Below is an equation that represents the elimination kinetics of a 1 gram i.v. bolus dose of a new antibiotic. Please use the information provided to answer questions 1 – 5. Circle your final answers.

\[C_p = 23 \text{ mg/L} e^{-\frac{0.23}{hr} \cdot t} \]

1. Does the above equation represent first-order or zero-order elimination? \(\text{FIRST-ORDER} \) (3 points)

2. What is the \(C_p \) at 9.0 hr after the dose was administered? \(\text{2.90 mg/L} \) (4 points)

3. What is the Area Under the Curve \(AUC_{0-\infty} \)? \(\text{100 mg.hr/L} \) (4 points)

4. What is the clearance, \(C_{Lp} \)? \(\text{10 L/hr} \) (4 points)

5. What is \(C_p \) 20 minutes after a 1.5 g i.v bolus dose? \(\text{0.032 g or 32 mg/L} \) (4 points)

For a single extravascular dose of a drug that exhibits monoexponential disposition and first order absorption, how do the following changes in absorption or disposition kinetics affect \(T_{max} \), \(C_{max} \) and \(AUC \) (3 points each).

6. \(C_{Lp} \) is increased, \(V_d \) unchanged, absorption kinetics are unchanged.

7. \(F \) is unchanged, \(k_a \) increased, Dose unchanged, disposition kinetics (\(C_{Lp} \), \(V_d \), \(k \)) unchanged.