Herbicidal weed control

Dr. James Altland
Total weed management program

Effective weed control

Sanitation
- Weed seed
- Weeds in non-cropland areas

Herbicide management
- Maintain chemical barrier
Weed control reality

• Weed seeds are present in soil

• You cannot eliminate all weed seed
 – Even fumigation with MeBr is only temporary relief

• Sanitation and management practices should discourage weeds from establishing
Redroot pigweed

- Plants produce up to 100,000 seed
 - 13,860 with no fertilizer
 - Over 34,600 when fertilized

- Seed can be wind dispersed
 - Small size

- Seed survive for more than 30 years
 - Soil surface or buried
Weeds

• Plants that are successful colonizing disturbed, but potentially productive, sites and maintaining their abundance with repeated disturbance.

 Liebman et al.
Landscape weed control

- Sanitation
- Mulches
- Herbicides
Herbicides in landscapes

• Preemergence herbicides
 – Apply to weed free soil
 – Apply prior to weed emergence
 – Apply uniformly and do not disrupt

• Postemergence herbicides
 – Select the correct type
 – Apply thorough coverage
Preemergence herbicides

- Most seed germinate in the top 1 inch of soil.
- Herbicide placement should occur where seeds will germinate and begin growing.
- Application of herbicide followed by incorporation with water is necessary for proper placement.
Preemergence herbicides

- **Will not** kill weeds present at time of application

- Even small weeds have roots large enough to escape effect of pre herbicides.
Preemergence herbicides

• Do not prevent seed from germinating

• Do not kill dormant seeds!!!!

• Typical herbicidal activity
 – Hypocotyl and epicotyl emerge from seed
 – Grows through chemical barrier
 – Herbicide is absorbed and weed is killed or stunted.
Weed species controlled (pre-em)

• Broadleaf-active herbicides
 – Goal
 – Princep
 – Gallery

• These herbicides provide moderate to poor control of grasses, especially at lower rates.
Weed species controlled (pre-em)

• Grass-active herbicides
 – Surflan, Pendulum, Treflan, Factor
 – Ronstar
 – Pennant

• These products provide effective control of grasses and some “small-seeded” broadleaves
Weed species controlled (pre-em)

- Broad-spectrum control
- Tank mix a grass-active herbicide with a broadleaf-active herbicide
 - Gallery + Pendulum
 - Goal + Factor
 - Princep + Surflan
Herbicide timing

- Herbicides must be applied prior to weed emergence.

- Weeds present at application will continue growing.
Maintain the chemical barrier

• Incorporate the herbicide

• Reduce unnecessary traffic

• Reduce excessive irrigation
Reduce traffic
Incorporate the herbicide

- Most abused aspect of weed control
- Incorporate immediately after application
 - Herbicides degrade on soil surface
- Incorporate with irrigation if possible
- Do NOT incorporate with drip irrigation!!!
Uniformity of application

• Mostly a problem with granular applications

• Research shows that even under ideal conditions, amount applied can be from \(\frac{1}{2} \) to 2 times the intended rate.

• Take steps to improve uniformity
Uniformity of application

- Apply a single application in multiple passes.
- Takes more time, but dramatically improves uniformity.
Improper calibration

- Herbicides control weeds at specific rates
 - Low rates provide poor control
 - High rates may cause injury
- If calibration is not accurate, rates will also be wrong
Problems with calibration

• Check for unequal distribution from nozzles
 – Nozzles must all be the same
 • Unless manufacturer specifies otherwise
 – Nozzles must be clean and working properly

• Calibrate equipment often
 – If using computer control systems, verify often.
Preemergence herbicides

• If applying to bark
 – Apply to moist bark

• Pre-herbicides applied to dry bark reduces efficacy
 – Dry bark adsorbs the herbicide tightly
 – May not be released with subsequent irrigation
 – Herbicide is rendered ineffective
Postemergence herbicides

• Select the right type of herbicide
 – Contact
 – Translocated

• Apply thorough coverage

• Ensure adequate uptake and movement
Contact herbicides

- Burns only foliage that is contacted.
- Good for control of annual weeds.
- Will not control roots of perennial weeds.
Postemergence herbicides

- Contact
 - Finale (poorly translocated)
 - Gramoxone
 - Scythe (pelargonic acid, soft pesticide)
 - Diquat
 - Acetic acid
Contact herbicides

• Require thorough coverage for complete control

• Best when used on small, recently germinated weeds.

• Not effective against established perennials.
Translocated herbicides

- Absorbed by foliage and other green tissue
- Moved throughout plant along with photosynthates
- Moved to growing points
Postemergence herbicides

- Translocated
 - Moved throughout the plant to control roots and shoots
 - Roundup – all vegetation
 - Vantage – grasses only
 - Fusilade – grasses only
 - Envoy – grasses only
 - Manage - Nutsedge
Translocated herbicides

- Require living, functioning plants.

- Environmental conditions that favor plant growth also improve effectiveness
 - High light
 - Adequate soil moisture
 - Moderate temperatures
Translocated herbicides

- Coverage is extremely important for controlling perennial weeds
 - *Convolvulus arvensis*
 - Roots grow to a depth of 30 feet.
Translocated herbicides

- Ideal for killing perennial weeds
- Best when used for spot spraying
- Will injure ornamental crops if contact is made
Which type?

- **Contact herbicides**
 - Faster action
 - Safer around ornamentals
 - Will not kill roots (perennials)

- **Translocated herbicides**
 - Slower action
 - More effective across all weed types
 - Greater potential injury to ornamentals
Postemergence herbicides

• Foliar uptake dependent on 2 factors:
 • Foliar retention
 • Ability of the herbicide to adhere to the leaf surface.
 • Cuticle penetration
Foliar retention

• Spray applications
 – Water will bead on waxy cuticle
 – Reduce water tension with adjuvants
Cuticle penetration

- Environmental factors that improve uptake
 - Any condition that causes the cuticle to hydrate
 - High humidity, warm temps, adequate soil moisture
 - Conditions that cause plants to develop thin cuticles
 - Low light, high humidity, warm temps, adequate soil moisture
 - Conditions that favor opening of stomata.
Water as a carrier

• Hard water
 – High Mg and Ca
 – Herbicides formulated as salts dissociate in water
 \[
 \text{HO-C-CH}_2\text{-NH-CH}_2\text{-PO}_2\text{-OH} \quad \text{H}_3\text{N}^{+}\text{-CH}_3
 \]
 – Mg$^{++}$ or Ca$^{++}$ can rebind to the glyphosate anion and cause it to precipitate out of solution.

• Reduce the effects of hard water
 – Add ammonium sulfate or acid
 – Reduce spray volume
‘Soft’ herbicides

• Acids
 – Many naturally occurring acids are bottled and sold as herbicides
 – All are contact herbicides
 • Burn plants to the ground, no control of root system
 – Work best on warm sunny days
 • Temps greater than 70 F (21 C)
Soft herbicides

- Acids
 - Acetic acid is vinegar
 - Ecoclear
 - Pelargonic acid
 - Scythe
 - N-phuric acid
Acetic acid

- Vinegar contains about 5% acetic acid
- Contact herbicide
- Excellent on small weeds
 - Thorough coverage is essential.
- Species specific
- Requires a surfactant
- Will burn ornamentals as well.
Natural herbicides

• Corn gluten meal
 – Mostly fertilizes weeds
 – Weeds grow better.

• Can be effective in turf.
 – Turf fertilizer
 – More vigorous turf, fewer weeds.
Soft herbicides

- Alternative to synthetic products
- They have a niche use
- Generally not as effective as synthetic counterparts
Summary

- Preemergence herbicides
 - Apply to clean, weed-free soil
 - Maintain the integrity of the chemical barrier

- Postemergence herbicides
 - Select the right product/type
 - Thorough coverage
Website

- http://oregonstate.edu/dept/nursery-weeds/