
MODELS FOR VARIABLE RECRUITMENT (continued)

Fitting Real Data to the Spawner-Recruit Models

One strategy for fitting these spawner-recruit models to real data is to linearize the models by
means of some suitable transformation and then apply standard linear regression methods.  This
was routine practice in the past when computers were unavailable.  Better techniques are available
now, but the linearization approach is worth exploring because it illustrates some important general
lessons.

The Linearized Ricker SR Model

Divide both
sides by S.R a S⋅ exp b− S⋅( )⋅= ==>

R

S
a exp b− S⋅( )⋅=

Apply the logarithm
function to both sides.

==> ln
R

S







ln a( ) b S⋅−=

Y  = A + B·X We get a linear equation.

To estimate the parameters a and b, one can regress ln(R/S) against S.  The parameter estimates
are

 ^  ^

The estimate for parameter a will be subject to the logarithmic transformation bias that we
examined in one of the early lectures.

Explore the Excel demonstration of fitting the Ricker SR model 
with data from Table 11.6 of Ricker (1975).

The Linearized Beverton and Holt SR Model
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To estimate the parameters c and d, one can regress 1/R against 1/S, or S/R against S.  In the first
case the parameter estimates are

 ^  ^

Explore the Excel demonstration of fitting the Beverton & Holt SR 
model with data  from Table 11.8 of Ricker (1975).

These linearization methods are quick and easy, but it is likely that the parameter estimates will be
biased because the linearized models violate one or more of the assumptions that underlie the
method of linear regression.

a exp intercept( )= b slope−=

c slope= d intercept=
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A Brief Review of Linear Regression Theory

The basic model of linear regression is of the following form.
 

Y = a + b·X + ε

where parameters a and b are constants, Y is the dependent variable, X is the independent
variable, and ε is an error term to account for discrepancies between the observed values of Y and
those values predicted by the model.
 
The following assumptions underlie linear regression:

The variables Y and X are related as specified in the model.•

X

Y
We can fit a straight line to
any XY data set, but the
results may be meaningless
if the underlying
relationship is not linear.

The residuals (the ε values) are normally distributed with zero mean and constant•
variance.

The residuals are mutually independent.•

The X values are known without error.•

If we look at either of the linearized stock-recruit models, we can see that they violate at least one
of these assumptions.  For example, if R for a given level of S is a normally distributed random
variable, then (1/R) is not normally distributed, and neither is ln(R/S) or (R/S).  Also, there are
problems with the assumption of independent residuals because usually the R value in one data
pair becomes the S value in the next pair.  Furthermore, the independent variable S is never known
exactly.

One partial solution is to use nonlinear least squares regression  and fit the original forms of
the models.

The Ricker Model: R a S⋅ exp b− S⋅( )⋅ ε+=

The Beverton & Holt Model: R
S

c d S⋅+
ε+=
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X

Y mean Y( )

mean X( )

As in linear regression, this method chooses those parameter values that minimize the residual

sum of squares  (Σε2) as the best parameter estimates.  In nonlinear regression, however, the
model is not a linear combination of the parameters.  Nonlinear regression will produce unbiased
parameter estimates even when the ε values are not normally distributed and do not have constant
variance (assumption 2).  However, this method will not properly account for lack of independence
in the residuals (assumption 3).  Also, it does not account for the influence of measurement error in
the independent (X) variables (assumption 4).

Geometric Mean Functional Regression

With spawner-recruit data we almost always have the problem of errors in both the dependent
variable (R) and the independent variable (S).  In this situation Ricker (1975) suggests using the
so-called geometric mean (GM) functional  regression.  The GM functional regression
essentially splits the difference between the two extremes cases, all the measurement error in Y
versus all the measurement error in X.  In the first case (all the measurement error in Y, which is
what we assume in the standard linear regression model), we regress Y on X and estimate the
slope parameter using the formula
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We get different predicted
regression lines depending
on whether we regress
Y on X or X on Y.

Y on X

GM Regression

X on Y

If all the measurement error is in X, then we would probably invert the model (i.e., regress X on Y)
and estimate the inverted slope parameter using
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In geometric mean functional regression we estimate the slope using
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This procedure has been criticized by statisticians, but it is used nevertheless by some fisheries
scientists.

Walters and Ludwig's Analysis of Fitting Spawner-Re cruit Data

The problem of fitting spawner-recruit data has been studied in detail by Walters and Ludwig
(1981) on the Supplemental Reading list.  Here is a brief summary.

Suppose the true spawner-recruit relationship is given by

S
t 1+ S

t
A⋅ exp u

t( )⋅=

where ut is environmentally induced random error that is normally distributed with mean zero and

variance σu
2.

We do not observe the S values exactly, however.  Instead we see

S'
t

S
t

exp v
t( )⋅=

where vt is normally distributed random measurement error with mean zero and variance σv
2.  In

this case we have both process error , (the ut values) and measurement error  (the vt values).
Statisticians sometimes describe this as an errors in variables  problem.  
 
Notice that in this simplified spawner-recruit model there is no density dependence. The model is
strictly linear.

Walters and Ludwig describe this stock as being severely overexploited because all the observed
values for stock size are close to the origin, well past the maximum equilibrium catch.  In a less
heavily exploited stock the true values for (St+1,St)  would show some curvature.
 
The following graphs illustrate the difference between the true spawner-recruit relationship and
what we observe.
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True SR Relationship
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Explore the Excel demonstration of the effects of changing 

σu
2 and σv

2 in the Walters and Ludwig model.

Walters and Ludwig go on to develop estimators for the Ricker model that account for the problems
caused by simultaneous process and measurement errors.  They use the following form of the
Ricker model,

Normally distributed
environmental noise.R S exp a b S⋅+ u+( )⋅= where u is  N 0 σv

2,
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= a b S⋅+ u+=  .

With ordinary least squares regression the estimator for the slope parameter is

^ Cov S Q⋅( )

Var S( )

This estimator is a consistent estimator  only if the values for S (and therefore R , because
St+1=Rt ) are measured without error.  In mathematical statistics the notion of consistency has to do
with whether an estimator will on average produce increasingly precise estimates as the sample
size increases.  

For example, suppose Θ' is an estimate of some parameter Θ.  In general the estimate Θ' will
depend on the number of observations from which it was calculated.  The formula for Θ', the
estimator for Θ, is said to be consistent if the mean square error of the estimates approaches zero
as the sample size (n) approaches infinity.

∞n
E Θ'n Θ−( )2



lim

→
0=

b =
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Walters and Ludwig prove that the following estimator is consistent.

^
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2⋅ B3⋅+
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
=

They compare their new consistent estimator with the least-squares estimator and draw the
following conclusions.  When there is weak density dependence (i.e., parameter b is near zero),
then observation errors cause an overestimate of the amount of density dependence, which could
lead to overexploitation.  When there is strong density dependence (i.e., -b  is large), then
observation errors cause an underestimate of the amount of density dependence, which could also
lead to overexploitation.
 
In general, many of the estimators that we use in fisheries science do not take proper account of
measurement error in the independent variable.  For example, errors in age determination will
affect estimates of mortality rates from catch curve analyses and estimates of growth rates from
length-at-age relationships.

Beverton and Holt's Derivation of the Ricker SR Mod el

In our derivation of Ricker's spawner-recruit model, the curvature in the graph of R(S) arose
because a portion of the mortality on the cohort was proportional to the size of the parental
population.  Beverton and Holt (1957) give an alternative mechanism that also results in a Ricker
type of spawner-recruit model.  Here is a brief outline of the logic.

If predation is very high while young fish are in some critical size range, then the losses to the
population will depend on the rate at which the young fish are able to grow out of the critical size
range.  Assume that predation occurs at instantaneous rate M1 when the fish in a cohort are
younger than tc and hence weigh less than W(tc);  for fish between the ages of tc and tR the
instantaneous rate of natural mortality is M2.

The number of recruits is

R E0 exp M1− tc⋅( )⋅ exp M2− tR tc−( )⋅ ⋅=

R = fish that survive
to age tR 

Fraction surviving to
critical age tc

Fraction surviving
from age tc to tR

=  Eggs X X

Assume that the von Bertalanffy growth parameter W inf is proportional to the amount of food eaten,
which is inversely proportional to the density of larval fish.  The more fish there are, then the less
food there is per fish.  These relationshionships are summarized by the equations

Winf k
1

Food_Eaten⋅=
k
2

Larval_Fish_Density
=

where k1 and k2 are constants of proportionality.  Now assume that growth is proportional to the
von Bertalanffy growth parameter Winf, which is approximately valid for short time spans and at low
weights.  The amount of time required to grow to W(tc) is inversely proportional to W inf and directly
proportional to the larval fish density and directly proportional to the amount of eggs spawned.

tc

k
3

W inf
=

k
4

Food_Eaten
= k

5
Larval_Fish_Density⋅= k

6
E0⋅=
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Let a' exp M2− tR⋅( )= and b' E0⋅ M1 M2−( ) tc⋅=

We can rearrange the earlier equation for R and substitute in a' and b'.

==> R a' E0⋅ exp b'− E0⋅( )⋅=

If E0 is proportional to the parental stock size, then this equation has the same form as a Ricker
spawner-recruit model.

Chapman's Salmon Spawner-Recruit Model

Chapman (1973), on the Supplemental Reading list, developed a spawner-recruit model for salmon
that has a shape very similar to the Beverton and Holt model.  Here is a brief overview of how it
works.

Salmon redds may overlap and late-arriving spawners may destroy all or part of the earlier redds
as they prepare their own.  Suppose each redd covers an area a2.  On average the proportion of a
stream bed that is covered by redds is  equal to

1 exp π a⋅( )2−
S

A
⋅








−

where A is the total area of the stream bed.  The model is analogous to the "coverage of an area
by randomly placed bombs."  The above relationship leads to the following spawner-recruit model

R k 1 exp h− S⋅( )−( )⋅=

where  h = ( π·a2 ) / A, and  parameter  k  accounts for density independent mortality and the
average number of eggs per redd.

Chapman's Spawner-Recruit Model.
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The Chapman spawner-recruit
model has the same basic
form as the von Bertalanffy
growth model and is very
similar in appearance to the
Beverton and Holt
stock-recruit relationship.

The slope of the curve at the
origin is k·h.
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Shepherd's Generalized Stock-Recruit Model

The following stock-recruit model is developed in Shepherd (1982), which is on the Supplemental
Reading list for our next major topic.
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When  S = 0 the slope  
dR

dS
a=  , which means that parameter a is the slope of the R(S) curve at the

origin.

The maximum value for R occurs when (and if)
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If β < 1, then R(S) is unbounded and has no finite maximum.  To see this, consider that if β is less

than1, then  
1

β 1−
0<  .  However,  
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β
=  , which implies that S must be less than zero.

R(S) cannot have a slope of zero for positve values of S if β is less than one.

This model with β < 1 is similar to a power law model

R a Sb⋅= with b 1<

If β > 1, then R(S) has a finite maximum and the model is similar to Ricker's spawner-recruit model.

If β = 1, then the model is equivalent to a Beverton and Holt stock-recruit model.
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Shepherd describes parameter K as the threshold stock size.  When S is greater than K, the
density dependence effects dominate the stock-recruit relationship.
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Semelparous versus Iteroparous Fish Stocks

Fish species such as Pacific salmon, which only spawn once and then die, are sometimes
described as semelparous  stocks.  Fish species such as Atlantic salmon, and most fishes other
than Pacific salmon, can and do spawn more than once in their lives.  They are sometimes
described as iteroparous  stocks.

With a semelparous stock it is relatively easy to describe in theory the mechanics whereby the
population adjusts to changed conditions, such as an increase in the harvest rate.  With an
iteroparous stock the mechanics are much more complicated because we need to account for
those parents that survived previous spawnings.

Semelparous Stock: S
1

R S
0( ) C−=

Iteroparous Stock: S
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R S
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Z0−
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1− e
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Furthermore, the different age classes will probably differ in the number of eggs that they lay,
because fecundity usually varies with size and age.

Supplemental Readings on Stock and Recruitment

Cushing (1973) discusses the role of various mechanisms such as density dependent fecundity,
growth and increased natural mortality on older fish.

Walters and Ludwig (1981) and Ludwig and Walters (1981) discuss in detail the problem of
measurement error.

Shepherd and Cushing (1980) develop a Beverton and Holt type of SR relationship from a model of
larval growth and survival in which the instantaneous rate of growth in weight is inversely
proportional to larval density.

Finally, the ICES Symposium "Fish Stock and Recruitment", Rapp. P.-v. Reun. 164, contains many
interesting and relevant papers on the subject of stock-recruit models, including the following on
the Supplemental Reading llist: Paulik (1973), Larkin (1973), Ricker (1973), and Gulland (1973).
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