§ 5.3 - Linear independence

Read Section 5.3 Try odd numbered problems.

Def: If $S = \{v_1, \cdots, v_r\}$ is a nonempty set of vectors in a vector space V and
$$k_1v_1 + k_2v_2 + \cdots + k_rv_r = 0$$
has only the trivial solution, then S is called *linearly independent*.
If there are other solutions, S is called *linearly dependent*.

Examples

- i, j, k in \mathbb{R}^3.
- $(2,1,3), (1,2,4), (5,4,10)$ in \mathbb{R}^3.
- $\begin{pmatrix} 2 & 1 & 5 & 0 \\ 1 & 2 & 4 & 0 \\ 3 & 4 & 10 & 0 \end{pmatrix}$ \sim $\begin{pmatrix} 1 & 0 & 2 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}$
- $\{1, x, x^2, \cdots, x^n\}$ in P_n

Theorem 5.3.1

A set S with two or more vectors is

(a) Linearly dependent \iff at least one of the vectors in S can be expressed as a linear combination of the other vectors.

(b) Linearly independent \iff no vector in S can be expressed as a linear combination of the other vectors.

Proof.

Theorem 5.3.2:

A finite set of vectors that contains the zero vector is linearly dependent.

(b) A set with exactly two vectors is linearly independent \iff neither vector is a multiple of the other.

Proof:

Geometric Determination in \mathbb{R}^2 and \mathbb{R}^3
Theorem

Let \(S = \{v_1, \cdots, v_r\} \) be a set of vectors in \(\mathbb{R}^n \). If \(r > n \), then the set is linearly dependent.

Proof:

Def: If \(f_1(x), f_2(x), \cdots, f_n(x) \) are \(n-1 \) times differentiable functions on \(\mathbb{R} \), then the determinant of

\[
\begin{vmatrix}
 f_1(x) & f_2(x) & \cdots & f_n(x) \\
 f'_1(x) & f'_2(x) & \cdots & f'_n(x) \\
 \vdots & \vdots & \ddots & \vdots \\
 f^{(n-1)}_1(x) & f^{(n-1)}_2(x) & \cdots & f^{(n-1)}_n(x)
\end{vmatrix}
\]

is called the Wronskian of the functions and is denoted \(W(x) \).

Theorem 5.3.4 If the functions \(f_1, f_2, \cdots, f_n \) have \(n-1 \) continuous derivatives on \(\mathbb{R} \), and if \(W(x) \) is not identically 0, then the functions form a linearly independent set in \(C^{(n-1)} \).

Proof: