OREGON STATE UNIVERSITY

college of earth

Concern grows over pet pills and products, as well as those of owners

CORVALLIS, Ore. – Scientists have long been aware of the potential environment impacts that stem from the use and disposal of the array of products people use to keep themselves healthy, clean and smelling nice.

Now a new concern is emerging – improper disposal of pet care products and pills.

Dog shampoos, heartworm medicine, flea and tick sprays, and a plethora of prescription and over-the-counter medicines increasingly are finding their way into landfills and waterways, where they can threaten the health of local watersheds. An estimated 68 percent of American households have at least one pet, illustrating the potential scope of the problem.

How bad is that problem? No one really knows, according to Sam Chan, a watershed health expert with the Oregon Sea Grant program at Oregon State University.

But Chan and his colleagues aim to find out. They are launching a national survey (online at: http://tinyurl.com/PetWellbeingandEnvironment)  of both pet owners and veterinary care professionals to determine how aware that educated pet owners are of the issue, what is being communicated, and how they dispose of  “pharmaceutical and personal care products” (PPCPs) for both themselves and their pets. Pet owners are encouraged to participate in the survey.

“You can count on one hand the number of studies that have been done on what people actively do with the disposal of these products,” Chan said. “PPCPs are used by almost everyone and most wastewater treatment plants are not able to completely deactivate many of the compounds they include.”

Increasingly, Chan said, a suite of PPCPs used by pets and people are being detected at low levels in surface water and groundwater. Examples include anti-inflammatory medicines such as ibuprofen, antidepressants, antibiotics, estrogens, the insect repellent DEET, and ultraviolet (UV) sunblock compounds.

Some of the impacts from exposure to these products are becoming apparent. Fish exposed to levels of antidepressants at concentrations lower than sewage effluence, for example, have been shown to become more active and bold – making them more susceptible to predation, noted Chan, an OSU Extension Sea Grant specialist.

“Triclosan is another concern; it is a common anti-microbial ingredient in soaps, toothpaste, cosmetics, clothing, cookware, furniture and toys to prevent or reduce bacterial contamination for humans and pets,” Chan said. “It is being linked to antibiotic resistance in riparian zones, as well as to alterations in mammal hormone regulation – endocrine disruptor – and impacts on immune systems.”

Another common endocrine disruptor, the researchers say, is coal tar, a common ingredient in dandruff shampoo for humans, and pet medicines for skin treatment.

Jennifer Lam conducted a preliminary survey of veterinary practitioners as part of her master’s thesis at Oregon State University and found awareness by veterinary professionals of the environmental issues caused by improper disposal of PPCPs was high. Yet many did not share that information with their clients.

In fact, veterinarians only discussed best practices for disposal with their clients 18 percent of the time, her survey found.

“The awareness is there, but so are barriers,” Lam said. “Communicating about these issues in addition to care instructions takes time. There may be a lack of educational resources – or a lack of awareness on their availability. And some may not think of it during the consultation process.”

The National Sea Grant program recently partnered with the American Veterinary Medicine Association to promote the reduction of improper PPCP disposal. The national survey is a first step in that process.

“Most people tend to throw extra pills or personal care products into the garbage and in fewer instances, flush them down the drain,” Chan said. “It seems like the right thing to do, but is not the most environmentally friendly method for disposing unused or expired PPCPs. Waste in landfills produce leachates and these contaminates may not be fully deactivated by current wastewater treatments. They can get into groundwater and streams, where they can cause a variety of environmental problems and create a health risk as well.”

When disposing of expired or unneeded medications, the researchers say, don’t flush them. Instead, take to them to a drug take-back event or depository. New rules to be implemented by the U.S. Drug Enforcement Agency (DEA) later this fall will make drug take-back options more available.

Chan and Lam suggest that in areas where take-back options are not available, people should mix unused or unwanted drugs with coffee grounds or kitty litter – something that will be unpalatable to pets. Then put the mixture in a sealed container and deposit it in the trash.

Results from the national survey led by Oregon Sea Grant will provide much-needed information to guide education, watershed monitoring and improvements on ways to reduce PPCP contamination and their environmental impacts.

The survey will continue until Nov. 1.

Media Contact: 
Source: 

Sam Chan, 503-679-4828, sam.chan@oregonstate.edu;

Jennifer Lam, lamj@onid.oregonstate.edu

OSU part of major grant to study Southern Ocean carbon cycle

CORVALLIS, Ore. – A new six-year, $21 million initiative funded by the National Science Foundation will explore the role of carbon and heat exchanges in the vast Southern Ocean – and their potential impacts on climate change.

The Southern Ocean Carbon and Climate Observations and Modeling program will be headquartered at Princeton University, and include researchers at several institutions, including Oregon State University. It is funded by NSF’s Division of Polar Programs, with additional support from the National Oceanic and Atmospheric Administration and NASA.

The Southern Ocean acts as a carbon “sink” by absorbing as much as half of the human-derived carbon in the atmosphere and much of the planet’s excess heat. Yet little is known of this huge body of water that accounts for 30 percent of the world’s ocean area.

Under this new program known by the acronym SOCCOM, Princeton and 10 partner institutions will create a physical and biogeochemical portrait of the ocean using hundreds of robotic floats deployed around Antarctica. The floats, which will be deployed over the next five years, will collect seawater profiles using sophisticated sensors to measure pH, oxygen and nitrate levels, temperature and salinity – from the ocean surface to a depth of 1,000 meters, according to Laurie Juranek, an Oregon State University oceanographer and project scientist.

“This will be the first combined large-scale observational and modeling program of the entire Southern Ocean,” said Juranek, who is in OSU’s College of Earth, Ocean, and Atmospheric Sciences. “It is a very important region, but difficult to access – hence the use of robotic floats to collect data. However, not everything that we need to know can be measured by sensors, so we’ll need to get creative.”

Juranek's role in this project is to develop relationships between the measured variables and those that can't be measured directly by a sensor but are needed for understanding Southern Ocean carbon dioxide exchanges. These relationships can be applied to the float data as well as to high-resolution models. To do this work she is partnering with colleagues at NOAA's Pacific Marine Environmental Laboratory.

In addition to its role in absorbing carbon and heat, the Southern Ocean delivers nutrients to lower-latitude surface waters that are critical to ocean ecosystems around the world, said program director Jorge Sarmiento, Princeton's George J. Magee Professor of Geoscience and Geological Engineering and director of the Program in Atmospheric and Oceanic Sciences. And as levels of carbon dioxide increase in the atmosphere, models suggest that the impacts of ocean acidification are projected to be most severe in the Southern Ocean, he added.

"The scarcity of observations in the Southern Ocean and inadequacy of earlier models, combined with its importance to the Earth's carbon and climate systems, means there is tremendous potential for groundbreaking research in this region," Sarmiento said.

Media Contact: 
Source: 

Laurie Juranek, 541-737-2368; ljuranek@coas.oregonstate.edu

Study resolves discrepancy in Greenland temperatures during end of last ice age

CORVALLIS, Ore. – A new study of three ice cores from Greenland documents the warming of the large ice sheet at the end of the last ice age – resolving a long-standing paradox over when that warming occurred.

Large ice sheets covered North America and northern Europe some 20,000 years ago during the coldest part of the ice age, when global average temperatures were about four degrees Celsius (or seven degrees Fahrenheit) colder than during pre-industrial times. And then changes in the Earth’s orbit around the sun increased the solar energy reaching Greenland. Beginning some 18,000 years ago, release of carbon from the deep ocean led to a graduate rise in atmospheric carbon dioxide (CO2).

Yet past analysis of ice cores from Greenland did not show any warming response as would be expected from an increase in CO2 and solar energy flux, the researchers note.

In this new study, funded by the National Science Foundation and published this week in the journal Science, scientists reconstructed air temperatures by examining ratios of nitrogen isotopes in air trapped within the ice instead of isotopes in the ice itself, which had been used in past studies.

Not only did the new analysis detect significant warming in response to increasing atmospheric CO2, it documents a warming trend at a rate closely matching what climate change models predict should have happened as the Earth shifted out of its ice age, according to lead author Christo Buizert, a postdoctoral researcher at Oregon State University and lead author on the Science article.

“The Greenland isotope records from the ice itself suggest that temperatures 12,000 years ago during the so-called Younger Dryas period near the end of the ice age were virtually the same in Greenland as they were 18,000 years ago when much of the northern hemisphere was still covered in ice,” Buizert said. “That never made much sense because between 18,000 and 12,000 years ago atmospheric CO2 levels rose quite a bit.”

“But when you reconstruct the temperature history using nitrogen isotope ratios as a proxy for temperature, you get a much different picture,” Buizert pointed out. “The nitrogen-based temperature record shows that by 12,000 years ago, Greenland temperatures had already warmed by about five degrees (Celsius), very close to what climate models predict should have happened, given the conditions.”

Reconstructing temperatures by using water isotopes provides useful information about when temperatures shift but can be difficult to calibrate because of changes in the water cycle, according to Edward Brook, an Oregon State paleoclimatologist and co-author on the Science study.

“The water isotopes are delivered in Greenland through snowfall and during an ice age, snowfall patterns change,” Brook noted. “It may be that the presence of the giant ice sheet made snow more likely to fall in the summer instead of winter, which can account for the warmer-than-expected temperatures because the snow records the temperature at the time it fell.”

In addition to the gradual warming of five degrees (C) over a 6,000-year period beginning 18,000 years ago the study investigated two periods of abrupt warming and one period of abrupt cooling documented in the new ice cores. The researchers say their leading hypothesis is that all three episodes are tied to changes in the Atlantic meridional overturning circulation (AMOC), which brings warm water from the tropics into the high northern latitudes.

The first episode caused a jump in Greenland’s air temperatures of 10-15 degrees (C) in just a few decades beginning about 14,700 years ago. An apparent shutdown of the AMOC about 12,800 years ago caused an abrupt cooling of some 5-9 degrees (C), also over a matter of decades.

When the AMOC was reinvigorated again about 11,600 years ago, it caused a jump in temperatures of 8-, 11 degrees (C), which heralded the end of the ice age and the beginning of the climatically warm and stable Holocene period, which allowed human civilization to develop.

“For these extremely abrupt transitions, our data show a clear fingerprint of AMOC variations, which had not yet been established in the ice core studies,” noted Buizert, who is in OSU’s College of Earth, Ocean, and Atmospheric Sciences.  “Other evidence for AMOC changes exists in the marine sediment record and our work confirms those findings.”

In their study, the scientists examined three ice cores from Greenland and looked at the gases trapped inside the ice for changes in the isotopic ration of nitrogen, which is very sensitive to temperature change. They found that temperatures in northwest Greenland did not change nearly as much as those in southeastern Greenland – closest to the North Atlantic – clearly suggesting the influence of the AMOC.

“The last deglaciation is a natural example of global warming and climate change,” Buizert said. “It is very important to study this period because it can help us better understand the climate system and how sensitive the surface temperature is to atmospheric CO2.”

“The warming that we observed in Greenland at the end of the ice age had already been predicted correctly by climate models several years ago,” Buizert added. “This gives us more confidence that these models also predict future temperatures correctly.”

Media Contact: 
Source: 

Christo Buizert, 541-737-1209

Multimedia Downloads
Multimedia: 

Notre Patrimoine Polaire***Our Polar Heritage
Ice core study


Notre Patrimoine Polaire***Our Polar Heritage

Hauling cores

Ice Age records

Climate forces

Study: Pacific Northwest shows warming trend over past century-plus

CORVALLIS, Ore. – The annual mean temperature in the Pacific Northwest has warmed by about 1.3 degrees Fahrenheit since the early 20th century – a gradual warming trend that has been accelerating over the past 3-4 decades and is attributed to anthropogenic, or human, causes.

The study is one of the first to isolate the role of greenhouse gases associated with regional warming, the authors say. It was published in a recent issue of the Journal of Climate, a publication of the American Meteorological Society.

“The amount of warming may not sound like a lot to the casual observer, but we already are starting to see some of the impacts and what is particularly significant is that the rate of warming is increasing,” said Philip Mote, director of the Oregon Climate Change Research Institute at Oregon State University and a co-author on the study.

“Just a 1.3-degree increase has lengthened the ‘freeze-free’ season by 2-3 weeks and is equivalent to moving the snowline 600 feet up the mountain,” Mote added. “At the rate the temperature is increasing, the next 1.3-degree bump will happen much more quickly.”

In their study, the researchers looked at temperatures and precipitation from 1901 to 2012 in the Northwest, which includes Washington, Oregon, Idaho, western Montana, and the northwestern tip of Wyoming. They examined four different factors to determine the influence of human activities, including greenhouse gases and aerosols; solar cycles; volcanic eruptions; and naturally occurring phenomena including El Niño events and the Pacific Decadal Oscillation.

Using what is called a “multilinear regression” approach, they were able to tease out the influences of the different factors. Volcanic activity, for example, led to cooler temperatures in 1961, 1982 and 1991. Likewise, El Niño events led to warming in numerous years.

“Natural variation can explain much of the change from year to year, but it cannot account for this long-term warming trend,” noted David Rupp, a research associate with the Oregon Climate Change Research Institute and co-author on the report. “Anthropogenic forcing was the most significant predictor of, and leading contributor to, the warming.”

Among the study’s findings:

  • The Northwest experienced relatively cool periods from 1910-25 and from 1945-60, and a warm period around 1940 and from the mid-1980s until the present.
  • The warmest 10-year period has been from 1998 to 2007, and very few years since 1980 have had below average annual mean temperatures.
  • The most apparent warming trend is in the coldest night of the year, which has warmed significantly in recent decades.
  • The only cooling trend the study documented was for spring temperatures the last three decades and is tied to climate variability and increasing precipitation during those spring months.

“The spring has been robustly wetter,” Mote said, “and that has brought some cooler temperatures for a couple of months. But it has been drier in the fall and winter, and the warming in fall and winter has been steepest since the 1970s.”

Lead author John Abatzoglou of the University of Idaho said that the study ties the warming trend to human activities.

“Climate is a bit like a symphony where different factors like El Niño, solar variability, volcanic eruptions and manmade greenhouse emissions all represent different instruments,” Abatzoglou said. “At regional scales like in the Northwest, years or decades can be dominated by natural climate variability, thereby muffling or compounding the tones of human-induced warming.

“Once you silence the influence of natural factors,” he said, “the signal of warming due to human causes is clear – and it is only getting louder.”

The researchers also explored but were unable to find any link between warming in the Northwest over the past century and solar variability.

A major concern, the authors say, is that the warming seems to be increasing.

“Climate is complex and you can get significant variations from year to year,” Mote said. “You have to step back and look at the big picture of what is happening over time. Clearly the Northwest, like much of the world, is experiencing a warming pattern that isn’t likely to change and, in fact, is accelerating.

“At this rate, the chance of the temperature only going up 1.3 degrees in the next century is close to zero.”

The study was funded by the U.S. Department of Agriculture and the National Oceanic and Atmospheric Administration.

Media Contact: 
Source: 

Phil Mote, 541-913-2274, philip.mote@coas.oregonstate.edu

David Rupp, 541-737-5222, David.Rupp@oregonstate.edu

John Abatzoglou, jabatzoglous@uidaho.edu, 208-885-6239

Study provides new look at ancient coastline, pathway for early Americans

CORVALLIS, Ore. – The first humans who ventured into North America crossed a land bridge from Asia that is now submerged beneath the Bering Sea, and then may have traveled down the West Coast to occupy sites in Oregon and elsewhere as long as 14,000 to 15,000 years ago.

Now a new study has found that the West Coast of North America may have looked vastly different than scientists previously thought, which has implications for understanding how these early Americans made this trek.

The key to this new look at the West Coast landscape is a fresh approach to the region’s sea level history over the last several thousand years. Following the peak of the last ice age about 21,000 years ago, the large continental ice sheets began to retreat, causing sea levels to rise by an average of about 430 feet. When the ice was prominent and sea levels were lower, large expanses of the continental shelf that today are submerged were then exposed.

As the melting progressed and sea levels rose, likely archaeological sites along the coast were submerged.

Most past models have assumed that as the massive North American ice sheets melted, global sea levels rose in concert – a phenomenon known as “the bathtub model.” But the authors of this new study, which was just published in the Journal of Archaeological Science, say sea level rise does not happen uniformly.

“During the last deglaciation, sea level rise was significantly influenced by the weight of the large ice sheets, which depressed the land under and near the ice sheets,” said Jorie Clark, a courtesy professor at Oregon State University and lead author on the study. “As the ice sheets melted, this land began to rise. At the same time, the weight of the water melting from the ice sheets and returning to the oceans also depressed the ocean basins.

“This exchange of mass between ice sheets and oceans led to significant differences in sea level at any given location from the assumption of a uniform change,” she added.

The implications of this new approach are significant. The researchers ran models of what the sea level may have looked like over the last 20,000 years – based on knowledge of ice sheet dimensions and the topography of the ocean floor – and concluded that parts of the West Coast looked radically different than previous reconstructions based on a model of uniform sea level rise.

The central Oregon shelf, for example, was thought to be characterized by a series of small islands some 14,000 years ago. However, the models run by Clark and her colleagues suggest that much of the continental shelf was exposed as a solid land mass, creating an extensive coastline. In some areas, the change in estimated sea level may have been as much as 100 feet.

 “There has been new evidence that the peopling of the Americas happened earlier than was long thought to be the case, which has put a lot of focus on coastal paleogeography,” said Clark, who is in OSU’s College of Earth, Ocean, and Atmospheric Sciences. “This new look at sea level changes helps explain how that earlier introduction into the Americas could be possible.”

 “It is also important for predicting where coastal villages that are now submerged on the continental shelf may be located.”

 Other authors on the study were Jerry Mitrovica of Harvard University, and Jay Alder of the U.S. Geological Survey.

Media Contact: 
Source: 

Jorie Clark, 541-737-1575; clarkjc@geo.oregonstate.edu

Science study: Sunlight, not microbes, key to CO2 in Arctic

CORVALLIS, Ore. – The vast reservoir of carbon stored in Arctic permafrost is gradually being converted to carbon dioxide (CO2) after entering the freshwater system in a process thought to be controlled largely by microbial activity.

However, a new study – funded by the National Science Foundation and published this week in the journal Science – concludes that sunlight and not bacteria is the key to triggering the production of CO2 from material released by Arctic soils.

The finding is particularly important, scientists say, because climate change could affect when and how permafrost is thawed, which begins the process of converting the organic carbon into CO2.

“Arctic permafrost contains about half of all the organic carbon trapped in soil on the entire Earth – and equals an amount twice of that in the atmosphere,” said Byron Crump, an Oregon State University microbial ecologist and co-author on the Science study. “This represents a major change in thinking about how the carbon cycle works in the Arctic.”

Converting soil carbon to carbon dioxide is a two-step process, notes Rose Cory, an assistant professor of earth and environmental sciences at the University of Michigan, and lead author on the study. First, the permafrost soil has to thaw and then bacteria must turn the carbon into greenhouse gases – carbon dioxide or methane. While much of this conversion process takes place in the soil, a large amount of carbon is washed out of the soils and into rivers and lakes, she said.

“It turns out, that in Arctic rivers and lakes, sunlight is faster than bacteria at turning organic carbon into CO2,” Cory said. “This new understanding is really critical because if we want to get the right answer about how the warming Arctic may feedback to influence the rest of the world, we have to understand the controls on carbon cycling.

“In other words, if we only consider what the bacteria are doing, we’ll get the wrong answer about how much CO2 may eventually be released from Arctic soils,” Cory added.

The research team measured the speed at which both bacteria and sunlight converted dissolved organic carbon into carbon dioxide in all types of rivers and lakes in the Alaskan Arctic, from glacial-fed rivers draining the Brooks Range to tannin-stained lakes on the coastal plain. Measuring these processes is important, the scientists noted, because bacteria types and activities are variable and the amount of sunlight that reaches the carbon sources can differ by body of water.

In virtually all of the freshwater systems they measured, however, sunlight was always faster than bacteria at converting the organic carbon into CO2.

“This is because most of the fresh water in the Arctic is shallow, meaning sunlight can reach the bottom of any river – and most lakes – so that no dissolved organic carbon is kept in the dark,” said Crump, an associate professor in Oregon State’s College of Earth, Ocean, and Atmospheric Sciences. “Also, there is little shading of rivers and lakes in the Arctic because there are no trees.”

Another factor limiting the microbial contribution is that bacteria grow more slowly in these cold, nutrient-rich waters.

“Light, therefore, can have a tremendous effect on organic matter,” University of Michigan’s Cory pointed out.

The source of all of this organic carbon is primarily tundra plants – and it has been building up for hundreds of thousands of years, but doesn’t completely break down immediately because of the Arctic’s cold temperatures. Once the plant material gets deep enough into the soil, the degradation stops and it becomes preserved, much like peat.

“The level of thawing only gets to be a foot deep or so, even in the summer,” Crump said. “Right now, the thaw begins not long before the summer solstice. If the seasons begin to shift with climate change – and the thaw begins earlier, exposing the organic carbon from permafrost to more sunlight – it could potentially trigger the release of more CO2.”

The science community has not yet been able to accurately calculate how much organic carbon from the permafrost is being converted into CO2, and thus it will be difficult to monitor potential changes because of climate change, they acknowledge.

“We have to assume that as more material thaws and enters Arctic lakes and rivers, more will be converted to CO2,” Crump said. “The challenge is how to quantify that.”

Some of the data for the study was made available through the National Science Foundation’s Arctic Long-Term Ecological Research project, which has operated in the Arctic for nearly 30 years.

Other authors on the study are Collin Ward and George Kling of the University of Michigan.

Media Contact: 
Source: 

Byron Crump, 541-737-4369; bcrump@coas.oregonstate.edu;

Rose Cory, 734-615-3199, rmcory@umich.edu

Multimedia Downloads
Multimedia: 

Crump

Byron Crump, OSU

 

rosesampling
Rose Cory, Michigan

Three OSU faculty members named fellows of American Geophysical Union

CORVALLIS, Ore. – Three Oregon State University faculty members have been named 2014 fellows of the American Geophysical Union. They are the only three fellows in this class from the state of Oregon.

The three selected as fellows were Edward Brook and Gary Egbert from the College of Earth, Ocean, and Atmospheric Sciences; and Beverly Law from the College of Forestry.

Brook is a paleoclimatologist who studies the Earth’s ancient climates through examination of ice cores, specializing in the history of greenhouse gases. His studies have helped explain the processes that led to large-scale climate shifts throughout Earth’s history. In 2011, he was part of a team that completed the excavation of a 10,928-foot ice core – the longest core ever drilled by United States scientists – with ice more than 67,000 years old.

Egbert is a geophysicist and oceanographer whose studies range from ocean tides to electromagnetic imaging of the solid Earth. In one pioneering study, he and his colleagues used satellite altimetry data to show that ocean tides lose significant energy over rough topography in the open ocean. These results imply that the tides may provide an important source of mechanical energy for vertical ocean mixing, and large-scale heat transport in the ocean – processes which are critical to Earth’s climate.

Law is a professor of global change biology and terrestrial systems science who examines the role of forests in the global carbon cycle, and the impacts of climate change on those forests. She was science chair of the AmeriFlux network of more than 100 research sites for 11 years, and in 2014 was listed as a “most highly cited” researcher, in the top 1 percent for the period of 2002-12. She is a principal investigator on a five-year, $4 million project studying the impacts of drought, insects and fires on western forests.

The American Geophysical Union established the AGU Fellows program in 1962, and restricts annual recognition to less than 0.1 percent of its overall membership. This year, 62 fellows were named for their scientific eminence, a major breakthrough, a major discovery, paradigm shifts and/or sustained scientific impact. They will be recognized on Dec. 17 at the annual AGU conference in San Francisco.

Media Contact: 
Source: 

Joan Buhrman, 1+ 202 777-7509, jbuhrman@agu.org

Scientists caution against exploitation of deep ocean

CORVALLIS, Ore. – The world’s oceans are vast and deep, yet rapidly advancing technology and the quest for extracting resources from previously unreachable depths is beginning to put the deep seas on the cusp of peril, an international team of scientists warned this week.

In an analysis in Biogeosciences, which is published by the European Geosciences Union, the researchers outline “services” or benefits provided by the deep ocean to society. Yet using these services, now and in the future, is likely to make a significant impact on that habitat and what it ultimately does for society, they point out in their analysis.

“The deep sea is the largest habitat on Earth, it is incredibly important to humans and it is facing a variety of stressors from increased human exploitation to impacts from climate change,” said Andrew Thurber, an Oregon State University marine scientist and lead author on the study. “As we embark upon greater exploitation of this vast environment and start thinking about conserving its resources, it is imperative to know what this habitat already does for us.”

“Our analysis is an effort to begin to summarize what the deep sea provides to humans because we take it for granted or simply do not know that the deep sea does anything to shape our daily lives,” he added. “The truth is that the deep sea affects us, whether we live on the coast or far from the ocean – and its impact on the globe is pervasive.”

The deep sea is important to many critical processes that affect the Earth’s climate, including acting as a “sink” for greenhouse gases – helping offset the growing amounts of carbon dioxide emitted into the atmosphere. It also regenerates nutrients through upwelling that fuel the marine food web in productive coastal systems such as the Pacific Northwest of the United States, Chile and others. Increasingly, fishing and mining industries are going deeper and deeper into the oceans to extract natural resources.

“One concern is that many of these areas are in international waters and outside of any national jurisdiction,” noted Thurber, an assistant professor (senior research) in Oregon State’s College of Earth, Ocean, and Atmospheric Sciences. “Yet the impacts are global, so we need a global effort to begin protecting and managing these key, albeit vast, habitats.”

Fishing is an obvious concern, the scientists say. Advances in technology have enabled commercial fisheries to harvest fish at increasing depths – an average of 62.5 meters deeper every decade, according to fisheries scientists. This raises a variety of potential issues.

“The ability to fish deeper is shifting some fisheries to deeper stocks, and opening up harvests of new species,” Thurber said. “In some local cases, individual fisheries are managed aggressively, but due to how slow the majority of the fish grow in the deep, some fish populations are still in decline – even with the best management practices.”

The orange roughy off New Zealand, for instance, is both a model of effective and conservation-based management, yet its populations continue to decline, though at a slower rate than they would have experienced without careful management, Thurber noted.

“We also have to be concerned about pollution that makes its way from our continental shelves into the deep sea,” he added. “Before it was ‘out of sight, out of mind.’  However, some of the pollution can either make it into the fish that we harvest, or harm the fishers that collect the fish for us. It is one of the reasons need to identify how uses of the deep sea in the short term can have long-term consequences. Few things happen fast down there.”

Mining is a major threat to the deep sea, the researchers point out in their analysis. In particular, the quest for rare earth and metal resources, which began decades ago, has skyrocketed in recent years because of their increased use in electronics, and because of dwindling or limited distribution of supplies on land. Mining the deep ocean for manganese nodules, for example – which are rich in nickel – requires machines that may directly impact large swaths of the seafloor and send up a sediment plume that could potentially affect an even larger area, the scientists note.

These mining resources are not limited to muddy habitats, Thurber pointed out. Massive sulfides present at hydrothermal vents are another resource targeted by mining interests.

“The deep sea has been an active area for oil and gas harvesting for many years,” he said, “yet large reservoirs of methane and other potential energy sources remain unexploited. In addition to new energy sources, the potential for novel pharmaceuticals is also vast.

“There are additional threats to these unique habitats, including ocean acidification, warming temperatures and possible changes to ocean circulation through climate change.”

The next step, the researchers say, is to attach an economic value to both the services provided by the deep sea – and the activities that may threaten those services.

“What became clear as we put together this synopsis is that there is vast potential for future resources but we already benefit greatly through this environment,” Thurber said. “”What this means is that while the choices to harvest or mine will be decided over the coming decades, it is important to note that the stakeholders of this environment represent the entire world’s population.”

“The Bible, the Koran, the Torah, and early Greek texts all reference the deep sea,” he added. “Maybe it’s time for all of us to take a closer look at what it has to offer and decide if and how we protect it.”

Media Contact: 
Source: 

Andrew Thurber, 541-737-4500; athurber@coas.oregonstate.edu

Multimedia Downloads
Multimedia: 

Eco_func_Figures_submitted

Synchronization of North Atlantic, North Pacific preceded abrupt warming, end of ice age

CORVALLIS, Ore. – Scientists have long been concerned that global warming may push Earth’s climate system across a “tipping point,” where rapid melting of ice and further warming may become irreversible – a hotly debated scenario with an unclear picture of what this point of no return may look like.

A newly published study by researchers at Oregon State University probed the geologic past to understand mechanisms of abrupt climate change. The study pinpoints the emergence of synchronized climate variability in the North Pacific Ocean and the North Atlantic Ocean a few hundred years before the rapid warming that took place at the end of the last ice age about 15,000 years ago.

The study suggests that the combined warming of the two oceans may have provided the tipping point for abrupt warming and rapid melting of the northern ice sheets.

Results of the study, which was funded by the National Science Foundation, appear this week in Science.

This new discovery by OSU researchers resulted from an exhaustive 10-year examination of marine sediment cores recovered off southeast Alaska where geologic records of climate change provide an unusually detailed history of changing temperatures on a scale of decades to centuries over many thousands of years.

“Synchronization of two major ocean systems can amplify the transport of heat toward the polar regions and cause larger fluctuations in northern hemisphere climate,” said Summer Praetorius, a doctoral student in marine geology at Oregon State and lead author on the Science paper. “This is consistent with theoretical predictions of what happens when Earth’s climate reaches a tipping point.”

“That doesn’t necessarily mean that the same thing will happen in the future,” she pointed out, “but we cannot rule out that possibility.”

The study found that synchronization of the two regional systems began as climate was gradually warming. After synchronization, the researchers detected wild variability that amplified the changes and accelerated into an abrupt warming event of several degrees within a few decades.

“As the systems become synchronized, they organized and reinforced each other, eventually running away like screeching feedback from a microphone,” said Alan Mix, a professor in OSU’s College of Earth, Ocean, and Atmospheric Sciences and co-author on the paper. “Suddenly you had the combined effects of two major oceans forcing the climate instead of one at a time.”

“The example that we uncovered is a cause for concern because many people assume that climate change will be gradual and predictable,” Mix added. “But the study shows that there can be vast climate swings over a period of decades to centuries. If such a thing happened in the future, it could challenges society’s ability to cope.”

What made this study unusual is that the researchers had such a detailed look at the geologic record. While modern climate observations can be made every day, the length of instrumental records is relatively short – typically less than a century. In contrast, paleoclimatic records extend far into the past and give good context for modern changes, the researchers say. However, the resolution of most paleo records is low, limited to looking at changes that occur over thousands of years.

In this study, the researchers examined sediment cores taken from the Gulf of Alaska in 2004 during an expedition led by Mix. The mountains in the region are eroding so fast that sedimentation rates are “phenomenal,” he said. “Essentially, this rapid sedimentation provides a ‘climate tape recorder’ at extremely high fidelity.”

Praetorius then led an effort to look at past temperatures by slicing the sediment into decade-long chunks spanning more than 8,000 years – a laborious process that took years to complete. She measured ratios of oxygen isotopes trapped in fossil shells of marine plankton called foraminifera. The isotopes record the temperature and salinity of the water where the plankton lived.

When the foraminifera died, their shells sank to the sea floor and were preserved in the sediments that eventually were recovered by Mix’s coring team.

The researchers then compared their findings with data from the North Greenland Ice Core Project to see if the two distinct high-latitude climate systems were in any way related.

Most of the time, the two regions vary independently, but about 15,500 years ago, temperature changes started to line up and then both regions warmed abruptly by about five degrees (C) within just a few decades. Praetorius noted that much warmer ocean waters likely would have a profound effect on northern-hemisphere climates by melting sea ice, warming the atmosphere and destabilizing ice sheets over Canada and Europe.

A tipping point for climate change “may be crossed in an instant,” Mix noted, “but the actual response of the Earth’s system may play out over centuries or even thousands of years during a period of dynamic adjustment.”

“Understanding those dynamics requires that we look at examples from the past,” Mix said. “If we really do cross such a boundary in the future, we should probably take a long-term perspective and realize that change will become the new normal. It may be a wild ride.”

Added Praetorius: “Our study does suggest that the synchronization of the two major ocean systems is a potential early warning system to begin looking for the tipping point.”

Media Contact: 
Source: 

Summer Praetorius, 541-737-6159, spraetorius@coas.oregonstate.edu; Alan Mix, 541-737-5212, amix@coas.oregonstate.edu

Multimedia Downloads
Multimedia: 

sediment core

Sediment cores

Hubbard Glacier ice front

Hubbard Glacier

summer

Summer Praetorius

alanmix
Alan Mix

SAR11, oceans’ most abundant organism, has ability to create methane

CORVALLIS, Ore. – The oxygen-rich surface waters of the world’s major oceans are supersaturated with methane – a powerful greenhouse gas that is roughly 20 times more potent than carbon dioxide – yet little is known about the source of this methane.

Now a new study by researchers at Oregon State University demonstrates the ability of some strains of the oceans’ most abundant organism – SAR11 – to generate methane as a byproduct of breaking down a compound for its phosphorus.

Results of the study are being published this week in Nature Communications. It was funded by the National Science Foundation and the Gordon and Betty Moore Foundation.

“Anaerobic methane biogenesis was the only process known to produce methane in the oceans and that requires environments with very low levels of oxygen,” said Angelicque “Angel” White, a researcher in OSU’s College of Earth, Ocean, and Atmospheric Sciences and co-author on the study. “In the vast central gyres of the Pacific and Atlantic oceans, the surface waters have lots of oxygen from mixing with the atmosphere – and yet they also have lots of methane, hence the term ‘marine methane paradox.’

“We’ve now learned that certain strains of SAR11, when starved for phosphorus, turn to a compound known as methylphosphonic acid,” White added. “The organisms produce enzymes that can break this compound apart, freeing up phosphorus that can be used for growth – and leaving methane behind.”

The discovery is an important piece of the puzzle in understanding the Earth’s methane cycle, scientists say. It builds on a series of studies conducted by researchers from several institutions around the world over the past several years.

Previous research has shown that adding methylphosphonic acid, or MPn, to seawater produces methane, though no one knew exactly how. Then a laboratory study led by David Karl of the University of Hawaii and OSU’s White found that an organism called Trichodesmium could break down MPn and thus it could be a potential source of phosphorus, which is a critical mineral essential to every living organism.

However, Trichodesmium are rare in the marine environment and unlikely to be the only source for vast methane deposits in the surface waters.

So White turned to Steve Giovannoni, a distinguished professor of microbiology at OSU, who not only maintains the world’s largest bank of SAR11 strains, but who also discovered and identified SAR11 in 1990. In a series of experiments, White, Giovannoni, and graduate students Paul Carini and Emily Campbell tested the capacity of different SAR11 strains to consume MPn and cleave off methane.

“We found that some did produce a methane byproduct, and some didn’t,” White said. “Just as some humans have a different capacity for breaking down compounds for nutrition than others, so do these organisms. The bottom line is that this shows phosphate-starved bacterioplankton have the capability of producing methane and doing so in oxygen-rich waters.”

SAR11 is the smallest free-living cell known and also has the smallest genome, or genetic structure, of any independent cell. Yet it dominates life in the oceans, thrives where most other cells would die, and plays a huge role in the cycling of carbon on Earth.

These bacteria are so dominant that their combined weight exceeds that of all the fish in the world's oceans, scientists say. In a marine environment that's low in nutrients and other resources, they are able to survive and replicate in extraordinary numbers – a milliliter of seawater, for instance, might contain 500,000 of these cells.

"The ocean is a competitive environment and these bacteria apparently won the race," said Giovannoni, a professor in OSU’s College of Science. "Our analysis of the SAR11 genome indicates that they became the dominant life form in the oceans largely by being the simplest.”

“Their ability to cleave off methane is an interesting finding because it provides a partial explanation for why methane is so abundant in the high-oxygen waters of the mid-ocean regions,” Giovannoni added. “Just how much they contribute to the methane budget still needs to be determined.”

Since the discovery of SAR11, scientists have been interested in their role in the Earth’s carbon budget. Now their possible implication in methane creation gives the study of these bacteria new importance.

Media Contact: 
Source: 

Angel White, 541-737-6397; awhite@coas.oregonstate.edu; Steve Giovannoni, 541-737-1835, steve.giovannoni@oregonstate.edu