Section 5.2 - Subspaces, Linear Combinations

Read Section 5.2 Try odd numbered problems.

Def: A subset W of a vector space V is a *subspace of V* if W itself is a vector space under the operations of addition and scalar multiplication defined on V.

Theorem 5.2.1 Let W be a nonempty subset of a vector space V. W is a subspace if and only if the following two conditions hold:

(a) u and v in $W \implies u + v \in W$

(b) k a scalar and $u \in W \implies ku \in W$

Proof:

Examples:

- Lines through the origin
- Symmetric or upper triangular matrices in M_{mn}
- Polynomials of degree $\leq n$

Theorem 5.2.2 If $Ax = 0$ is a homogeneous system of m equations in n unknowns, then the solution set is a subspace of R^n.

Def: A vector w is called a *linear combination* of vectors v_1, \cdots, v_r if there are scalars k_1, \cdots, v_r such that

$$w = k_1 v_1 + k_2 v_2 + \cdots + k_r v_r.$$

Examples:

Theorem 5.2.3: If v_1, \cdots, v_r are vectors in a vector space V, then

(a) The set W of all linear combinations of these vectors is a subspace of V.

(b) W is the smallest subspace of V containing these vectors.

Proof:

Def: If $S = \{v_1, \cdots, v_r\}$ is a set of vectors in a vector space V, the the subspace W of V described in the previous theorem is called the *space spanned by S*. We say the vectors v_1, \cdots, v_r span W.
Notation: $W = \text{span}(S) = \text{span}(v_1, \cdots, v_r)$

Examples:

Theorem 5.2.4 If $S = \{v_1, \cdots, v_r\}$ and $S' = \{w_1, \cdots, w_k\}$ are two sets of vectors in a vector space V, then $\text{span}(S) = \text{span}(S')$ if and only if each vector in S is a linear combination of vectors in S' and if each vector in S' is a linear combination of vectors in S.