1.6 - Systems of Equations and Invertibility

Read 1.6 and try odd numbered problems.

Theorem 1.6.1: Every system of linear equations has either one solution, no solutions or infinitely many solutions.

Proof: We just need to show that if the system has two solutions, then it has infinitely many.

Suppose $Ax = b$ had two solutions x_1 and x_2. Let $x_0 = x_1 - x_2$. Then ⋯

Theorem 1.6.2 $A_{n \times n}$ is invertible if and only if for each $n \times 1$ matrix b, the system $Ax = b$ has exactly one solution, namely $x = A^{-1}b$.

Proof.

Assume A is invertible. Then: ⋯

Assume for each $n \times 1$ matrix b, the system $Ax = b$ has exactly one solution.

Then the system $Ax = 0$ has only the trivial solution. So ⋯.

Examples of linear systems with the same coefficient matrix

Theorem 1.6.3 Let A be a square matrix.

(a) If B is a square matrix and $BA = I$, then $B = A^{-1}$.

(b) If C is a square matrix and $AC = I$, then $C = A^{-1}$.

Proof:

Theorem 1.6.4 If A is $n \times n$, then the following are equivalent

1. A is invertible
2. $Ax = 0$ has only the trivial solution
3. The rref of A is I
4. A is expressible as a product of elementary matrices.
5. $Ax = b$ is consistent for each $n \times 1$ matrix b
6. $Ax = b$ has exactly one solution for every $n \times 1$ matrix b

Proof $(1) \implies (6) \implies (5) \implies (1)$
Theorem 1.6.5. Let A and B be square $n \times n$ matrices. If AB is invertible, then A and B must also be invertible.

Proof:

Fundamental Problem:

Let A be $m \times n$. Find all $m \times 1$ matrices b such that $Ax = b$ is consistent.

If A is invertible, we know the answer. If A is either not square, or square and not invertible, we don’t.

Examples: