1.5 - Elementary Matrices

Read 1.5 and try odd numbered problems.

Def: An $n \times n$ matrix is called an elementary matrix if it can be obtained from I_n by preforming a single elementary row operation.

Examples:

Theorem 1.5.1 If the elementary matrix E is obtained from I_n by performing a certain row operation, and if A is $n \times n$, then EA is the matrix obtained from A by performing the same row operation.

Proof:

Note: If a row operation is performed on I_n to obtain E, an inverse row operation can be performed on E to get back to I_n.

Row operations on I to get E

Multiply row i by c

Interchange rows i, j

Add c times row i to row j

Inverse row operations on E to get back to I

Multiply row i by $1/c$

Interchange rows i, j

Add $-c$ times row i to row j

Theorem 1.5.2 Every elementary matrix is invertible, and the inverse is also elementary.

Proof:

Theorem 1.5.3 The following statements are equivalent for an $n \times n$ matrix A:

1. A is invertible
2. $Ax = 0$ has only the trivial solution.
3. The rref of A is I_n
4. A can be written as a product of elementary matrices.
Proof:
(1) \Rightarrow (2)
(2) \Rightarrow (3)
(3) \Rightarrow (4)
(4) \Rightarrow (1)

Def: Matrices that can be obtained from one another by a finite sequence of elementary row operations are called row equivalent.

Note: A is invertible if and only if it is row equivalent to the identity matrix.

Method for finding A^{-1} or for showing it doesn’t exist.
If $E_kE_{k-1}\cdots E_2E_1A = I_n$ where the E_i are elementary matrices, then by multiplying both sides by A^{-1} on the right, we obtain

$$E_kE_{k-1}\cdots E_2E_1 = A^{-1}$$

$$\begin{pmatrix} A & I \end{pmatrix}$$

row operations

$$\begin{pmatrix} I & A^{-1} \end{pmatrix}$$

Examples:

$$\begin{pmatrix} 2 & 3 & -1 & 1 & 0 & 0 \\ 2 & -4 & 2 & 0 & 1 & 0 \\ 3 & 7 & -3 & 0 & 1 & 1 \end{pmatrix} \sim \begin{pmatrix} 1 & 0 & 0 & -\frac{1}{3} & \frac{2}{3} & \frac{1}{3} \\ 0 & 1 & 0 & 2 & -\frac{3}{2} & -1 \\ 0 & 0 & 1 & \frac{13}{3} & -\frac{19}{6} & -\frac{7}{3} \end{pmatrix}$$