OREGON STATE UNIVERSITY

scientific research and advances

New technologies – and a dash of whale poop – help scientists monitor whale health

NEWPORT, Ore. – A lot of people think what Leigh Torres has done this summer and fall would qualify her for a spot on one of those “World’s Worst Jobs” lists.

After all, the Oregon State University marine ecologist follows gray whales from a small inflatable boat in the rugged Pacific Ocean and waits for them to, well, poop. Then she and her colleagues have about 20-30 seconds to swoop in behind the animal with a fine mesh net and scoop up some of the prized material before it drifts to the ocean floor.

Mind you, gray whales can reach a length of more than 40 feet and weigh more than 30 tons, making the retrieval of their daily constitutional somewhat daunting. Yet Torres, a principal investigator in the university’s Marine Mammal Institute, insists that it really isn’t that bad.

“We’re just looking for a few grams of material and to be honest, it doesn’t even smell that bad,” she said. “Now, collecting a DNA sample from a whale’s blow-hole – that’s a bad job. Their breath is horrendous.”

Being a marine pooper-scooper isn’t some strange fetish for the Oregon State research team. They are conducting a pilot project to determine how gray whales respond to ocean noise – both natural and human – and whether these noises cause physiological stress in the animals. Technology is changing the way the researchers are approaching their study.

“New advances in biotechnology allow us to use the fecal samples to look at a range of things that provide clues to the overall health and stress of the whales,” Torres said. “We can look at their hormone levels and genetically identify individual whales, their sex and whether they are pregnant. And we can analyze their prey and document what they’ve been eating.

“Previously, we would have to do a biopsy to learn some of these things and though they can be done safely, you typically don’t repeat the procedure often because it’s invasive,” she added. “Here, we can follow individual whales over a four-month feeding season and pick up multiple samples that can tell us changes in their health.”

The study is a pilot project funded by the National Oceanic and Atmospheric Administration’s Ocean Acoustics Program to determine the impacts of noise on whale behavior and health. Torres, who works out of OSU’s Hatfield Marine Science Center in Newport, Oregon, focuses on gray whales because they are plentiful and close to shore.

“Many marine mammals are guided by acoustics and use sound to locate food, to navigate, to communicate with one another and to find a mate,” said Torres, a faculty member in OSU’s Department of Fisheries and Wildlife and an ecologist with the Oregon Sea Grant program.

Ten years ago, such a study would not have been possible, Torres acknowledged. In addition to new advances in genetic and hormone analyses, the OSU team uses a drone to fly high above the whales. It not only detects when they defecate, it is giving them unprecedented views of whale behavior.

“We are seeing things through the drone cameras that we have never seen before,” Torres said. “Because of the overhead views, we now know that whales are much more agile in their feeding. We call them ‘bendy’ whales because they make such quick, sharp turns when feeding. These movements just can’t be seen from the deck of a ship.”

The use of small, underwater Go-Pro cameras allows them to observe what the whales are feeding upon below. The researchers can identify zooplankton, benthic invertebrates, and fish in the water column near feeding whales, and estimate abundance – helping them understand what attracts the whales to certain habitats.

Joe Haxel and Sharon Nieukirk are acoustic scientists affiliated with OSU's Cooperative Institute for Marine Resources Studies and the NOAA Pacific Marine Environmental Laboratory at the Hatfield center who are assisting with the project. They deploy drifting hydrophones near the whales to record natural and human sounds, help operate the overhead drone camera that monitors the whales’ behavior, and also get in on the fecal analysis.

“Gray whales are exposed to a broad range of small- and medium-sized boat traffic that includes sport fishing and commercial fleets,” Haxel said. “Since they are very much a coastal species, their exposure to anthropogenic noise is pretty high. That said, the nearshore environment is already very noisy with natural sounds including wind and breaking surf, so we’re trying to suss out some of the space and time patterns in noise levels in the range of habitats where the whales are found.”

It will take years for the researchers to learn how ocean noise affects whale behavior and health, but as ocean noises continue increasing – through ship traffic, wave energy projects, sonar use, seismic surveys and storms – the knowledge they gain may be applicable to many whale species, Torres said.

And the key to this baseline study takes a skilled, professional pooper-scooper.

“When a whale defecates, it generates this reddish cloud and the person observing the whale usually screams “POOP!” and we spring into action,” Torres said. “It’s a moment of excitement, action - and also sheer joy. I know that sounds a little weird, but we have less than 30 seconds to get in there and scoop up some of that poop that may provide us with a biological gold mine of information that will help protect whales into the future.

“That’s not such a bad job after all, is it?”

Story By: 
Source: 

Leigh Torres, 541-867-0895, leigh.torres@oregonstate.edu

Multimedia Downloads
Multimedia: 

 

 

Link to: the whale fluke photo

 

 

For a video of the research, click here

 

 

 

 


 

Whale-Aerial-2

Aerial shot of a gray whale.

 

 

 

Torres-boat

Researchers use a drone to monitor whale behavior

 

 

 

 

OSU student receives $132,000 EPA STAR fellowship

CORVALLIS, Ore. – Christina Murphy, a doctoral student at Oregon State University, has received a $132,000 Science to Achieve Results, or STAR fellowship, from the U.S. Environmental Protection Agency.

Murphy, who is pursuing a Ph.D. in the Department of Fisheries and Wildlife at OSU, is conducting research on how best to manage dams to protect salmon.

STAR graduate fellows are selected from a large number of applications in a highly competitive review process, EPA officials say. Since the program began in 1995, the EPA has awarded nearly 2,000 students a total of more than $65 million in funding.

Murphy earned three honors bachelor’s degrees at OSU, in biology, fisheries and wildlife, and international studies, then conducted a Fulbright research project in Chile. She earned a master’s degree at the Universitat de Girona in Spain, and then returned to Oregon State to pursue her doctorate.

“Northwest reservoirs have different hydrologic regimes and changes in timing and magnitude of drawdown,” Murphy said. She is evaluating physical and chemical conditions in the water, as well as phytoplankton, zooplankton, benthic insects, diversity and populations of fish, and habitat availability within reservoirs – both before and after hydrologic changes – in order to inform decisions on dam and reservoir management.

Murphy is focusing her studies on four reservoirs in the upper Willamette basin in Oregon – Blue River, Fall Creek, Lookout Point and Hills Creek.

“The Pacific Northwest relies on hydropower for more than half of its electricity, with high-head dams forming large reservoirs on rivers historically supporting anadromous salmon,” Murphy said. “Improved understanding of the ecological mechanisms and responses of Pacific Northwest reservoirs with respect to water-level fluctuations is critical to ensuring ecologically sound practices for the long-term operation and greening of our hydropower infrastructure.”

Story By: 
Source: 

Christina Murphy, 541-505-1393, Christina.Murphy@oregonstate.edu

Civil engineering society issues first-ever tsunami-safe building standards

CORVALLIS, Ore. – When the next huge tsunami strikes the western United States, people in and around some newly built coastal structures will be more safe thanks to national construction standards announced today that - for the first time ever in the U.S. - will consider the devastating risks posed by tsunamis.

The American Society of Civil Engineers has developed this edition of the standards, known as ASCE 7-16, and it’s the first to include a chapter on tsunami hazards, in addition to chapters on seismic, wind and flood hazards.

The tsunami standards are only for steel-reinforced concrete buildings in “inundation zones,” which in the future may be stronger and safer with only moderate increases in cost, experts say. They will not apply to wood-frame structures.

The standards were based in part on work done at OSU’s O.H. Hinsdale Wave Research Laboratory, according to Dan Cox of Oregon State University, a professor of civil and construction engineering in the OSU College of Engineering, and one of about 20 engineers on the ASCE subcommittee that developed them.

The subcommittee was a mix of engineering practitioners and researchers from across the nation, Cox said. Led by a practicing engineer in Hawaii, Gary Chock, the committee began its work in late 2010, a few months before the March 2011 earthquake and tsunami that devastated Japan.

“We weren’t reacting,” Cox said. “We were trying to do this in advance. After the 2011 event, interest accelerated regarding how to build things safely in a tsunami zone, and it was important that the subcommittee contained people familiar with how codes work and academic researchers who can bring in the latest advances. Everything was geared toward bringing the best of both into practice.”

The subcommittee used as a starting point a document that had been issued in 2008 by the Federal Emergency Management Agency. Cox’s OSU College of Engineering colleague Harry Yeh had contributed to that document, which was a guideline for designing structures to allow for vertical evacuation, such as climbing to a higher floor.

“We wanted to pull the state of the practice together, and if there were holes in the way we were doing things, we wanted to fill in those holes,” Cox said. “It’s a very rigorous process; there has to be a lot of vetting.”

The large wave flume at OSU’s Hinsdale lab played a major role in producing the data used in developing the tsunami standards, said Cox, formerly the lab’s director and now the head of the Cascadia Lifelines Program.

That program, a research consortium, is working to mitigate infrastructure damage in the Pacific Northwest from a major earthquake on the Cascadia subduction zone.

OSU and eight partners from both the public and private sectors have begun five research projects with $1.5 million contributed by the partners: the Oregon Department of Transportation, Portland General Electric, Northwest Natural, the Bonneville Power Administration, the Port of Portland, the Portland Water Bureau, the Eugene Water and Electric Board, and the Tualatin Valley Water District.

Cox led some of the studies conducted in the flume, and College of Engineering colleague Solomon Yim was a collaborator on a project led by the University of Hawaii.

“One of the big projects was debris,” Cox said. “What force does debris have, and how can you build a column to keep a building in place if debris were to hit it? Now we have equations to use to size that column to withstand a large piece of debris, like a shipping container.”

Already underway on the new standards, Cox and other subcommittee members went to Japan after the 2011 tragedy to study what had worked and what didn’t.

“We got enough information to estimate hydraulic forces and understand damage patterns, and we used this to validate what we were doing,” Cox said. “It was independent, real-world experience to check on whether our approach was valid. These standards are built on lab work, field observation and engineering practice. We used all of the tools available to come up with these standards.”

The ASCE 7-16 standards are good for six years and will become part of the International Building Code. In the U.S., it’s up to each state to decide whether to adopt new codes in their entirety, partially in a modified format, or not at all. In Oregon, the Building Codes Division is responsible for reviewing the new standards.

“Oregon should look very carefully at it,” Cox said. “A lot of engineering eyes have been looking at this, and the standards are consistent with engineering design practice. If in six years we have better information we can change them.”

University officials say they are committed to meet or exceed all building, engineering and life safety standards, including the new tsunami standards announced today, for the future marine studies facility at Newport.

Cox notes that the tsunami standards will have the most impact on engineers designing and building structures less than about five stories in height. Above five stories, even-stronger building codes will take precedence over codes to protect smaller structures from tsunamis.

While the new standards will add some expense to the cost of a two- or three-story building, the additional amount will be comparatively small.

“The structural cost of a building is less than 10 percent,” Cox said. “It will be more expensive but it doesn’t triple the cost. When you make a building twice as strong, it doesn’t cost twice as much.”

The new tsunami standard can also be used on retrofit projects, he said.

“We can now apply consistent standards across the hazards,” Cox said. “This allows us to use a consistent methodology, a consistent set of standards so you can design for multiple hazards. It gives options if you decide you want to build in that zone or you have to build in that zone.”

Ninety percent of the Oregon town of Seaside, for example, is in an inundation zone.

“Now if you want to build a hotel in Seaside, or an office building, you have standards,” Cox said, while noting standards alone aren’t enough.

“You have 20 minutes to get to safety,” he said. “You still have to have plans and practice them routinely. We put sprinklers in buildings, but that doesn’t mean we stop doing fire drills.”

Media Contact: 

Steve Lundeberg, 541-737-4039

Source: 

Dan Cox, 541-737-3631

dan.cox@oregonstate.edu

Multimedia Downloads
Multimedia: 

Tsunami resistant school
Tsunami resistant building

New colors, a new world of pigments continue to evolve from accidental blue discovery

CORVALLIS, Ore. – A bright blue compound that was first discovered by accident seven years ago in an Oregon State University laboratory – and has since garnered global attention – has now led to the more rational and methodical development of other colors that may ultimately change the world of pigments.

Findings on the newest pigments, in shades of violet and purple, were just published in Inorganic Chemistry, a journal of the American Chemical Society.

More important, researchers say, is that progress made since the first accidental discovery of this family of inorganic compounds has allowed intensive science to take the place of luck. What’s emerging is a fundamental understanding of the chemistry involved in these “trigonal bipyramidal” compounds.

As the basis for pigments, they are quite remarkable.

Compared to the flaws that exist in many of the compounds they replace, they are all thermally stable, chemically inert, non-toxic and non-carcinogenic. For commercial use, they also have the extraordinary characteristic of reflecting heat, which is highly unusual for dark colors and potentially of great value for saving energy.

All of the compounds have been patented, and are being developed commercially by a private company. Yellow, green and orange colors have already been created, along with the original blue. The research has been supported by the National Science Foundation.

These developments began in 2009 when OSU researchers were studying some manganese oxide compounds for their potential electronic properties, and when one compound came out of an extraordinarily hot oven – about 2,000 degree Fahrenheit – it had turned a vivid blue, now known as “YInMn” blue.

The scientists noticed and took advantage of this unexpected result. They used the compound to create a pigment that was environmentally benign, resisted heat and acid, and was easily made from readily available raw materials.

“No one knew then that these compounds existed,” said Mas Subramanian, the Milton Harris Professor of Materials Science in the OSU College of Science, and corresponding author on the new publication.

“Now we’ve been able to move beyond the accident and really understand the chemistry, including its structure and synthesis. We can produce different colors by using the same basic chemical structure but tweaking things a little, by replacing manganese atoms by iron, copper, zinc and/or titanium. And we’re slowly moving toward what we really want, what everyone keeps asking for, the Holy Grail of pigments - a bright, new, durable, nontoxic red.”

Along with blue, Subramanian said, a stable, nonorganic red pigment would have huge commercial demand.

In this process, the OSU researchers are opening the door to new, inexpensive types of pigments that leave behind some of the toxic compounds historically used to create colors – lead, cadmium, mercury, even arsenic and cyanide. And the bonus of solar heat reflection has huge value for many applications, such as building construction or vehicles, where this characteristic can reduce cooling expenses and something other than white is desired.

Based on the novelty of the discovery and the growing value of these pigments, this research has captured international media attention and broad public fascination – a single online video received 14 million views.

The newest colors of violet and purple, the researchers noted in their study, have long been associated with royalty, aristocracy, piety and faith. The first pigments of these colors date back to cave paintings in France in 25,000 B.C., they said. And Chinese Han purple, the first synthetic purple pigment, was found in some murals in tombs more than 2,000 years old.

Pigments still being used to produce these colors are in some cases chemically and thermally unstable, and subject to increasing environmental regulations.

Applications of the new pigments, the researchers said in their report, may be found in high-performance plastics and coatings, building exteriors, cool roofing, vinyl siding, automobiles, and even art production or restoration.

Story By: 
Source: 

Mas Subramanian, 541-737-8235

mas.subramanian@oregonstate.edu

Multimedia Downloads
Multimedia: 

New pigments
Pigment colors

Is there a right way to quit your job? Research finds some ways are better than others

CORVALLIS, Ore. – Most everybody has been there: you’ve decided to quit your job and now you have to inform your employer that you’re leaving. So what is the best way to resign?

Turns out, there are generally seven ways in which people quit their jobs, and there are two key factors that determine whether a person resigns in a positive way or in a way that could have damaging consequences for the business, new research from Oregon State University shows.

Those predictors are whether an employee feels they are being treated fairly at work, and whether they feel they are respected by their boss, said Anthony Klotz, an assistant professor in the College of Business at OSU and lead author of the paper. Those who feel they are respected and treated fairly are more likely to resign in a positive manner.

“As an employee, you are pretty powerless for much of your work life, until you decide to quit,” he said. “That is the one time you feel empowered and have a chance to even the score if you feel like you’ve been treated badly.”

Employee resignations are part of doing business; in the U.S. and western Europe, resignation rates run about 10 percent per year, while in parts of Asia, they can be much higher. But there is little known about how employees go about quitting their jobs, and what the implications of their resignations may have for the company, good or bad.

“There is a lot of research about why people quit their jobs. But very little is known about how people quit,” Klotz said. “Employers as well as employees want to know what the right way is.”

Klotz and his co-author, Mark Bolino of the University of Oklahoma, set out to learn more about how employees quit their jobs and the consequences of their choices when doing so. Their findings were published recently in the Journal of Applied Psychology. The study was supported by the Society for Human Resource Management Foundation.

Through a series of studies, including interviews with employees and employers, the researchers found that generally, employees quit in one of seven ways:

  • By the book: These resignations involve a face-to-face meeting with one’s manager to announce the resignation, a standard notice period, and an explanation of the reason for quitting.
  • Perfunctory: These resignations are similar to “by the book” resignations, except the meeting tends to be shorter and the reason for quitting is not provided.
  • Grateful goodbye: Employees express gratitude toward their employer and often offer to help with the transition period.
  • In the loop: In these resignations, employees typically confide in their manager that they are contemplating quitting, or are looking for another job, before formally resigning.
  • Avoidant: This occurs when employees let other employees such as peers, mentors, or human resources representatives know that they plan to leave rather than giving notice to their immediate boss.
  • Bridge burning: In this resignation style, employees seek to harm the organization or its members on their way out the door, often through verbal assaults.
  • Impulsive quitting: Some employees simply walk off the job, never to return or communicate with their employer again. This can leave the organization in quite a lurch, given it is the only style in which no notice is provided.

The by the book and perfunctory resignations are the most common, but roughly one in 10 employees quits in bridge-burning style. Avoidant, bridge burning and impulsive quitting are seen as potentially harmful resignation styles for employers. 

In addition, the researchers found that managers were particularly frustrated by employees who resigned using bridge burning, avoidant or perfunctory styles, so employees who want to leave on good terms should avoid those styles, Klotz said.

The study findings also indicated that managers responded the least negatively to resignations when employees kept them “in the loop” and when employees followed organizational policies regarding resignation. Quitting in these more positive styles is a good idea for employees who want a positive recommendation from a former supervisor or may consider returning to that company one day.

The managers’ attitudes toward the perfunctory resignation was a bit surprising, he said, and seemed to be rooted in the fact that employees using that style did not provide reasons for their decisions to resign.

Each resignation situation is unique to that employee and their relationship to the company, Klotz noted, so the best way to resign at one company may not be the best way to resign at another. But companies would be well-served to review their employee handbooks and update their formal resignation policies to reflect best practices for current company needs, he said.

Understanding why employees quit in the ways they do is particularly important for companies that could suffer if an employee uses his or her departure as an opportunity to damage the company’s reputation or create other problems, Klotz said.

“Turnover is common, it’s expensive, it’s disruptive and it can be contagious,” he said. “But this damage is mitigated when employees resign in a positive manner. So to the extent you can, as an employer, you want to have employees resign in a positive manner.”

Companies also should consider monitoring how employees quit for potential signs of management issues. If a number of employees quit in a negative way, that could be a sign of a poor supervisor or other problems with company treatment of employees, he said.

Klotz said he would also like to further study the “lame duck period,” between the time an employee gives notice to their last day on the job, to better understand what happens during that period.

“Is it better to just say ‘see ya’ and pay the employee’s salary for two weeks, or is it better to have the person stay for a transition period such as training their replacement?” Klotz said. “It’s often a very weird time for the employer and the employee.”

Story By: 
Source: 

Anthony Klotz, 541-737-6044

anthony.klotz@oregonstate.edu

Multimedia Downloads
Multimedia: 

Anthony Klotz

Anthony Klotz


Exit sign
Exit sign

Salmon trucking success could open miles of historical spawning habitat

NEWPORT, Ore. – For the past several years, technicians have been trucking spring Chinook salmon above Foster Dam in Sweet Home to see if they would spawn, and if their offspring could survive the passage over the dam and subsequent ocean migration to eventually return as adults some 3-5 years later.

A new study examining the genetic origin of adult spring Chinook returning to Foster Dam offers definitive proof that the offspring survived, potentially opening up miles of spawning habitat on the upper South Santiam and other river systems.

Results of the study have been published in the Canadian Journal of Fisheries and Aquatic Sciences.

“With a little human assistance, it is now clear that we can restore natural production to areas above some dams and there is prime habitat on some river systems, such as the North Santiam above Detroit Dam,” said Kathleen O’Malley, an Oregon State University geneticist and principal investigator on the project. “This could really contribute to the long-term population viability in some river systems.”

Some past studies have explored whether salmon that spawned above dams could survive as juveniles going back through the dams, but this new study is one of the first to assess whether those fish successfully would return years later as adults.

Beginning in 2007, technicians from Oregon Department of Fish and Wildlife and the U.S. Army Corps of Engineers took genetic samples of adult salmon trucked above the dam. During the first two years, most of those adult salmon were reared in hatcheries and released as juveniles, but in 2009 they began using only wild-born fish, hoping to give a boost to that population. Since then, researchers have taken genetic samples from returning adult salmon to see if their parents were among those released above the dam.

The key is the “cohort replacement rate,” O’Malley said. If you release 100 female salmon above the dam, will you get at least 100 females from that population returning as adults to the dam for a rate of 1.0?  The researchers have to sample for several years to determine the success rate of one cohort, since spring Chinook can return as 3-, 4- or 5-year olds.

In 2007, ODFW released 385 hatchery-origin adult salmon and 18 wild-born salmon above Foster Dam, and the cohort replacement rate was .96. In 2008, 527 hatchery-origin fish and 163 wild-born fish were released, and the replacement rate was 1.16.

In 2009, the shift was made to all wild-born fish and ODFW released 434 spring Chinook above Foster Dam. When the researchers completed their genetic analysis for that year they found a cohort replacement rate of 1.56.

“It could be a one-year anomaly, or it may be an indication that wild-born fish are fitter and better able to survive and reproduce above the dams,” O’Malley said. “It is promising, though.”

Dams can limit downstream damage from potential floods, the researchers say, but there is little protection for spawning salmon above the dams. One flood occurred in 2010, and the researchers are just finishing their analysis of that year. Many of the spawning beds were wiped out, thus the cohort replacement rate likely will be lower. Although re-establishment of spawning activity above the dams has the potential to enhance productivity, those efforts are vulnerable to environmental processes.

“One limiting factor is that we don’t know for sure what an appropriate replacement rate is,” O’Malley pointed out. “We know that 1.0 is the bare minimum – one fish dies and another takes its place. But it won’t be clear what a good number will be to sustain and expand the population until we have several years of research.”

Researchers and fisheries managers note that ocean conditions play an important role in determining the number of adult salmon that survive to return and spawn, and can account for a significant amount of inter-annual variability in salmon abundance. It is important to have a population that is sufficiently productive across years in order to survive poor environmental conditions – in the ocean, or in fresh water – in any single given year.

ODFW also has released fish above dams on the North Santiam River and Fall Creek and OSU researchers are using genetics to monitor some of the first returning adults in these systems.

“One reason we think that the South Santiam reintroduction is going so well is that the reservoir is smaller and the dam is lower than in others systems in the Willamette basin,” O’Malley said. “The salmon’s downstream survival rate is likely higher than it may be on other river systems.”

The project is funded by the Army Corps of Engineers.

O’Malley is an associate professor in the Department of Fisheries and Wildlife at OSU, who is affiliated with the Coastal Oregon Marine Experiment Station at the university’s Hatfield Marine Science Center in Newport.

Other authors on the study include Melissa Evans and Dave Jacobson of Oregon State; Jinliang Wang of the Zoological Society of London; and Michael Hogansen and Marc Johnson of the Oregon Department of Fish and Wildlife. Evans, the lead author, now works for the Fish and Wildlife Department of the Shoshone-Bannock Tribes in Idaho.

Story By: 
Source: 

Kathleen O’Malley, 541-961-3311, kathleen.omalley@oregonstate.edu

Multimedia Downloads
Multimedia: 

 

 

 

 

 

 

 

 

 

 

 

 

 

Aerial video of South Santiam: https://www.youtube.com/watch?v=zEb5l8lGtb8&

 

 

fish3

Spring Chinook bypassing Foster Dam

 

fish1

Foster Dam trapping operation

Simple test may help address $150 billion problem of post-operative delirium

PORTLAND, Ore. – Researchers at VA Portland Health Care System (VAPORHCS), in collaboration with Oregon State University and Oregon Health & Science University, have identified a simple test that takes about 2-3 minutes and can predict which surgical candidates are most at risk of delirium, a common complication following surgery in older patients.

Delirium, or acute confusion and disorientation, has become a $150 billion national problem.

After surgery, delirium can lead to slower recovery, a long-term worsening of memory and thinking, and even death - while significantly increasing health care costs. Identification of those most at risk could help guide decisions about whether or not to have surgery, and allow prompt, low-cost interventions after surgery to help prevent this problem.

The findings were just published in the Journal of the American Geriatric Society by doctors from the Veterans Affairs Research Department in Portland, who led and funded the study, and worked with partnering investigators from OSU and OHSU.

“Before this study, identifying people at risk for delirium following surgery required complicated or time-consuming evaluations,” said Dr. Sarah Goodlin, the lead VAPORHCS investigator for the study.

“We try to avoid delirium whenever possible, but our tools have been limited. Now we believe we can identify people at high risk and help physicians make informed decisions with their patients about the hazards and benefits of pursuing elective surgery.”

Further research will be needed to confirm the findings and broaden them to other groups, Goodlin said. This research, for instance, was done with 76 veterans age 65 or older who were almost exclusively male.

Several tests have been available for some time to test memory and mental function. One test, a brief screening tool called the “Mini-Cog,” was developed by Dr. Soo Borson at the University of Washington to detect dementia.

The current research found that one way of using and scoring the Mini-Cog offered high predictive accuracy of delirium following elective surgery with major anesthesia. Other tests and patient factors did not really improve the predictive risk of delirium.

“We wanted to identify a tool that was simple and accurate, and the Mini-Cog does that,” said Amber An DO, who designed the study with Goodlin during her geriatric medicine fellowship.

The Mini-Cog may help to prevent this problem, said David Lee, an assistant professor in the OSU/OHSU College of Pharmacy, and co-author on the study.

“This is such a serious issue,” Lee said. “Delirium can cause serious health and cognitive problems, begin a process of decline that can lead to dementia, and can almost double the cost of a hospital stay.”

However, the researchers pointed out in their study that medical care is more effective at preventing delirium, especially in people at moderate risk, than in treating it once it develops. That makes a predictive tool all the more helpful. More research is needed to understand steps that can be taken during or following surgery to decrease post-operative delirium rates.

The Mini-Cog test itself is quick and simple, can be done in any language and has no ethnic, educational or cultural barriers. A person is told three ordinary words and asked to repeat them, such as “apple,” “watch” and “penny.” They are then asked to draw a simple clock face, including the numbers and hands set to a specific time. Finally, they are asked to repeat the three words they were told. That’s all there is to the test.

The authors of the current study scored the Mini-Cog from 0-5. A person gets 2 points for correctly drawing a clock and time; and 1 point each for recalling the three words.

According to this research, a person with a score of 0-1 had a 50 percent or greater probability of post-operative delirium. Those with a score of 3 had a 20 percent probability; a score of 4 a 13 percent probability; and a score of 5 less than 5 percent probability of delirium after surgery.

The incidence of delirium ranges from 7-10 percent in older adults after simple elective surgery, rising to at least half of older adults undergoing emergency, cardiac or orthopedic surgery. Individuals who develop delirium are more likely to be debilitated, require skilled nursing care, and die in the year after surgery.

Factors that have been significantly associated with delirium risk include existing dementia, depression, use of multiple medications, sensory impairment, and the use of alcohol or psychoactive drugs.

 

Story By: 
Source: 

Daniel Herrigstad, 503-402-2975

daniel.herrigstad@va.gov

Hatfield Marine Science Center to host ocean research film fest

NEWPORT, Ore. – A mini-film festival outlining some of the latest in coastal research and marine initiatives will be held on Thursday, Sept. 22, at Oregon State University’s Hatfield Marine Science Center in Newport.

The series of short films will run from 5 to 6:30 p.m. and again from 7 to 8:30 p.m. in the Hennings Auditorium of the Visitor Center. The HMSC Film Festival is free and open to the public.

Among the topics in the films are:

  • Oregon State University’s Marine Studies Initiative;
  • Ocean sound in the bottom of the Mariana Trench, with NOAA’s Bob Dziak;
  • Blue whales nursing, with Leigh Torres of OSU’s Marine Mammal Institute;
  • Ocean acidification, by OSU’s Justin Smith, with Caren Braby and Steven Rumrill of ODFW;
  • At sea larvae and plankton sampling with faculty and students from the Cowen/Sponaugle Lab at HMSC.

Also featured will be OSU’s Bill Chadwick, who will present a summary of a research expedition searching for new hydrothermal vents, and a time-lapse video of the R/V Thompson going through the locks into Lake Union in Seattle.

The university’s latest marine-themed commercial will also be shown.

“These films exemplify the Marine Studies Initiative recently launched by OSU, said Bob Cowen, director of the OSU center. “We are excited about the opportunity to share our cutting-edge research with a wide audience through these dynamic and impactful films.”

More information is available at the center’s event website, http://hmsc.oregonstate.edu/events. Visitors traveling from the Willamette Valley should check on road closure information for U.S. Highway 20 at http://us20pme.org

 

Story By: 
Source: 

Maryann Bozza, 541-867-0234, maryann.bozza@oregonstate.edu

Findings about protein could open door to new class of antibiotics

CORVALLIS, Ore. – Researchers have made the first-ever detailed, atomic-level images of a peroxiredoxin, which has revealed a peculiar characteristic of this protein and might form the foundation for a new approach to antibiotics.

Scientists at Oregon State University have used X-ray crystallography, a powerful technique that can reveal structures down to their individual atoms, to study the fundamental nature and behavior of this peroxiredoxin. Their findings were announced today in the journal Structure.

Peroxiredoxin is needed by all cells to help eliminate hydrogen peroxide, a toxin, and in normal cells this process is healthy and valuable. But peroxiredoxins inside bacteria also help provide protection from our immune cells and increase the virulence of bacterial cells that cause infections.

The researchers were able to visualize peroxiredoxin chemistry in action. They found that when it’s restrained and loses its mobility, it also loses its function. And if the normal function is lost, it can lead to cell death.

If a molecule can be found that selectively blocks the motions of peroxiredoxin only in bacterial cells – which the researchers believe may be possible – it could function as an entirely new way to kill those cells. This would leave normal cells undamaged and set the stage for new types of antibiotics.

With the increasing problem of antibiotic resistance to many existing drugs, this approach could have significant value, researchers said. It might also work in synergy with existing antibiotics to improve their efficacy, they said.

“Peroxiredoxins are found in animals, plants, and bacteria, and are proteins that are crucial for cell survival,” said Arden Perkins, the lead author on this study which was done at OSU, in collaboration with Andrew Karplus, a distinguished professor of biochemistry in the OSU College of Science.

“The main function of peroxiredoxins is to eliminate hydrogen peroxide in cells by converting it to water,” Perkins said. “This toxin is a byproduct of normal cell metabolism, and hydrogen peroxide has to be removed so it doesn’t damage the cell. If peroxiredoxin doesn’t do its job, cells will die.”

With the extraordinary images provided by X-ray crystallography, the research also discovered that there are special regions on bacterial peroxiredoxins, different from those found in humans, that could be specifically targeted. If compounds could aim at those targets and selectively shut down the protective function of peroxiredoxin just in bacteria, it would weaken or kill those cells.

“There’s a lot of potential for this to be foundational work, something we can build on to create a new class of antibiotics,” Perkins said. “The key concept is selectively restraining the motions of peroxiredoxins in some cells, inactivating its function and leading to the death of the cells you want to kill.”

In related approaches, Perkins said, the concept may also hold some value against certain non-bacterial pathogens, like those that cause malaria or African sleeping sickness, which increasingly are difficult to treat.

This work, titled Peroxiredoxin Catalysis at Atomic Resolution, was supported by the National Science Foundation, the National Institutes of Health, and the U.S. Department of Energy. It was done in collaboration with the OSU Department of Chemistry and the Wake Forest School of Medicine.

Perkins is now a postdoctoral scholar at the University of Oregon. Karplus is a fellow of the American Association for the Advancement of Science, the world’s largest scientific society, in recognition of his contributions to protein structure determination and for improving the analysis of crystallographic data.

Story By: 
Source: 

Andrew Karplus, 541-737-3196

karplusp@science.oregonstate.edu

Multimedia Downloads
Multimedia: 

Peroxiredoxin
Peroxiredoxin chemistry

System may help treat rare genetic disorder, reduce severe side effects

PORTLAND, Ore. – Researchers at Oregon State University and other institutions have discovered a type of drug delivery system that may offer new hope for patients with a rare, ultimately fatal genetic disorder – and make what might become a terrible choice a little easier.

No treatment currently exists for this disease, known as Niemann Pick Type C1 disease, or NPC1, that affects about one in every 120,000 children globally, and results in abnormal cholesterol accumulation, progressive neurodegeneration and eventual death.

However, a compound that shows promise is now undergoing clinical trials, but it has major drawbacks – the high doses necessary also cause significant hearing loss, requires direct brain injection and causes lung damage.

New findings, published today in Scientific Reports, outline the potential for a nanotech-based delivery system to carry the new drug into cells far more effectively, improve its efficacy by about five times, and allow use of much lower doses that may still help treat this condition without causing such severe hearing loss.

The same system, they say, may ultimately show similar benefits for 50 or more other genetic disorders, especially those that require “brain targeting” of treatments.

“Right now there’s nothing that can be done for patients with this disease, and the median survival time is 20 years,” said Gaurav Sahay, an assistant professor in the Oregon State University/Oregon Health & Science University College of Pharmacy, and corresponding author on the new study.

“The new cholesterol-scavenging drug proposed to treat this disorder, called cyclodextrin or HPβCD, may for the first time offer a real treatment. But it can cause significant hearing loss and requires multiple injections directly into the brain, which can be very traumatic. I’m very excited about the potential of our new drug delivery system to address these problems.”

In this approach, the HPβCD drug is attached to an extraordinarily small, nanotech-sized lipid particle that can carry it into cells, where it helps to flush out cholesterol. Researchers were surprised to discover, however, that the carrier itself also helped address the problem, while working in synergy with the drug it carries to greatly increase its effectiveness.

This should allow use of much lower dosages, Sahay said, and possibly an easier delivery through intravenous injection, instead of brain injection. In the form currently used, only 0.2 percent of the drug is able to cross the blood brain barrier.

In previous research with the HPβCD drug in animal models, the treatment did slow the progression of this disease, but did not reverse it. The disease focuses its damage on liver and brain cells.

In their report, researchers noted that this type of drug delivery system has several advantages, including prolonged circulation times, the ability to incorporate multiple drugs with different mechanisms of action, and a variety of “targeting ligands” that can help cross the blood brain barrier.

The researchers have also partnered with Dr. Edward Neuwelt at the OHSU Blood Brain Barrier Program, who has pioneered temporary opening of the blood brain barrier in humans to access drugs to the brain. They are also working leaders in the NPC disease field to translate these findings in-vivo.

“Taken together, nanocarriers can serve as a platform that can effectively deliver small molecules, genes and perhaps imaging agents for treatment and diagnosis of a wide variety of other rare lysosomal storage disorders,” the researchers wrote in their conclusion.

This research was supported by the OSU College of Pharmacy, OSU Venture Development Funds, AACP New Investigator Award, Birmingham Fellowship and Wellcome Trust Seed Award. Collaborating researchers were from the University of Birmingham, Oregon Health & Science University, and Newcastle University.

Story By: 
Source: 

Gaurav Sahay, 503-346-4698

sahay@ohsu.edu