OREGON STATE UNIVERSITY

college of agricultural sciences

“Eve” and descendants shape global sperm whale population structure

NEWPORT, Ore. – Although sperm whales have not been driven to the brink of extinction as have some other whales, a new study has found a remarkable lack of diversity in the maternally inherited mitochondrial DNA within the species.

In fact, the mitochondrial DNA from more than a thousand sperm whales examined during the past 15 years came from a single “Eve” sperm whale tens of thousands of years ago, the researchers say.

Results of the study are being published this week in the journal Molecular Ecology.

While the exact origins of this sperm whale “Eve” remain uncertain, the study shows the importance of her female descendants in shaping global population structure, according to Alana Alexander, a University of Kansas Biodiversity Institute researcher who conducted the study while a doctoral student at Oregon State University.

“Although the male sperm whale is more famous in literature and cinema through ‘Moby Dick’ and ‘In the Heart of the Sea,’ the patterns in mitochondrial DNA show that female sperm whales are shaping genetic differentiation by sticking close to home,” Alexander said.

Working in the genetic lab of Scott Baker, associate director of Oregon State’s Marine Mammal Institute, Alexander combined DNA information from 1,091 previously studied samples with 542 newly obtained DNA profiles from sperm whales. The new samples were part of a global sampling of sperm whale populations made possible by the Ocean Alliance’s “Voyage of the Odyssey,” a five-and-a-half year circumnavigation of the globe, including some of the most remote regions of the world.

The new sampling, including sperm whales from the previously un-sampled Indian Ocean, revealed global patterns of genetic differentiation and diversity.

“Sperm whales have been in the fossil record for some 20 million years,” said Baker, a co-author on the study, “so the obvious question is how one maternal lineage could be so successful that it sweeps through the global population and no other lineages survive? At this point, we can only speculate about the reasons for this success, but evolutionary advances in feeding preferences and social strategies are plausible explanations.”

The researchers say female sperm whales demonstrate strong fidelity to local areas, and both feeding habits and social structure are important to determine to better manage the species. “There is a real risk of long-term declines in response to current anthropogenic threats, despite the sperm whale’s large worldwide population,” the authors wrote.

“One concern is that this very strong local fidelity may slow expansion of the species following whaling,” said Baker, a professor of fisheries and wildlife who works at OSU’s Hatfield Marine Science Center in Newport, Oregon. “The Sri Lanka sperm whales, for example, don’t seem to mix with the Maldives whales, thus local anthropogenic threats could have a negative impact on local populations.”

The researchers note that while males are important for describing patterns in the nuclear DNA of sperm whales, ultimately the females shape the patterns within the species’ mitochondrial DNA.

“Although there is low mitochondrial DNA diversity there are strong patterns of differentiation, which implies that the global population structure in the sperm whale is shaped by females being ‘home-bodies’ – at the social group, regional and oceanic level,” Alexander said.

The study was funded by a Mamie Markham Award and a Lylian Brucefield Reynolds Award from the Hatfield Marine Science Center; a 2008-11 International Fulbright Science & Technology award to Alexander; and co-funded by the ASSURE program of the Department of Defense in partnership with the National Science Foundation REU Site program. Publication of the paper was supported in part by the Thomas G. Scott Publication Fund.

Other authors include Debbie Steel of OSU’s Marine Mammal Institute; Kendra Hoekzema, OSU Department of Fisheries and Wildlife; Sarah Mesnick, NOAA’s Southwest Fisheries Science Center; Daniel Engelhaupt, HDR Inc.; and Iain Kerr and Roger Payne, Ocean Alliance.

Story By: 
Source: 

Scott Baker, 541-867-0255, scott.baker@oregonstate.edu;

Alana Alexander, 785-864-9886, alana.alexander@ku.edu

Multimedia Downloads
Multimedia: 

 

 

This photo of a sperm whale pod was taken by Gabriel Barathieu: commons.wikimedia.org/wiki/File:Sperm_whale_pod.jpg

Vitamin E protects critical nutrient, prevents neurologic damage and death in embryos

CORVALLIS, Ore. – Researchers have discovered that a dietary deficiency of vitamin E in laboratory animals can cause significant neurological impairment in developing embryos, as well as physical abnormalities and embryonic death.

The study suggests that one mechanism leading to this damage may be loss of the role vitamin E plays in protecting levels of DHA, one of the most important of the omega-3 fatty acids that plays a crucial role in brain and cellular development.

The work, by scientists in the Linus Pauling Institute at Oregon State University, was done with zebrafish, a vertebrate that has neurologic development very similar to humans. They also have dietary needs that are more similar to humans than some other animal models.

In these fish, vitamin E-deficient embryos did not respond correctly to visual cues, had severe physical abnormalities as early as two days after fertilization, and many died before the end of five days.

The findings were published in Redox Biology, in work supported by the National Institutes of Health and the National Science Foundation.

They take on special significance, researchers say, because more than 90 percent of the adults in the United States who do not take supplements have diets deficient in vitamin E.

“DHA in a developing embryo is very important for cell signaling and membrane development,” said Melissa McDougall, an OSU graduate research assistant in the Linus Pauling Institute and the College of Public Health and Human Sciences, and lead author on this publication.

“Our research showed that adequate levels of vitamin E are important in preventing depletion of DHA in the embryo.

“Without enough DHA, there was also evidence for disruption of the structural integrity of cell membranes as a whole. It appears that vitamin E protects these critical lipids, such as DHA, from excessive depletion that can cause physical and behavioral damage.”

The study showed loss of locomotor activity in vitamin E-deficient embryos as a measure of impaired behavior. Vitamin E-deficient embryos were 82 percent less responsive to a light/dark stimulus.

Past research done elsewhere with rodents, McDougall said, has correlated low DHA levels with less memory and intelligence, and one study in Bangladesh with vitamin E-deficient pregnant women showed a higher level of miscarriage.

The recommended daily allowance of vitamin E for human adults is 15 milligrams a day, and the typical American diet rarely provides that. Vitamin E is most common in nuts, seeds, some leafy greens like spinach, and a few varieties of vegetable oils like sunflower and canola. Low-fat diets also present a special challenge in getting enough vitamin E.

Not all pre-natal vitamins even include vitamin E, McDougall said, although some of the better ones are now including not only vitamin E but also supplements of DHA, a nutrient most common in fatty fish. It’s worth noting, she said, that vitamin E cannot serve its role in protecting DHA if there is inadequate dietary DHA to begin with.

Most human brain development occurs during pregnancy, and some of the most important neurologic development happens during the first trimester.

The corresponding author on this publication was Maret Traber, the Helen P. Rumbel Professor for Micronutrient Research in the Linus Pauling Institute. Other collaborators were from the OSU College of Pharmacy, the Sinnhuber Aquatic Research Laboratory, the OSU Department of Environmental and Molecular Toxicology, and the OSU Environmental Health Sciences Center.

 

Story By: 
Source: 

Maret Traber, 541-737-7977

maret.traber@oregonstate.edu

Multimedia Downloads
Multimedia: 

Zebrafish
Zebrafish

Study finds lack of diversity among fisheries scientists

CORVALLIS, Ore. – Researchers who study fish put a high value on biodiversity in the field, yet a new study found a surprising lack of diversity among fisheries scientists themselves.

According to the 2010 United States Census, 51 percent of the people in the U.S. are women. That same year, a study of Ph.D. students in the biological sciences documented that 52 percent of the students pursuing doctorates were women – roughly the same percentage.

However, the new study by researchers at Oregon State University and the U.S. Forest Service found that roughly even split soon disappears – in both federal government positions and in academic institutions. The researchers found that 74 percent of federal fisheries scientists or managers are men, as were 73 percent of the university assistant professors, 71 percent of associate professors and 85 percent of full professors.

The lack of diversity is even more pronounced when analyzed by race. In 2010, the U.S. population was 64 percent white, and participation in biological sciences Ph.D. programs was 69 percent white. Yet only roughly 10 percent of all fisheries science, manager and faculty positions were occupied by minorities.

Results of the study are being published this week in the journal Bioscience.

“It is clear that the fisheries science culture is one dominated by white men,” said Ivan Arismendi, an Oregon State University research faculty scientist and lead author on the study.  “There has been a lot of concern expressed in recent years about diversity, but the numbers don’t seem to reflect that concern. It is important to begin turning the process today because the hiring we’re doing now will last a generation.”

Brooke Penaluna, a research fish biologist with the U.S. Forest Service’s Pacific Northwest Research Station and co-author on the study, said the reasons for the disparity are not completely clear.

“We are graduating women on a 50-50 basis in the biological sciences, but the hiring rate is not keeping pace with the degree rate,” Penaluna said. “For some women, it may be the biological clock butting up against the timetable of career advancement. That doesn’t explain the disparity among minorities.

“We need to look more closely at possible institutional biases. Women, for example, have fewer professional publications and are not asked as often by senior-level scientists to publish. And some federal positions may be in geographic locations that are not attractive to all candidates. We need to create environments that are welcoming so people want to stay – and those conversations can be uncomfortable.”

The authors suggest diversity training and a diverse composition of search committees at both the federal and academic institution levels, as well as increasing the pool of female and minority candidates, and programs to insure their success and career advancement.

At Oregon State University, 28 percent of faculty members in fisheries science are women and 16 percent are non-white.  In December of 2015, OSU named Selina Heppell as head of the Department of Fisheries and Wildlife, the first female to lead the unit in its 80-year history.

Story By: 
Source: 

Sources: Ivan Arismendi, 541-750-7443, ivan.arismendi@oregonstate.edu;

Brooke Penaluna, 541-758-8783, brooke.penaluna@oregonstate.edu

Study shows forest thinning changes movement patterns, habitat use by martens

CORVALLIS, Ore. – Scientists who for the first time used global positioning system (GPS) telemetry to monitor the movements of reclusive Pacific martens have discovered that these fierce, tiny mammals tend to avoid open stands of trees resulting from forest thinning.

That could put conservation efforts to protect martens at odds with modern forest management, but the researchers say there is a prescription that may work for both interests: maintaining forest thinning at lower elevations, which are less favored by martens, and preserve more high-elevation forests – which are at less risk for catastrophic wildfire – as complex, marten-friendly stands.

Results of the research, which was conducted in northern California, have just been published in the Journal of Wildlife Management.

“There are two main reasons that martens avoid open forests,” said Katie Moriarty, a post-doctoral research biologist with the U.S. Forest Service, who conducted the research as a doctoral student at Oregon State University. “Martens eat a lot of food – up to a quarter of their body weight a day. It would be like you eating 100 hamburgers. They need downed logs and dense sapling cover to hunt successfully.

“Since they are the size of a gray squirrel, the woods are a dangerous place. They need to avoid being eaten. And for them, a wide-open forest is like being dropped into Jurassic Park filled with velociraptors. They just won’t stay in those areas.”

The study is important because Pacific martens are considered an indicator species for ecosystem health, said Clinton Epps, an associate professor in OSU’s Department of Fisheries and Wildlife and co-author on the study. The key to the research was the use of GPS to observe a finer scale of the martens’ movements.

“We were able to collect the locations of tagged martens so frequently that we could infer their movements through tree stands rather than relying on a typical radio telemetry study,” Epps said. “There was clear evidence that their movement is affected by forest characteristics in different seasons.

“The spatial configuration of habitat is very important in these systems, even at the scale of an individual animal’s movement. The martens typically avoided simplified stands and they behaved differently if they used them.”

Much of the research was conducted in Lassen National Forest, which has the lowest documented annual survival rates for martens in North America – about 37 percent of them die each year. Forest lands are actively thinned, Moriarty said, although there is no established link between the survival rate and forest management practices. “We can’t assume a causal relationship,” she said.

What the researchers can document is how martens move through different forest types.

“Martens strongly selected complex forest stands over simple stands and openings,” said Moriarty, who is with the Forest Service’s Pacific Northwest Research Station in Olympia, Washington. “Their movements were slower and more sinuous in complex stands with lots of cover. When they were in the open, their movements were more erratic and linear. Those altered patterns of movement in open forests appear to negatively affect the ability of martens to forage without increase risk of predation.”

Martens are one of the smaller members of the weasel family, weighing between one and two-and-a-half pounds – and they look something like a cross between a fox and a mink. Martens are “smaller than a Chihuahua,” Moriarty said, “but have the attitude of a pit bull. They really have a little man’s complex.”

Small but fierce predators, martens feast on snowshoe hare, chipmunks, voles and other small mammals, and also consume bird eggs and berries. They can survive rugged winters with snow more than a dozen feet deep.

“If martens are thriving in an area, that usually is a sign of a healthy ecosystem,” Moriarty said.

Moriarty’s work has paid off in more than one way. In 2008, while studying martens in Tahoe National Forest, she gathered photographic evidence of a wolverine – the first sighting of the animal in California in 75 years.

The marten research was funded by Lassen National Forest with assistance from the Pacific Southwest Research Station and OSU’s Department of Fisheries and Wildlife.

Story By: 
Source: 

Katie Moriarty, 360-753-7716, kmoriarty02@fs.fed.us;

Clint Epps, 541-737-2478, Clinton.epps@oregonstate.edu

Southern right whales slowly rebounding, but still decades away from full recovery

NEWPORT, Ore. – A new study has determined that right whales in the Southern Hemisphere were once more abundant than previously thought, making their full recovery from near-extinction another 50 to 100 years away.

An international team of scientists using a combination of catch records from 19th-century logbooks and modern computer modeling techniques concluded that as many as 40,000 right whales once inhabited the waters near New Zealand before whaling drove them to the brink of extinction. As few as 20 mature females were estimated to have survived into the beginning of the 20th century.

Results of the study are being published this week in the journal Royal Society Open Science.

“This is the first time we have been able to estimate the pre-whaling abundance for this population of right whales before they were nearly decimated,” said Scott Baker, associate director of the Marine Mammal Institute at Oregon State University, and co-author on the study. “Only a handful of whales survived, and those were threatened again in the 1960s by illegal Soviet whaling.

“The waters around New Zealand have been depleted of right whales for nearly 200 years,” added Baker, who works out of OSU’s Hatfield Marine Science Center in Newport, Ore. “We have little idea of the ecological role they played prior to whaling, or how they may contribute to ecosystems changes as their population slowly recovers.”

Baker and co-author Nathalie Patenaude initiated the decade-long study of the remnant New Zealand right whale population in 1995, in part because the region has one of the best historical catch records from whaling logbooks and other sources. Southern right whales were particularly vulnerable to exploitation because they are slow swimmers with strong fidelity to sheltered bays for calving, making them “predictable and easy targets,” the authors note.

The term “right whale” was coined because they were so easy to hunt.

“Once we had a good idea about the likely range of catches, we could do a full reconstruction using current estimates of abundance and population increase to measure the population’s trajectory through time and how large it was,” said Jennifer Jackson, lead author on the paper. Jackson, a former post-doctoral fellow with Baker at Oregon State, is now with the British Antarctic Survey.

The researchers’ analysis concluded that prior to whaling right whales were abundant in New Zealand waters, numbering about 28,000 to 33,000 individuals. If most of the right whales harvested in the southwest Pacific Ocean were New Zealand whales, the population rises to 47,000 whales.

“Put in context, the estimated size of the current New Zealand population is less than 12 percent of these numbers,” Jackson said.

Catch records of whaling from the early 19th-century were patchy and required a bit of detective work, said Emma Carroll of St. Andrews University, also a co-author on the study.

“We went back through early colonial New Zealand historical records and whaling logbooks, and even had to cross-reference what ships had been seen where to get an understanding of the scale of operations during the winter in New Zealand,” Carroll said.

Funding for the study was provided by the Royal Society of New Zealand, The Lenfest Ocean Program of the Pew Charitable Trust, Oregon State University’s general research fund, and the New Zealand National Institute of Water and Atmospheric Research (NIWA).

Story By: 
Source: 

Scott Baker, scott.baker@oregonstate.edu; 541-867-0255

Award-winning food writer and critic Ruth Reichl to speak at OSU Feb. 17

CORVALLIS, Ore. – Noted national food writer, critic and television personality Ruth Reichl will speak at Oregon State University on Feb. 17 as part of the Provost’s Lecture Series.

Reichl’s talk, “American Food Now: How We Became a Nation of Foodies,” begins at 7:30 p.m. in The LaSells Stewart Center, 875 S.W. 26th St., Corvallis. The event is free and open to the public. Doors open at 6:30 p.m., and a book-signing will follow.

Reichl was editor in chief at “Gourmet” from 1999 until the magazine’s closure in 2009. Before joining the magazine, she was restaurant critic at The New York Times and at the Los Angeles Times, where she also was food editor.

She has served as a judge on the television show “Top Chef Masters” on Bravo and hosted three Food Network specials that covered her culinary exploits in New York, San Francisco and Miami. Her 10-episode PBS show, “Gourmet’s Adventures with Ruth,” highlighted her trips to the best cooking schools on five continents with famous foodie friends such as actress Dianne Wiest and Chef Dean Fearing.

Reichl is the author of a novel and several memoirs. Her most recent work is “My Kitchen Year: 136 Recipes That Saved My Life,” a cookbook published in September 2015. She is the recipient of six James Beard Awards. The awards, considered the highest honor for food industry professionals in America, cover all aspects of the food industry, including cookbook authors and food journalists; chefs and restaurants; and restaurant designers and architects.

Reichl’s visit is supported by the Wait and Lois Rising Endowment and the College of Agricultural Sciences at OSU, which has become a leader in the nation’s food culture. The college is a strong partner with Oregon’s rapidly growing food and beverage industries.

Born and raised in New York City’s Greenwich Village, Reichl moved to Berkeley, California, in the early 1970s, where she played an integral role in America’s culinary revolution as chef and co-owner of The Swallow Restaurant.

Co-sponsored by the Office of the Provost and the OSU Foundation, the Provost’s Lecture Series brings renowned speakers to the Oregon State University community to engage in thought-provoking discussions on topics of cultural and global significance.

Story By: 
Source: 

University Events, 541-737-4717, events@oregonstate.edu

Multimedia Downloads
Multimedia: 

Ruth Reichl

Ruth Reichl

Over-hunting in Amazon threatens global carbon budget

CORVALLIS, Ore. – The vast forests of the Amazon store enormous amounts of carbon that help moderate the Earth’s temperature, but a new study shows that this carbon-storing capacity is being threatened by over-hunting.

Wide-scale reduction of fruit-eating large mammals – especially primates and tapirs – is changing the way seeds are dispersed in the Amazon and changing the composition of forests, the researchers say.

Results of the study are being published this week in Proceedings of the National Academy of Sciences.

“Large mammals including spider monkeys and wooly monkeys are fruit-eaters that historically have made up most of the frugivore (or fruit-eating) biomass in these forests,” said Taal Levi, an Oregon State University ecologist and author on the study. “There are many tree species with large seeds that rely on these primates to spread seeds through the forest.

“These large-seeded fruit trees are also slow-growing and populate the forest with dense wood that sequesters a great deal more carbon than in typically stored in trees dispersed by wind or smaller frugivores,” Levi added.

As technology has advanced and firearms have spread through tropical forests, hunting success has improved and these primates have been extirpated from vast areas, Levi pointed out.

“When large primates and tapirs, which are the largest frugivores in the neo-tropics, are lost, forests are eventually populated by plants whose seeds are more likely dispersed by wind, rodents or birds,” Levi said. “It is not the same aggregation of plants and it is affecting the Amazon’s carbon-storing ability.”

In fact, the researchers say, over-hunting occurs over much larger areas than the total area of the Amazon forest affected by deforestation. A relatively small loss in the amount of carbon stored in trees can lead to enormous declines in the amount of carbon stored in these vast forests.

The analysis of 166 wildlife surveys across the Amazon basin documents the loss of large primates. Levi’s computer model projects that this will result in more than three out of four plots losing forest biomass, with a (conservatively) estimated average loss of 2.5 to 3 percent.

Tapirs are another key seed disperser that is sensitive to over-hunting. When tapirs are lost in addition to large primates, nearly nine out of 10 plots will lose forest biomass with the loss (conservatively) projected to average about 5.8 percent.

“The loss of 2.5 to 5.8 percent of biomass may not sound like a lot,” Levi said, “but in an area as vast as the Amazon, the impact could be huge – a projected 313 billion kilograms of carbon not being absorbed.”

Levi said the economic value of such a loss on the world carbon markets could range between $5.91 trillion and $13.65 trillion.

The researchers studied data from 2,345 one-hectare forest plots scattered across the Brazilian Amazon containing nearly 130,000 large trees. Simulations showed that 77 to 88 percent of these plots will lose above-ground forest biomass when the forests are over-hunted and trees that require large primates or tapirs to regenerate are replaced by other trees on the same plots.

Carlos Peres, a research ecologist with the University of East Anglia and lead author on the study, said the research uncovers an important – and perhaps under-appreciated – link between wildlife and climate change.

“Amazonian forest wildlife has been declining through a combination of habitat destruction, habitat degradation and overhunting since the 1950s,” Peres said, “but until now there was a poor understanding of the status of wildlife populations in hunted forests that otherwise remain intact and free of human disturbance.

“We show that dense-wooded, large-seeded Amazonian tree species are replaced by light-wooded trees that produce smaller seeds, which continue to be dispersed in over-hunted forests by more resilient smaller mammal and bird species,” he added.

Levi said trying to manage the forests by manually dispersing seeds would be impractical because of the vastness of the Amazonian forests. There also is evidence that seeds that go through the digestive tract of large mammals are more likely to germinate having been cleansed of flesh that attracts fungal pathogens and other natural enemies.

“Seeds that fall from trees contain a lot of pulp,” Levi said, “and in tropical climates become excellent petri dishes for fungus to colonize.”

The researchers say the key to protecting optimal forest composition is to recognize the importance of hunting and better manage it.

“These findings highlight an urgent need to manage the sustainability of game hunting in both protected and unprotected tropical forests, and place full biodiversity integrity, including populations of large frugivorous vertebrates, firmly in the agenda of reducing emissions from deforestation and forest degradation (REDD+) programs,” the authors noted in the article.

Other authors on the PNAS article are from the National Institute of Amazonian Research and Fiocruz Amazonia.

 

Story By: 
Source: 

Taal Levi, 541-737-4067, taal.levi@oregonstate.edu

Multimedia Downloads
Multimedia: 

 

 

 

 

 

Photo of grey wooly monkey (by Carlos Peres): https://flic.kr/p/Crcxvt

Selina Heppell named head of OSU Fisheries and Wildlife Department

CORVALLIS, Ore. – Selina Heppell, an Oregon State University conservation biologist, has been named head of the Department of Fisheries and Wildlife in OSU’s College of Agricultural Sciences.

She is the first woman to hold that position in the department’s 80-year history.

Heppell succeeds former department head W. Daniel “Dan” Edge, who earlier this year was named associate dean of the College of Agricultural Sciences. A faculty member in fisheries and wildlife since 2001, Heppell has served as associate and interim head of the department.

“Selina has provided terrific leadership during her term as interim head of the Department of Fisheries and Wildlife and I am delighted that she will continue to lead the department, which is one of the best in the nation,” said Dan Arp, dean of the College of Agricultural Sciences. “She is a distinguished researcher and teacher with a demonstrated commitment to excellence.”

Heppell will lead one of the largest natural sciences programs at OSU, with more than 600 registered undergraduate majors in Corvallis and online, 180 graduate students and eight degrees and certificates. There are about 140 (non-student) employees in the department, which brought in about $7.4 million in research grants and contracts in 2015.

“We’re a big family,” Heppell said, “and I am very happy to work with such a fantastic group of faculty, staff and students.”

Heppell came to OSU after a post-doctoral appointment at the Environmental Protection Agency in Corvallis. Much of her research has been devoted to the study and protection of some of the slowest-growing animals in the sea, including sturgeon, sea turtles, sharks and West Coast rockfish. She uses computer models and simulations to examine how these species respond to human impacts – and how they may respond to future climate change.

She shares a laboratory with her husband, Scott Heppell, on campus and at OSU’s Hatfield Marine Science Center in Newport. The Heppells teach a conservation biology course in Eastern Europe, and have done field research on fish in the Caribbean, in addition to their West Coast research.

Story By: 
Source: 

Selina Heppell, 541-737-9039, Selina.Heppell@oregonstate.edu;

Dan Arp, 541-737-2331, dan.arp@oregonstate.edu

Multimedia Downloads
Multimedia: 










selinaheppell2015
OSU's Selina Heppell

OSU applying to feds for permission to conduct industrial hemp research

CORVALLIS, Ore. – Faculty in the Oregon State University College of Agricultural Sciences have submitted an application to the federal Drug Enforcement Administration seeking permission to conduct research on industrial hemp.

OSU faculty members believe there is interest within Oregon for industrial hemp production and related research, as well as potential to promote the crop’s agricultural and economic opportunities.

Jay Noller, head of the crop and soil science department in the College of Agricultural Sciences at OSU, said the university hopes to secure approval from the DEA and the Oregon Department of Agriculture to begin approved industrial hemp research trials for the 2016 growing season. The research likely would focus on learning more about the crop’s productivity, yield and growing conditions in western Oregon.

“We still need to secure funding for the research once the other hurdles are cleared,” Noller said. OSU expects that the results of peer-reviewed research regarding industrial hemp will be available in three to five years and that research planned over that time frame will require as much as $2.5 million in funding.

The growing and distribution of industrial hemp is regulated by the federal Controlled Substances Act, according to Steve Clark, OSU vice president for University Relations and Marketing. That act precludes Oregon State faculty from performing research that involves the possession, use, or distribution of hemp – unless such research is in compliance with already established federal guidelines.

“Thanks to the leaders of the Oregon Congressional delegation, the federal 2014 Farm Bill provided important authority regarding hemp research,” Clark said. “A provision in the bill enables higher education institutions to conduct industrial hemp research if the institution is located in a state in which industrial hemp production is legal.”

Industrial hemp has many uses, proponents say, including paper, textiles, biodegradable plastics, fuel, and health and food products. It is a fast-growing plant that requires few pesticides, and it potentially could lead to replacing some environmentally harmful products.

Clark said the university’s decision to seek state and federal approval to conduct industrial hemp research will not extend to research related to the cultivation or propagation of marijuana.

Media Contact: 

Steve Clark, 541-737-3808, steve.clark@oregonstate.edu

Source: 

Jay Noller, 54-737-6187, jay.noller@oregonstate.edu

Study finds valley sites lost – and gained – about half of their bird diversity in 60 years

CORVALLIS, Ore. – A new study comparing bird communities six decades apart at five sites in Oregon’s Willamette Valley has documented the loss of roughly 50 percent of the bird species – yet at the same time, recorded almost the same number of new species.

The bottom line is that there has been little change in the number of species or diversity over 60 years, but a great deal of change in the specific bird species occupying the sites.

“Bird communities change naturally as the habitat changes,” noted Jenna Curtis, a doctoral student in fisheries and wildlife at Oregon State University’s College of Agricultural Sciences and lead author on the study. “Some of the change is natural, as plants grow, while in other instances the habitat is altered through agriculture, urbanization or other human activities.”

Birds increasing in association with human activity and favorable conditions include Anna’s hummingbird, European starling, brown-headed cowbird, and house finch.

Some of the birds that appear to be decreasing because of regional environmental changes include Nashville warbler, chipping sparrow, and the northern rough-winged swallow.

Some species have experienced little change in numbers from one master’s study to another over 60 years, including killdeer, several woodpecker species, American robins, song sparrows, red-winged blackbirds, Steller’s jays, American crows, and others.

Results of the research have been published in the journal, PeerJ.

The study is unusual because there are few highly detailed, historic surveys of bird communities on a local level – especially ones that looked at multiple habitats, including coniferous forest, oak woodland, marsh, mixed deciduous, riverine/riparian and brushy. But in 1953, Richard Eddy completed and published a master’s thesis at Oregon State in which he surveyed and documented bird species at six sites within 50 kilometers of Corvallis.

As part of her own master’s study, Curtis located five of Eddy’s original six sites and conducted a new survey, comparing the richness and diversity of bird species – during many of the same times of year as Eddy.

“Quite a bit has changed in six decades,” Curtis said. “One site, which used to be known as Murphy’s Beach, is now a sports recreation facility at Crystal Lake Park near Corvallis. It used to be very barren, with old roads and chest-high grass until a flood in the 1960s completely altered the landscape. Now there are large cottonwood trees and soccer fields. Bird populations change accordingly.”

Another site was off Bruce Road on Highway 99 between Corvallis and Monroe. When Eddy did his survey, much of the marsh was grazed by cattle. With new water management protocols, this area within Finley Wildlife Refuge is now a haven for waterbirds.

W. Douglas Robinson, the Mace Professor for Watchable Wildlife at OSU, has been conducting bird surveys in each county in Oregon to begin establishing new baselines for species diversity throughout Oregon by the year 2020. Human activities throughout western Oregon can influence bird populations at local sites, he said.

“There have been massive changes in agriculture resulting in larger fields and fewer pastures,” Robinson said. “As a result, species like pheasant, bobwhite, chipping sparrows and common nighthawks largely have disappeared throughout the valley. This study is wonderful because it is so rare to find such detailed information from 60 years ago and compare it to what is happening today. It helps us to better understand how birds respond to changes in landscape – both natural and human-caused.”

Curtis and Robinson say it isn’t clear whether climate change and drought have had a significant impact on bird species in western Oregon.

“That’s why we need to gather more baseline data,” Robinson said, “so that we know what is ‘normal’ and can identify deviations. There are some signals, for example, that there may be changes in the insect populations, which would affect a number of bird species. But we need more data there, too.”

Persons interested in volunteering for the Oregon 2020 project can find more information at: http://oregon2020.com/

The Curtis-led study was supported by OSU through the Bob and Phyllis Mace Watchable Wildlife Professorship and a scholarship from the Santiam Fish and Game Association.

Story By: 
Source: 

 

Jenna Curtis, 503-559-6094, jenna.curtis@oregonstate.edu;


Doug Robinson, 541-737-9501, douglas.robinson@oregonstate.edu 

Multimedia Downloads
Multimedia: 

 

 

 

 

Photo at left: A Nashville warbler (photo by Frank Lospalluto). Photo link: https://flic.kr/p/yFrKg9

 

 

 

 

 

 

 chippingsparrow

  A chipping sparrow (photo by Frank Lospalluto)

 

 

annashummingbird

Anna's hummingbird (photo by Frank Lospalluto)