regional integrated sciences and assessments (RISA) program at Oregon State, which is funded by NOAA and led by OSU Professor Philip Mote.

There is little doubt that temperatures will increase, the report notes, but there is less certainty about the impact of a changing climate on precipitation. Winters may actually be slightly wetter, though more of the precipitation will fall as rain instead of snow. Summers should be drier, necessitating more reliance on water held behind the region’s 11 storage reservoirs.

“Although there are a number of government entities – federal and state – involved in regulating water use from those reservoirs, there appears to be enough flexibility in the system to adequately adapt for changing conditions in the future,” said Nolin, a professor in OSU’s College of Earth, Ocean, and Atmospheric Sciences.

The report notes that warmer temperatures, less snowpack and drier summers will greatly increase the danger of wildfire in the mountains feeding the Willamette River basin – by about 200 to 900 percent. Their simulations show that fire will open up lands to new forest types and reduce the availability of forestland for timber harvest.

Increasing urban use of water from a population that could double will involve costly expansions in infrastructure. As the population grows, more agricultural land near urban areas will be developed for housing and other needs, according to Samuel Chan, a watershed health specialist with Oregon Sea Grant and the broader impacts outreach lead for the Willamette Water 2100 Project.

However, the report shows that in some cases where urban areas are expanding into what are now irrigated farmlands, these locations may see a net decline in water use.

“The report notes the difference between water ‘diversions’ and water ‘consumptive use,’” Chan noted. “As the population grows, the need for water will increase, but much of it will be used, and then treated in wastewater plants and returned to the system. Other uses, like forests and agriculture, consume the water through evaporation and transpiration to the atmosphere.”

“The downside, though, is that treated water that is returned to the river is often warmer, increasing the impact on cold-water fish species,” he added.

The main drivers for changing water needs, the report concludes, are climate change, and growth in population and income.

“The dams built above the Willamette Valley were engineered for reducing the risk of floods, but they also do a valuable job in storing water for use during summer,” Nolin said. “They can store large amounts of water in the summer, when they are not kept empty for flood prevention and there is existing flexibility in water allocation policies that could help western Oregon adapt to a climate that may be quite different in the future.”

“Unlike many parts of the country, those of us who live in the Willamette Valley are lucky because we have abundant water for human use, and we have institutional capacity to help mitigate water scarcity,” she added. “However, the biggest negative impacts are likely to be for native cold-water fish and we will likely be facing a significant challenge in managing stream temperature for fish.”

Media Contact: 
Source: 

Anne Nolin, 541-737-8051, nolina@geo.oregonstate.edu;

Sam Chan, (cell: 503-679-4828), Samuel.chan@oregonstate.edu

Blue whales use efficient foraging to maintain massive body size

CORVALLIS, Ore. – As the largest animals to have ever lived on Earth, blue whales maintain their enormous body size through efficient foraging strategies that optimize the energy they gain from the krill they eat, while also conserving oxygen when diving and holding their breath, a new study has found.

Large, filter-feeding whales have long been thought of as indiscriminate grazers that gradually consume copious amounts of tiny krill throughout the day – regardless of how prey is distributed in the ocean. But tagged blue whales in the new study revealed sophisticated foraging behavior that targets the densest, highest-quality prey, maximizing their energy gain.

Understanding blue whale feeding behavior will help inform protections for the endangered species and its recovery needs, the scientists say. The study, by researchers from NOAA Fisheries, Oregon State University and Stanford University, was published this week in Science Advances.

“For blue whales, one of our main questions has been: How do they eat efficiently to support that massive body size,” said Elliott Hazen, a research ecologist with NOAA Fisheries’ Southwest Fisheries Science Center and lead author of the research. “Now we know that optimizing their feeding behavior is another specialization that makes the most of the food available.”

Adult blue whales can grow to the length of a basketball court and weigh as much as 25 large elephants combined, but they operate on an “energetic knife-edge,” the researchers point out.  They feed through the extreme mechanism of engulfing as much prey-laden water as they weigh and then filtering out the tiny krill it contains.

But feeding expends tremendous amounts of energy and the dense krill patches they need to replenish that energy are often deep and difficult to find.

In their study, the researchers compared the foraging of 14 tagged blue whales to 41 previously tagged blue whales off the coast of California, combining the data with acoustic surveys that measured the density of their sole prey, krill – tiny (less than one inch) crustaceans found throughout the world’s oceans.

The researchers found that when the krill were spread out, or less dense, blue whales fed infrequently to conserve their oxygen and energy use for future dives. When krill density increased, they began “lunge-feeding” more frequently, consuming more per dive to obtain as much energy from the krill as possible.

“Blue whales don’t live in a world of excess and the decisions these animals make are critical to their survival,” said Ari Friedlaender, a principal investigator with the Marine Mammal Institute at Oregon State University’s Hatfield Marine Science Center and co-author on the study. “If you stick your hand into a full bag of pretzels, you’re likely to grab more than if you put your hand into a bag that only had a few pretzels.”

The feeding pattern that focuses more effort on the densest krill patches provides a new example of blue whale foraging specializations that support the animals’ tremendous size.

This kind of lunge-feeding takes a lot more effort, but “the increase in the amount of energy they get from increased krill consumption more than makes up for it,” noted Jeremy Goldbogen, a marine biologist from Stanford University and co-author on the study.

“Lunge-feeding is a unique form of ‘ram-feeding’ that involves acceleration to high speed and the engulfment of large volumes of prey-laden water, which they filter,” Goldbogen noted. “But we now know they don’t take in that water indiscriminately. They have a strategy that aims to focus feeding effort on the densest, highest-quality krill patches.”

In their study, the researchers found a threshold for krill that determined how intensively the blue whales fed.

“The magic number for krill seems to be about 100 to 200 individuals in a cubic meter of water,” Hazen said. “If it’s below that range, blue whales use a strategy to conserve oxygen and feed less frequently. If it’s above that, they’ll feed at very high rates and invest more effort.”

The researchers say this insight into blue whale feeding will help determine how best to protect the species, which is listed as endangered by the International Union for Conservation of Nature.

“If they are disturbed during the intense, deep-water feeding, it may not have consequences today, or this week, but it could over a period of months,” Friedlaender said. “There can be impacts on their overall health, as well as on their fitness and viability for reproduction.”

The study was funded by the U.S. Office of Naval Research.

Media Contact: 
Source: 

Ari Friedlaender, 919-672-0103

Multimedia Downloads
Multimedia: 

ariwhale


Tagging whale


whaletail
Blue whale

Impacts of El Niño, La Niña on Pacific Ocean communities, beaches could expand in 21st century

CORVALLIS, Ore. – A coastal hazards analysis of 48 Pacific Ocean beaches in three continents, using data from 1979 to 2012, found the biggest factor influencing communities and beaches in all regions was the impact of El Niño and La Niña events.

The study also found their influence had alternate impacts in different parts of the Pacific basin. When one side of the Pacific experienced extreme coastal erosion and flooding because of El Niño the other side often experienced these hazards during La Niña. Some climate projections suggest that these events may occur more frequently in the 21st century, meaning that populated regions could experience more severe flooding or erosion.

Results of the study, which was funded by a variety of organizations, are being published this week in Nature Geoscience.

“There are many factors that can influence coastal vulnerability yet many future projections of coastal hazards focus only on sea level rise and  neglect the influence of seasonal water level anomalies, storm surges, wave-driven processes and other factors,” said Peter Ruggiero, an Oregon State University coastal hazards expert and co-author on the study.

“We knew that climate cycles play a major role in what happens to our coastlines, but the fact that El Niño and La Niña significantly affect coastal hazards throughout the Pacific in a fairly coherent manner was a bit of a surprise,” added Ruggiero, who is an associate professor of geology and geophysics in OSU’s College of Earth, Ocean and Atmospheric Sciences.

The analysis also confirmed what scientists had suspected – the most dominant impacts on beaches and communities through climate cycles takes place in the boreal (northern) winter. Some projections suggest that the worst-case scenarios for sea level rise could displace up to 187 million people by the end of the 21st century, with flood losses exceeding $1 trillion (in U.S. dollars) for the world’s major coastal cities.

More frequent, and potentially more severe, El Niño and La Niña events could worsen the situation.

The researchers also looked specifically at the Pacific Northwest of the United States, which experiences extreme water level anomalies during major El Niño events – on the order of tens of centimeters, and changes in both wave height and direction. Storms reaching the coast from more steep southern approach angles cause significant “hotspots” of erosion, Ruggiero pointed out.

“The El Niño winters of 1982-83 and 1997-98 resulted in the most extreme coastal flooding and erosion hazards along the Oregon and Washington coast in recent decades – oftentimes taking many years to recovery, if at all,” the authors wrote in their analysis.

In 2013, Ruggiero led a study of Pacific Northwest beaches that found Washington’s beaches, on average, were more stable than those in Oregon, which had experienced an increase in erosion hazards in recent decades. His study found that since the 1960s, 13 of the 17 Oregon beach “littoral cells” – stretches of beach between rocky headlands and major inlets – have either experienced an increase in erosion, or less of a buildup in sand during beach-building months.

Some of the hardest hit areas along the coast include the Neskowin littoral cell between Cascade Head and Pacific City, and the Beverly Beach littoral cell between Yaquina Head and Otter Rock, where shoreline change rates have averaged more than one meter of erosion a year since the 1960s.

“We’re in the midst of a strengthening El Niño right now,” Ruggiero said, “and we already seeing some significant water level anomalies through tide gauge readings. Some people project that this 2015-16 El Niño could match those significant events of 1982-83 and 1997-98.

“If we get significant storms this winter during times of elevated water levels, the region could experience erosion and hazards not seen in some years.”

 


Media Contact: 
Source: 

Peter Ruggiero, 541-737-1239; ruggierp@science.oregonstate.edu

Multimedia Downloads
Multimedia: 

 

 

 

 

Erosion at the central Oregon coast.

OSU names Haggerty interim dean of college

CORVALLIS, Ore. – Roy Haggerty, the Hollis M. Dole Professor of Environmental Geology at Oregon State University, has been named interim dean of OSU’s College of Earth, Ocean, and Atmospheric Sciences.

He succeeds Mark Abbott, who earlier this summer accepted a position as president and director of Woods Hole Oceanographic Institution, effective Oct. 1. Oregon State will launch a national search for a new dean in September, according to Sabah Randhawa, OSU provost and executive vice president.

“I am delighted that Roy has agreed to serve as interim dean,” Randhawa said. “He is known as a leader with integrity and as a bridge builder, and his candidacy generated a great sense of enthusiasm across the College of Earth, Ocean, and Atmospheric Sciences.”

Haggerty has been on the OSU faculty since 1996 and served as head of the geology program from 2003-06 in the Department of Geosciences, before it was merged with the College of Oceanic and Atmospheric Sciences. With more than 100 faculty members and nearly a thousand graduate and undergraduate students the College of Earth, Ocean, and Atmospheric Sciences is one of the largest and strongest programs of its kind in North America.

An expert in hydrology, Haggerty’s research has addressed transport of nutrients, carbon and heat in streams, nuclear waste disposal issues in the United States and Sweden, and other forms of groundwater contamination.

In his two decades at OSU, his work has been supported by more than $9 million in grants and contracts from the National Science Foundation, the Department of Energy, the U.S. Environmental Protection Agency, the U.S.D.A. Forest Service and other organizations. He has taught at all levels, from introductory earth sciences to advanced classes in hydrology.

He is the principal investigator for the Willamette Water 2100 project, sponsored by the NSF, and involving 20 faculty members at OSU, University of Oregon, Portland State University and the University of California, Santa Barbara. The project seeks to understand how climate change, population growth and human activity may affect water scarcity in the Willamette Basin throughout the 21st century.

Haggerty is a graduate of the University of Alberta and has master’s and doctoral degrees in hydrogeology from Stanford University.

Media Contact: 
Source: 

Sabah Randhawa, 541-737-2111, Sabah.Randhawa@oregonstate.edu;

Roy Haggerty, 541-737-1210, roy.haggerty@oregonstate.edu

Multimedia Downloads
Multimedia: 

 

haggerty

    Interim dean Roy Haggerty

Survey: Oyster industry more sold on ocean acidification impacts than public

CORVALLIS, Ore. – Although some people in the general public remain skeptical about the impacts of ocean acidification, a growing number of professionals who make their living off the ocean have become believers.

A newly published survey found that more than 80 percent of respondents from the United States shellfish industry on the West Coast are convinced that acidification is having consequences – a figure more than four times higher than that of public perception, researchers say. About half of the people in the industry report having already experienced some impact from acidification.

Results of the study, led by researchers at Oregon State University, are being published this week in the Journal of Shellfish Research. It was funded by Oregon Sea Grant.

“The shellfish industry recognizes the consequences of ocean acidification for people today, people in this lifetime, and for future generations – to a far greater extent than the U.S. public,” said Rebecca Mabardy, a former OSU graduate student and lead author on the study. “The good news is that more than half of the respondents expressed optimism – at least, guarded optimism – for the industry’s ability to adapt to acidification.”

The mechanisms causing ocean acidification are complex and few in the shellfish industry initially understood the science behind the issue, noted George Waldbusser, an OSU marine ecologist who has worked with Northwest oyster growers on mitigating the effects of ocean acidification. However, he added, many have developed a rather sophisticated understanding of the basic concepts of carbon dioxide impacts on the ocean and understand the risks to their enterprise.

“Many have seen the negative effects of acidified water on the survival of their juvenile oysters – and those who have experienced a direct impact obviously have a higher degree of concern about the issue,” Waldbusser pointed out. “Others are anticipating the effects of acidification and want to know just what will happen, and how long the impacts may last.”

“Because of some of the success we’ve had in helping some hatcheries adapt to changing conditions, there is a degree of optimism that the industry can adapt,” added Waldbusser, who was Mabardy’s mentor in the College of Earth, Ocean, and Atmospheric Sciences at OSU.

Waldbusser’s colleague Burke Hales has worked with the Whiskey Creek Shellfish Hatchery and others to create a chemical monitoring and treatment regimen for seawater. Waldbusser’s research has shown there is a fine line in how quickly larval oysters must develop their shell at a stage when they are most vulnerable to the corrosiveness of acidified water.

Shellfish industry leaders were asked who should take the lead in responding to the challenges of acidification and their strong preference was the shellfish industry itself, followed by academic researchers. A majority said that any governmental regulations should be led by federal agencies, followed by the state and then local government.

“As a whole, the industry felt that they should be working closely with the academic community on acidification issues,” Waldbusser said. “In the spirit of full disclosure, there were some people who reported a distrust of academics – though without any specifics – so we clearly have some work to do to establish credibility with that subset of the industry.”

Among the other findings:

  • Of those respondents who said they have been affected by ocean acidification, 97 percent reported financial damage, while 68 percent cited emotional stress.
  • The level of concern reported by industry was: 36 percent, extremely concerned; 39 percent, very concerned; 20 percent, somewhat concerned; 4 percent, not too concerned; and 1 percent, not at all concerned.
  • Most respondents felt that ocean acidification was happening globally (85 percent), along the U.S. West Coast (86 percent), and in their local estuary (84 percent).

“One thing that came out of this survey is that we learned that not only is the shellfish industry experiencing and acknowledging ocean acidification,” Mabardy said, “they are committed to learning about the issue and its implications for their business. They want to share their insights as they are forced into action.”

“The next step is to continue shifting conversations about ocean acidification from acknowledgement of the problem, toward solution-oriented strategies,” she added.

Since graduating from OSU, Mabardy has worked at Taylor Creek Shellfish Hatchery in Washington and is now beginning a position as the outreach and project coordinator for the Pacific Coast Shellfish Growers Association.

Media Contact: 
Source: 

George Waldbusser, 541-737-8964, waldbuss@coas.oregonstate.edu;

Becky Mabardy, beckymabardy@gmail.com

Multimedia Downloads
Multimedia: 

 

 

 

George Waldbusser (near) and Burke Hales of OSU work with the oyster industry on acidification monitoring and mitigation. Photo link: https://flic.kr/p/xn83LK

 

 

 

 

 

 

 

IMG_9452

George Waldbusser (left) and Burke Hales.

 

IMG_9455

Industry leaders are concerned about the impact of ocean acidification on oysters.

Greenhouse gases caused glacial retreat during last Ice Age

CORVALLIS, Ore. – A recalculation of the dates at which boulders were uncovered by melting glaciers at the end of the last Ice Age has conclusively shown that the glacial retreat was due to rising levels of carbon dioxide and other greenhouse gases, as opposed to other types of forces.

Carbon dioxide levels are now significantly higher than they were at that time, as a result of the Industrial Revolution and other human activities since then. Because of that, the study confirms predictions of future glacial retreat, and that most of the world’s glaciers may disappear in the next few centuries.

The findings were published today in Nature Communications by researchers from Oregon State University, Boston College and other institutions. They erase some of the uncertainties about glacial melting that had been due to a misinterpretation of data from some of these boulders, which were exposed to the atmosphere more than 11,500 years ago.

“This shows that at the end of the last Ice Age, it was only the increase in carbon dioxide and other greenhouse gases that could have caused the loss of glaciers around the world at the same time,” said Peter Clark, a professor in the OSU College of Earth, Ocean and Atmospheric Sciences, and co-author on the study.

“This study validates predictions that future glacial loss will occur due to the ongoing increase in greenhouse gas levels from human activities,” Clark said. “We could lose 80-90 percent of the world’s glaciers in the next several centuries if greenhouse gases continue to rise at the current rate.”

Glacial loss in the future will contribute to rising sea levels and, in some cases, have impacts on local water supplies.

As the last Ice Age ended during a period of about 7,000 years, starting around 19,000 years ago, the levels of carbon dioxide in the atmosphere increased from 180 parts per million to 280 parts per million. But just in the past 150 years, they have surged from 280 to about 400 parts per million, far higher than what was required to put an end to the last Ice Age.

The new findings, Clark said, were based on a recalculation of the ages at which more than 1,100 glacial boulders from 159 glacial moraines around the world were exposed to the atmosphere after being buried for thousands of years under ice.

The exposure of the boulders to cosmic rays produced cosmogenic nuclides, which had been previously measured and used to date the event. But advances have been made in how to calibrate ages based on that data. Based on the new calculations, the rise in carbon dioxide levels - determined from ancient ice cores -matches up nicely with the time at which glacial retreat took place.

“There had been a long-standing mystery about why these boulders were uncovered at the time they were, because it didn’t properly match the increase in greenhouse gases,” said Jeremy Shakun, a professor at Boston College and lead author on the study. “We found that the previous ages assigned to this event were inaccurate. The data now show that as soon as the greenhouse gas levels began to rise, the glaciers began to melt and retreat.”

There are other forces that can also cause glacial melting on a local or regional scale, the researchers noted, such as changes in the Earth’s orbit around the sun, or shifts in ocean heat distribution. These factors probably did have localized effects. But the scientists determined that only the change in greenhouse gas levels could have explained the broader global retreat of glaciers all at the same time.

In the study of climate change, glaciers have always been of considerable interest, because their long-term behavior is a more reliable barometer that helps sort out the ups-and-downs caused by year-to-year weather variability, including short-term shifts in temperature and precipitation.

Other collaborators on this research were from the University of Wisconsin, Purdue University, and the National Center for Atmospheric Research. The work was supported by the National Oceanic and Atmospheric Administration and the National Science Foundation.

Media Contact: 
Source: 

Peter Clark, 541-737-1247

Multimedia Downloads
Multimedia: 

Moraine

Alpine moraine


Exit Glacier
Glacial melting