2.2 - Determinants

Read 2.2 and try odd numbered problems.

We will take the following as our definition of determinants instead of the definition in Section 2.1

Def: If \(A \) is an \(n \times n \) matrix, let \([A]_{ij} \) denote the \(n-1 \times n-1 \) matrix obtained by deleting the \(i^{th} \) row and \(j^{th} \) column of \(A \).

Def: The determinant of a \(2 \times 2 \) matrix \(A = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \) is

\[ad - bc \]

and is denoted \(|A| = \begin{vmatrix} a & b \\ c & d \end{vmatrix} \).

Theorem 2.2.1 If \(A \) has a row or column of zeroes, then \(|A| = 0 \).

Also, \(|A| = |A^T| \)

Proof:

Def. An upper triangular matrix is an \(n \times n \) matrix with zeroes below the main diagonal. A lower triangular matrix is an \(n \times n \) matrix with zeroes above the main diagonal. A diagonal matrix is an \(n \times n \) matrix with zeroes off the main diagonal. All of these matrices are called triangular.
Theorem 2.2.2
The determinant of a triangular matrix is the product of the entries on the main diagonal.

Proof:

Examples:

Theorem 2.2.3 Effect of Elementary Row Operations
Let B be obtained from A by multiplying a row by a constant k. Then $|B| = k|A|$. Let C be obtained from A by interchanging two rows. Then $|B| = -|A|$. Let D be obtained from A by adding a multiple of one row to another. Then $|D| = |A|$.

Proof:

Theorem 2.2.4: (Determinants of elementary matrices E)
If E is obtained from I by interchanging two rows, $|E| = -1$. If E is obtained from I by adding a multiple of one row to another, $|E| = 1$. If E is obtained from I by multiplying a row by k, $|E| = k$.

Proof:

Note: the above results can be used to compute determinants by using row operations.

Examples: