college of agricultural sciences

OSU agricultural students earn $22,000 in scholarships

CORVALLIS, Ore. – Oregon State University's Agricultural and Resource Economics Department has awarded 22 of its students $22,000 in scholarships made possible by gifts to the department.  

Recipients are:

BONANZA: Mieke deJong, a senior majoring in agricultural business management, received the $1,000 Edward Earnest Scholarship in Agribusiness Management.

CORVALLIS: Kelsey Burkum, a senior majoring in environmental economics, policy and management, received a $1,000 William P. "Chip" Harris Memorial Scholarship. Emily Honey, a junior majoring in agricultural business management, received a $1,000 William P. "Chip" Harris Memorial Scholarship. Tyler Knapp, a post-baccalaureate student majoring in environmental economics and policy, received the $1,000 Fred Obermiller Memorial Scholarship.

COQUILLE: Julia Scolari, a junior majoring in agricultural business management, received the $1,000 Edward Earnest Scholarship in Agribusiness Management.

CORNELIUS: Conner Duyck, a junior majoring in agricultural business management, received the $500  JELD-WEN Scholarship.

ESTACADA: Aaron Schoknecht, a senior majoring in agricultural business management, received the $700 Rachel and Harold Hollands Scholarship as well as the $150 LeRoy Breithaupt Award.

LA GRANDE: Briana Tanaka, a junior majoring in agricultural business management, received the $1,600 Agricultural Cooperative Council of Oregon Scholarship.

LANGLOIS: Cora Wahl, a senior majoring in agricultural business management, received the $1,600 Agricultural Cooperative Council of Oregon Scholarship.

MCMINNVILLE: Amanda Noble, a junior majoring in agricultural business management, received the $1,600 Agricultural Cooperative Council of Oregon Scholarship. Jenna Way, a senior majoring in environmental economics and policy, received the $1,000 Ermine L. and Norma Olson Potter Memorial Fund Award.

OREGON CITY: Gerald Hosler, a junior majoring in agricultural business management, received the $1,600 Agricultural Cooperative Council of Oregon Scholarship.

PORTLAND: Erik Levi, a senior majoring in environmental economics and policy, received the $1,000 Ermine L. and Norma Olson Potter Memorial Fund Award.

SALEM: Ashley Grucza, a junior majoring in agricultural business management, received the $500 Oregon Society of Farm Managers and Rural Appraisers Award and an additional $500 Oregon Chapter of the American Society of Farm Managers and Rural Appraisers Award.

SILVERTON: Tim Nicholson, a senior majoring in agricultural business management, received the $500 Western Agricultural Economics Association Outstanding Senior Award-Certificate of Merit.

SUTHERLIN: Rozalyn Patrick, a junior majoring in environmental economics and policy, received the $1,000 Dustin Goedeck Memorial Scholarship.

TIGARD: Amanda Carlson, a sophomore majoring in agricultural business management, received the $500 JELD-WEN Scholarship.

TUALATIN: Kathryn Jernberg, a freshman majoring in agricultural business management, received the $750 D. Curtis Mumford Award.

WARREN: Teri McGettigan, a junior majoring in agricultural business management, received the $1,600 Agricultural Cooperative Council of Oregon Scholarship.

WHITE CITY: Gabriella DeSimone, a junior majoring in agricultural business management, received the $1,000 Edward Earnest Scholarship in Agribusiness Management.


WOODLAND: Zach Millang, a junior majoring in agricultural business management, received the $400 E.L. Potter Scholarship.


REDMOND: Tyler West, a senior majoring in environmental economics and policy, received the $500 Department of Agricultural and Resource Economics Outstanding Senior Award.

Raising funds for scholarships is a priority of The Campaign to OSU, the university's first comprehensive fundraising campaign. To date, donors have committed more than $930 million toward the $1 billion goal, including nearly $160 million for scholarships and fellowships.


Tjodie Richardson, 541-737-1399

OSU study suggests reducing air-polluting PAHs may lower levels of lung cancer deaths

CORVALLIS, Ore. – High emissions of polycyclic aromatic hydrocarbons (PAHs) can be linked to lung cancer deaths in the United States and countries with a similarly high socioeconomic rank, including Canada, Australia, France, and Germany, according to a study by Oregon State University.

Researchers reviewed a range of information from 136 countries, including average body mass index, gross domestic product per capita, the price of cigarettes, smoking rates, and the amount of PAHs emitted into the air. PAHs are a group of more than 100 chemicals, some of which are carcinogenic when inhaled or ingested. They most commonly come from vehicle exhaust and burning coal and wood.

OSU researchers calculated how measures of health, wealth and pollution related to lung cancer deaths in each country.

"Analyzing data on a global scale revealed relationships between PAH emissions and smoking rates on the lung cancer death rates in each country," said Staci Simonich, a co-author of the study and toxicologist at OSU. "Ultimately, the strength of the relationships was determined by the country’s socioeconomic status."

While the link between smoking and lung cancer is well-established, OSU researchers did not find a correlation between cigarette smoking rates and lung cancer death rates in countries with high levels of income. Researchers attribute this conclusion to previous studies showing high-income smokers tend to light up less often.

OSU's study also suggests that reducing smoking rates could significantly lessen lung cancer deaths in countries with a lower socioeconomic status, including North Korea, Nepal, Mongolia, Cambodia, Bangladesh and many others. Researchers found that lung cancer mortality rates in these countries negatively correlated with price – meaning cheaper cigarettes are often associated with higher levels of deaths from lung cancer.

Detectable lung cancer can take 20 years to develop, and the poorest countries in the study had an average age of death of 54. OSU researchers suggest heavy smokers in these countries can sometimes die before tumors attributable to lung cancer become apparent.

"If the life expectancies were the same in all of the countries we reviewed, it's possible we would see a consistent relationship between PAH emissions and lung cancer," said Simonich, an OSU professor of environmental and molecular toxicology.

The study, "Association of Carcinogenic Polycyclic Aromatic Hydrocarbon Emissions and Smoking with Lung Cancer Mortality Rates on a Global Scale," was recently published in the journal Environmental Science and Toxicology.

The Pacific Northwest National Laboratories in Richland, Wash. assisted with calculating the statistical associations between data used in the study. The National Institutes of Environmental Health Sciences funded the research through OSU’s Superfund Research Program.

Cancer is the second-leading cause of death worldwide. Lung cancer accounts for 12 percent of all cancer diagnoses and is the leading cancer killer of men and second among women, according to the American Cancer Society.


Staci Simonich, 541-737-9194

Multimedia Downloads

Staci Simonich, OSU environmental chemist

Staci Simonich, an OSU environmental chemist, calculated how measures of health, wealth and pollution related to lung cancer deaths around the world. (Photo by Lynn Ketchum.)

OSU 4-H to induct four honorees into Hall of Fame

CORVALLIS, Ore. – The Oregon State University Extension Service's 4-H youth development program will induct four longtime volunteer leaders or retired staff into its Hall of Fame on June 28.  

This year's inductees are Tom and Mona Easley of Corvallis, Dawn Frazier of Prineville, and Marilyn Moore of Baker City.  They will be honored this week at the annual OSU 4-H Summer Conference.

"This is a wonderful opportunity for 4-H youth to be able to interact with people who have spent 30-40 years of their lives contributing to 4-H," said Helen Pease, coordinator for OSU Extension's 4-H program. 

The Oregon 4-H Hall of Fame (http://bit.ly/181pu66) was established in 2004 to recognize people who have made a significant impact on the Oregon 4-H program.

The Easleys have contributed to 4-H for more than 40 years. Mona started in her youth as an OSU Extension 4-H member in Umatilla County. In the early 1970s she worked as a 4-H home economics specialist in Polk and Union counties, later volunteering as a club leader. In the early 1990s, Mona joined the state staff of Oregon 4-H, coordinating statewide events. Tom has worked by her side throughout those years, giving countless hours of time and skills. He transports, constructs, designs, paints, sets up and cleans up at fairs and events.  

Prineville's Frazier served nearly 30 years as a 4-H leader. She volunteered in several roles in Lane County for nearly 15 years. She served as fair superintendent, County 4-H Leader Association member and taught home economics. She was instrumental in helping the state 4-H Leaders Association rebuild itself in the 1990s.

Moore of Baker City worked as a 4-H specialist in Malheur County for more than 25 years. She helped develop shooting sports, outdoor cookery and ranch horse programs. She taught science classes to more than 10,000 youth. Since retiring, she has volunteered as a program coordinator for Baker County's Field to Fork Agriculture Field Days, serving more than 1,000 fifth-graders.

4-H is the largest out-of-school youth development program nationwide. The OSU Extension Service oversees Oregon's 4-H program, which reached nearly 117,000 youth in kindergarten through 12th grade via a network of 8,534 volunteers in 2012. Activities focus on areas like healthy living, civic engagement and science. Learn more about 4-H at http://bit.ly/14fEFHF.


Helen Pease, 541-737-1314

Increased selenium dosage boosts growth and immunity in lambs

CORVALLIS, Ore. – Sheep given supplements of organic selenium above United States government recommendations showed improved growth, weight and immunity, according to new research at Oregon State University.

In a new study published in the Journal of Animal Science, OSU researchers show that maximum selenium levels permitted by the U.S. Food and Drug Administration may be too low for sheep to reach optimum growth and health.

Selenium is essential for cellular function in animals and aids development. Large selenium doses can be toxic, but too-low levels can impair growth and compromise the immune system.

"When sheep don't grow to their potential or have weak immune systems, it can be a sign of insufficient selenium," said Gerd Bobe, co-author of the study and an OSU professor. “Our research shows higher levels of selenium can result in healthier animals that grow bigger and that can improve returns at the marketplace for farmers and ranchers.”

Normally, grazing animals eat ample amounts of selenium from grass and other plants grown in soils naturally containing the element. Yet the soils of the Pacific Northwest are low in selenium, and the region's livestock often need it added to their diets to avoid health problems.

A challenge is that the range between selenium deficiency and selenium toxicity can be narrow; current FDA regulations limit the amount of dietary selenium supplementation for animals grazing on selenium-scare soils – up to 0.7 mg per sheep per day or 3 mg per beef cattle per day.

In OSU's experiments, pregnant ewes were given selenium doses up to five times higher than the FDA's allowed level – an amount of supplementation researchers determined to be not harmful to sheep. The element is carried into the bodies of offspring, helping young animals during development.

At the highest amount, ewes gave birth to lambs that grew to be 4.3 pounds heavier than average after 60 days. Furthermore, survival was 15 percent higher in lambs receiving the highest amount of organic selenium supplementation. As farmers look to sell sheep at five to six months old, weight and health metrics are keys to profitability.

Selenium also boosted an important gauge of the lambs' immune systems. Levels of immunoglobulin G, a protein that defends against pathogens and is essential for lamb survival, were elevated by 48 percent in Polypay ewes and 23 percent in all ewes given five times maximum FDA-permitted levels of selenium.

The changes were measured in colostrum of ewes – a mother's first milk that is rich in immunoglobulins and vital for building the immune system and protecting against pathogens.

OSU has a long legacy of selenium research. Half a century ago, OSU animal scientist Jim Oldfield was the first to identify severe selenium deficiency as a reason for several deadly diseases in animals, including cardiomyopathy and white muscle disease.

A new generation of OSU research is attempting to determine how much selenium and in what form is best for optimal growth and health of sheep and cattle.

Consumers may also benefit from eating meat from selenium-supplemented animals, as its one of the major sources of the element in the U.S. diet. Human observational studies suggest that regions with low selenium intake have a greater risk of cancer and cardiovascular diseases, Bobe said.

"Consuming selenium-enriched foods may be a viable alternative for getting extra selenium," said Bobe, an expert in human and animal nutrition. "Plus, selenium-enriched animal products, including meat, are sold in other countries at a premium price."

OSU's selenium research is a collaboration between Bobe, Gene Pirelli and Wayne Mosher in the College of Agricultural Sciences and Jean Hall, Charles Estill and Jorge Vanegas in the College of Veterinary Medicine.


Gerd Bobe, 541-737-1898

Six exotic vegetables for Oregon gardeners to try

CORVALLIS, Ore. – Bring a taste of South America, Europe or Asia to your garden this year by adding a diverse array of exotic vegetables.

A varied collection of plants can also reduce the potential for pests and diseases in a garden, said Jim Myers, a vegetable breeder with the Oregon State University Extension Service.

"There's a lot of natural, biological control that goes on in a garden that we're not even aware of when we have biodiversity," Myers said.

When shopping for exotic plants, buy only seeds or starts from Pacific Northwest-based nurseries and suppliers, Myers advised. If you order online or while traveling, globetrotting plants can carry hitchhiking pests or diseases.

The following plants were tested at OSU fields and perform well with varying degrees of success in a Pacific Northwest climate, Myers said.

  • Yacón: Smallanthus sonchifolius. The yacón is an Andean relative of the sunflower that grows 6-8 feet tall. It's tasty in a salad or as a snack but doesn't contain enough carbohydrates to become a diet staple, according to Myers. The perennial performs well in both eastern and western Oregon. While similar to the Jerusalem artichoke, yacón's tuberous roots grow to about the size of a sweet potato. Plant seed pieces in the spring for an October harvest. Yacón can overwinter in the ground where the soil does not freeze.
  • Mashua: Tropaeolum tuberosum. Mashua is grown in the Andes for its edible tuberous roots. A relative of the nasturtium, mashua's showy red flowers emerge in late September. A vigorous perennial, it can climb 7-13 feet high. Mashua has a pungent flavor, similar to a radish. This hardy plant thrives even in poor soil. Cultivate it similar to how you would a potato; plant in spring for a fall harvest.
  • Oca: Oxalis tuberosa. Oregon does not offer an optimum climate for oca, but it can be grown in select areas in the western part of the state. Tubers will grow small without tropical heat. It can't survive frost but tubers will overwinter in the ground as long as they do not freeze. Plant in spring for November harvest. Cultivate as you would a potato. The tuber is edible and the leaves and young shoots can be eaten as well. Its flavor is slightly tangy, caused by its oxalic acid content, which should not be consumed in large quantities. Some varieties have been bred for lower oxalic acid content.
  • Cardoon: Cynara cardunculus. The cardoon is related to the artichoke. Both are perennial members of the thistle family and hail from southern Europe. It needs full sun. Good for the Willamette Valley and eastern Oregon. Its leaf stalks produce in a flush of springtime growth; in the summer there is little growth. Harvest the leaf stalks similar to the way you would celery. Stalks need to be cleaned and peeled before cooking. Plant transplants in spring.
  • Asian greens: Any green in the Brassica rapa family. A good one to try is pakchoi cabbage, which has large white, fleshy stems. When eaten, it has a soft, creamy texture. "It has a little bite to it but it's pretty mild," Myers said. This cool-season crop goes well in salads or cooked. Plant it in early spring for an early summer harvest. Not tolerant of winter conditions. At OSU, pakchoi cabbage is planted in July for a fall harvest.

Jim Myers, 541-737-3083

New study links speciation and size evolution across all ray-finned fishes

CORVALLIS, Ore. – A comprehensive new study of more than 7,000 species of fish documents for the first time correlation on a grand scale between the rapidity of the origin of the species and the rate of morphological change.

In other words, groups of fish that rapidly split into new species tend to quickly evolve diversity in physical traits, such as the size of their bodies, while others described by Charles Darwin as “living fossils” because of their prehistoric characteristics show little change over millions of years in either numbers of species or types of morphologies.

The study is important because it links speciation with morphological adaptation on a scale that has never been done. It also demonstrates that variation in a single evolutionary process may create both living fossils and adaptive radiations, which are two of the most famous and celebrated phenomena in the history of life, the authors say.

Findings of the study are being published this week in Nature Communications.

A multidisciplinary team of researchers created a “Tree of Life” of ray-finned fishes, which comprise a majority of vertebrate biological diversity, to compare evolutionary rates across all families of fishes. The project was funded by the National Science Foundation, the Miller Institute at University of California, Berkeley, and UCLA, and featured scientists from the University of Michigan, UCLA, University of Torino, University of Idaho, and Oregon State University.

“We were able to document the link between speciation and morphological evolution, but the question remains as to whether the speciation process itself leads to changes in anatomy or whether something in the anatomically diverse lineages promotes speciation,” said Daniel Rabosky, an assistant professor of ecology and evolutionary biology at the University of Michigan and co-lead author on the study.

Co-lead author Michael Alfaro, a UCLA scientist who specializes in the evolution of marine fishes, said one key facet in the correlation between evolutionary and morphological change is body size.

“The fastest speciating fish typically also had the fastest rate of size evolution,” Alfaro said. “It didn’t seem to matter whether they were freshwater or marine fish, or lived in cold or warm environments – the correlation was amazingly consistent. Changes in body size were closely linked to speciation, but whether one causes the other isn’t yet clear.”

The research team synthesized existing data from GenBank, FishBase and other sources to create their comprehensive phylogenetic tree of living fishes, which is one of the largest trees ever assembled for any group of animals.

Inclusion of so many species was critical to investigating body size evolution at such a grand scale.

Co-author Brian Sidlauskas, an Oregon State University ichthyologist specializing in the conservation of freshwater fish, said the study helps illustrate and explain the differences between dynamic groups of fish, characterized by African cichlids, and living fossils such as sturgeon and gars.

“Cichlids are the poster children for explosive adaptive radiation, having rapidly diversified into a vast number of species with different characteristics,” said Sidlauskas, who curates the Oregon State University Ichthyology Collection in the Department of Fisheries and Wildlife. “Whitefishes are another example. They have only been in glacial lakes for a few thousand years, yet they already have branched repeatedly into two or three different morphologies, including some that feed on the bottom and others in mid-water.”

Based on the new results, cichlids and whitefishes fall into the 10 percent of fastest-evolving and speciating fishes, along with rockfishes, snailfishes, pufferfishes and several other groups.

“Sturgeon and gars are just the opposite, showing remarkably few changes over millions of years and little tendency to speciate,” Sidlauskas noted. “It isn’t just ecological opportunity. If you put a handful of gars into the Rift Lakes of Africa, it is doubtful they would have evolved much. Yet cichlids evolved into hundreds of different species with different morphologies. Something in the wiring differs from one group of fish to another, and that’s what we need to investigate next.”

The authors say that although their study focused on ray-finned fishes, the same correlation potentially may be applicable to other branches of the Tree of Life, including mammals, birds, insects, plants and snails.

Media Contact: 

Brian Sidlauskas, 541-737-6789, Brian.Sidlauskas@oregonstate.edu

Multimedia Downloads

fish evolution

"This evolutionary tree shows the relationships between nearly 8,000 living species of fishes. Red branches denote groups with fast rates of body size change, blue branches indicate slow body size change, and the length of each branch reflects the speed at which groups split into new species. Illustration courtesy of Dan Rabosky."

Book outlines history of California condors in Pacific Northwest

CORVALLIS, Ore. – A new book documents the history of the California condor in the Pacific Northwest from northern California to British Columbia, an important step in discussions that could lead to reintroduction of the giant birds to the Northwest in the future.

No immediate plans for Northwest reintroduction exist, the authors say, but establishing a history of the condors’ presence is a prerequisite for potential reintroduction of the birds in the near future, noted Susan Haig, a co-author of the book, which is being published by the Oregon State University Press.

“Condors are iconic symbols to many Northwest tribes, and they were an important part of many ecosystems in the West,” said Haig, who is a professor of wildlife ecology at OSU and a wildlife ecologist with the U.S. Geological Survey. “Unlike other endangered species – such as spotted owls – they don’t require specific habitat to thrive. They like big open areas and can be found today in the Grand Canyon as well as the mountains and coastal area around Monterey, Calif.”

The OSU Press book, “California Condors in the Pacific Northwest,” was written by Jesse D’Elia, a Ph.D. candidate under Haig and now a wildlife ecologist with the U.S. Fish and Wildlife Service in Portland and by Haig. It is available from the OSU Press at: http://osupress.oregonstate.edu/book/california-condors-in-pacific-northwest.

At nearly 10 feet, California condors have the largest wingspan of all land birds in North America. Their existence dates back to prehistoric times in the Northwest, and they were present in Oregon as recently as 1920, according to Haig. “Noted naturalist William Finley had one named ‘General’ as a pet,” she said. “It ended up at the New York Zoo.”

“Lewis and Clark reported condors all along the Columbia River,” Haig added, “and they were sighted at Willamette Falls as well.”

The historic population of condors is difficult to estimate, the authors say, and only an estimated 240 today live in the wild in North America. An additional 170 live in captivity. The Oregon Zoo in Portland is one of only four captive breeding facilities for the species.

The reasons for their decline are varied and not well-documented, Haig said. Condors are scavengers and feed on the carcasses of dead animals – some of which have been poisoned and others that contain fragments from bullets containing lead, which can be lethal. As electric power lines began dotting the West, others were electrocuted. And in an odd twist, some condors were killed by museum collectors in the 19th century so they could be put on display.

“In the 1800s, many museums were just starting and building their collections,” Haig said. “We do know that museum operators from Paris and Germany came all the way over to the West Coast to kill condors for their collections.”

D’Elia has collected condor bone and tissue samples from numerous museums around the world, and along with Haig and other colleagues is analyzing their DNA in an effort to determine their population structure prior to their decline.

“The California condor is an endangered species that captures our collective imagination,” D’Elia said. “Reading through the first-hand accounts of early explorers encountering condors, it isn’t hard to envision these giant birds once soaring through the skies of the Pacific Northwest in numbers. In addition to stirring our imagination, evaluating the history of condors in the region helps us understand where condors once occurred, how common they were and why they disappeared.”

Some of the factors that led to their decline could be barriers to potential reintroduction, Haig said.

“Hunting is not really an issue,” Haig emphasized, “but the use of lead bullets to kill animals that condors feed on is an issue. Hunting actually benefits condors because it provides fresh carcasses upon which they can feed. Lead bullet fragments left in carcasses are deadly to a variety of non-targeted wildlife, however, including condors. Power lines were an issue, but condors in captivity are now trained to avoid them prior to their release.”

“In fact, condors are incredibly smart and cool animals,” Haig said. “They recognize individuals and remember them. One bird can be mad at another bird for years at a time, and even recognize that animal a decade later. They have a very strong social structure and older birds pass behaviors along to younger birds.  They typically are monogamous and pair for life.”

“They only produce one egg at a time, and the parents fight over who gets to take care of that egg,” Haig said. “They are obsessive parents. But if the fledgling can survive, that young condor could potentially live to a ripe old age of 50 to 60 years.”

Media Contact: 

Susan Haig, 541-750-0981; susan.haig@usgs.gov

Multimedia Downloads

Despite reduced dog poisonings from slug baits, researchers are warning of a new hazard

CORVALLIS, Ore. – Stronger warning labels on slug and snail baits containing metaldehyde may have led to a huge drop in calls to a national pesticide hotline about possible dog poisonings, according to Oregon State University.

The toll-free hotline, operated by the university's National Pesticide Information Center (NPIC), received more than 200 calls in 2005 about dogs that had been exposed to metaldehyde baits, said an OSU study, which was published this month in the Journal of the American Veterinary Medical Association. Since then, metaldehyde-related calls have decreased each year – reaching a new low of 21 in 2011.

At the same time, a relatively new type of bait containing iron phosphate was marketed as a safer alternative to metaldehyde, but it can still lead to iron poisoning in children, pets and wildlife, said Dave Stone, the center's director and co-author of the study. The NPIC received its first call about dogs encountering the iron phosphate baits in 2005. Subsequent reports have increased each year, rising to 69 calls in 2011.

Slug and snail baits are sprinkled as pellets or granules and kill the slimy invertebrates when ingested. Many baits are flavored with molasses or peanut butter, and dogs will eat them, even seeking them out.

In 2007, the U.S. Environmental Protection Agency mandated stronger cautionary language on metaldehyde baits. The chemical acts as a neurotoxin and can cause seizures, hyperthermia and muscle tremors in animals and can be fatal without treatment.

"Before the new labels, it was common to receive calls about dog poisonings and somewhat common to hear about dog fatalities," said Stone, a toxicologist with OSU Extension. "We interpret the data to show that new labels that alert pet owners to these dangers may have contributed to the decrease in reported incidents with dogs."

More than 80 percent of the calls in the NPIC's study came from Washington, Oregon and California, where the coastal climate favors slugs and snails.

Reported incidents to NPIC involving iron phosphate baits have been less severe, compared with those with metaldehyde baits. No dog deaths were reported following contact with iron phosphate baits, but the NPIC documented 56 cases involving 61 dogs showing signs compatible with iron toxicosis, including lethargy, vomiting and diarrhea.

"Slug and snail baits with iron phosphate carry risk," said Kaci Buhl, project coordinator for the NPIC and co-author of the study. "They might be advertised as 'safe' and some are registered as organic. That may give the impression of safety, but these are still pesticides and need to be treated with the proper care and respect."

The NPIC advises pet owners to store slug and snail baits out of reach from dogs and other animals. About half of the cases reported to the NPIC took place after baits were applied outdoors, while 20 percent occurred when the product was insecurely stored in garages or sheds.

NPIC also encourages growers and gardeners to explore alternatives to pesticides, including installing copper barriers and strips, which slugs and snails will not touch.

The OSU Extension Service has more recommendations in its online guides "Using Home Remedies to Control Garden Pests" at http://bit.ly/OSUExtension_SlugBulletin and "Keep Pets Safe Around Pesticides" at http://bit.ly/OSUExtension_PetsSafePesticides.

The NPIC offers more information about iron phosphate baits, including fact sheets, a Q&A and a podcast with researchers, at http://bit.ly/OSU_IronPhosphateInfo.

The NPIC can be reached at 1-800-858-PEST or www.npic.orst.edu. It provides objective, science-based information about pesticides to help people to make informed decisions – especially following suspected exposures. The organization is a partnership between OSU and the U.S. Environmental Protection Agency.


Dave Stone, 541-737-4433

Kaci Buhl, 541-737-8330

OSU awards scholarships to 17 college-bound 4-H'ers

CORVALLIS, Ore. – The Oregon State University Extension Service's 4-H youth program has awarded almost $18,900 in scholarships to 17 high school seniors.

To qualify for the scholarships, students had to be members of 4-H for a minimum of three years, said Helen Pease, 4-H youth program coordinator with the OSU Extension Service. Judging was based on scholastic achievement, 4-H projects and activities and a personal essay. In the essay, applicants were asked to describe their growth in 4-H, emphasizing 4-H's five "C's" of youth development: competence, confidence, character, caring and compassion.

Scholarship recipient Katie Waldo of Corvallis compared her growth in 4-H to flipping through a photo album of her most meaningful experiences in the program. Those experiences included holding her first marketable lamb and attending the 4-H National Congress in 2011.

"These images and their stories will continue to remind me not only of who I am and what I've done but also how much I am capable of changing and the amazing things I can accomplish when I believe in myself and the people around me," she wrote in her essay.

Recipients of the statewide 4-H scholarships for 2013 are:

Albany: Clint Hamilton, $500, Duane P. Johnson 4-H Scholarship.

Aumsville: Raquel Albee, $3,500, Martha MacGregor Memorial 4-H Scholarship.

Canyon City: Josh Whitman, $1,000, Babe Coe Memorial 4-H Scholarship.

Central Point: Madison Gierloff, $1,250, Klein-Youngberg Family 4-H Scholarship.

Corvallis: Makai Bradley, $1,250, Klein-Youngberg family. Justine Ekman, $1,500, Judith K. Hofer Scholarship. Sam Greydanus, $1,000, CHS Foundation Scholarship. Megan Pinard, $1,000, Oregon 4-H Foundation. Ann Santich, $1,250, Klein-Youngberg family. Katie Waldo, $1,500, H. Joe Myers Memorial 4-H Scholarship.

Dallas: Jamie Kennedy, $557, O.M. Plummer Scholarship.

Hermiston: Bailey Burns, $1,000, A. Lois Redman 4-H Scholarship.

Philomath: Tessa Gourley, $1,000, Kate Thiess Memorial 4-H Scholarship. Courtney Kutzler, $500, Ted and Betty Dietz Memorial 4-H Scholarship. Tatiana Thompson, $1,000, Minnick Memorial 4-H Scholarship.

Sherwood: Janika Jordan, $1,000, Jeanne Leeson Memorial 4-H Scholarship.

More information on the scholarships is at http://bit.ly/14wppGy.

4-H is the largest out-of-school youth development program nationwide. The OSU Extension Service oversees Oregon's 4-H program, which reached nearly 117,000 youth in kindergarten through 12th grade via a network of 8,534 volunteers in 2012. Activities focus on areas like healthy living, civic engagement, science and animal care. Learn more about 4-H at http://bit.ly/14fEFHF.


Helen Pease, 541-737-1314

Fruit-damaging fly could hit record population in Northwest this year

CORVALLIS, Ore. – The spotted wing drosophila fly, which lays its eggs in fruit and makes it unmarketable, could reach record population levels in the Pacific Northwest this year, according to Oregon State University researchers.

"All indications estimate this season will be similar or worse than 2012, which was the worst on record," said Vaughn Walton, an entomologist with the OSU Extension Service. “Winter and spring temperatures in the Pacific Northwest have been warmer than last year, and heat equals larger populations of spotted wing drosophila.”

Originally from Asia, the spotted wing drosophila was first found stateside in California in 2008 and has since spread across the continent. The insect lays its eggs in ripe and ripening small and stone fruits, and its developing larvae eat the fruit. The cosmetic imperfections caused by the larvae make the fruit undesirable to most consumers.

The fly's favorite fruits include blueberries, cherries, blackberries, raspberries, peaches and plums. The pest has not impacted wine grapes so far, Walton added.

Walton expects spotted wing drosophila populations in the Pacific Northwest to rapidly build through July and August when most susceptible fruits ripen.

The economic stakes are high. In Oregon alone, farmers grew $198 million of berries in 2012, with blueberries accounting for $108 million of that, according to a report by the U.S. Department of Agriculture. Growers also sold $74 million of sweet cherries that year, the report said.

In the absence of detection and control measures, Oregon's small and stone fruit industry could lose $31 million per year, according to a report by the Giannini Foundation of Agricultural Economics at the University of California.

Since the discovery of the pest in Oregon, OSU has been collaborating with scientists in California and Washington to better understand it and help growers deal with it. For example, researchers at OSU are seeing if a parasitic wasp that is native to the United States, known as Pachycrepoides vindemmiae, can be used to control the spotted wing drosophila. It lays its eggs in the fly's pupae, thus killing them.

OSU will also lead a trip to South Korea in August to search for and collect other similar wasps, including one known as Asobara japonica that lays its eggs in the spotted wing drosophila's larvae. Over the next few years, researchers will study these wasps in quarantine to determine if it attacks only the fly's larvae. If tests show the wasp does not harm other insects, Asobara japonica and others could be released in the U.S. in three to five years.

For now, OSU has found that insecticides are the best way to control the pest. OSU pesticide evaluator Joe DeFrancesco tested various compounds for use on strawberries, blueberries and caneberries to see which are most effective. OSU entomologist Peter Shearer has conducted similar work on cherries. The top-performing pesticides are on OSU's website at http://bit.ly/SWD_GrowerInfoOSU.

"To protect against severe economic damage, we've seen farmers spraying more than usual – and this year will probably be no exception," said Shearer. "If farmers use proper sprays at proper times, they should be able to prevent the flies from damaging fruit."

Last year, farmers in the Willamette Valley and Oregon's Mid-Columbia Basin sprayed an average of five to nine times to control spotted wing drosophila at an average cost of $169 an acre, said Walton. Before the fly landed in Oregon, the state's small fruit growers typically sprayed only twice a year to manage other pests, Shearer said. Oregon's blueberry growers alone spent $6 million last year to manage the spotted wing drosophila, Walton estimates.

OSU is also investigating the impact of cold weather on the insect's survival. Early data suggest that some adults can survive fluctuating conditions and can live for 150 days in the winter. Low humidity appears to negatively impact the fly's survival and reproduction, but tests are still ongoing to confirm these findings.

Additionally, OSU researchers have also helped develop an interactive map that estimates the fly's population throughout the U.S. based on temperature and weather conditions. In the mid-Willamette Valley, data suggest that three to five generations of the pest emerge during each growing season.

OSU is also advising growers to monitor for the fly by hanging homemade traps containing apple cider vinegar in plastic cups punctured with small holes that lure in the insect. Amy Dreves, an entomologist with OSU Extension, explains how to make them in a video at http://bit.ly/OSU_SWDtrap. Researchers are working to develop better baits and traps that catch the spotted wing drosophila earlier in the ripening season to help growers determine when to treat for the pest.

In addition, Bernadine Strik, a berry crops specialist with the OSU Extension Service, is monitoring the presence of the pest in an organic research plot and using organically-approved methods to control the fly.

More information on the fly is on OSU's website at www.spottedwing.org. The site features guides to identify the fly, advice for gardeners and commercial growers, and updates on OSU's research. It also contains links to the following guides published by the OSU Extension Service:

OSU's partners in the spotted wing drosophila project include the Oregon Department of Agriculture, Washington State University and the University of California, Davis. The work is funded by a $5.8 million grant from the USDA.


Vaughn Walton, 541-737-3485;

Peter Shearer, 541-386-2030 ext. 215;

Amy Dreves, 541-737-5576;

Bernadine Strik, 541-737-5434

Multimedia Downloads

Spotted wing drosophila

Small and stone fruits are preferred foods of the spotted wing drosophila, an invasive pest that first arrived in the U.S. in 2008. (Photo by Vaughn Walton.)