OREGON STATE UNIVERSITY

scientific research and advances

Molecule shows ability to thwart pathogens’ genetic resistance to antibiotic

CORVALLIS, Ore. – Oregon State University researchers have developed a new weapon in the battle against antibiotic-resistant germs - a molecule that neutralizes the bugs’ ability to destroy the antibiotic.

Scientists at OSU were part of an international collaboration that demonstrated the molecule’s ability to inhibit expression of an enzyme that makes bacteria resistant to a wide range of penicillins.

The molecule is a PPMO, short for peptide-conjugated phosphorodiamidate morpholino oligomer. The enzyme it combats is known as New Delhi metallo-beta-lactamase, or NDM-1, and it’s accompanied by additional genes that encode resistance to most if not all antibiotics.

“We’re targeting a resistance mechanism that’s shared by a whole bunch of pathogens,” said Bruce Geller, professor of microbiology in OSU’s College of Science and College of Agricultural Sciences, who’s been researching molecular medicine for more than a decade. “It’s the same gene in different types of bacteria, so you only have to have one PPMO that’s effective for all of them, which is different than other PPMOs that are genus specific.”

The Oregon State study showed that in vitro the new PPMO restored the ability of an antibiotic -- in this case meropenem, an ultra-broad-spectrum drug of the carbapenem class -- to fight three different genera of bacteria that express NDM-1. The research also demonstrated that a combination of the PPMO and meropenem was effective in treating mice infected with a pathogenic strain of E. coli that is NDM-1 positive.

Results of the study, supported by a grant from the National Institutes of Health, were recently published in the Journal of Antimicrobial Chemotherapy.

Geller says the PPMO will likely be ready for testing in humans in about three years.

“We’ve lost the ability to use many of our mainstream antibiotics,” Geller said. “Everything’s resistant to them now. That’s left us to try to develop new drugs to stay one step ahead of the bacteria, but the more we look the more we don’t find anything new. So that’s left us with making modifications to existing antibiotics, but as soon as you make a chemical change, the bugs mutate and now they’re resistant to the new, chemically modified antibiotic.”

That progression, Geller explains, made the carbapenems, the most advanced penicillin-type antibiotic, the last line of defense against bacterial infection.

“The significance of NDM-1 is that it is destroys carbapenems, so doctors have had to pull out an antibiotic, colistin, that hadn’t been used in decades because it’s toxic to the kidneys,” Geller said. “That is literally the last antibiotic that can be used on an NDM-1-expressing organism, and we now have bacteria that are completely resistant to all known antibiotics. But a PPMO can restore susceptibility to antibiotics that have already been approved, so we can get a PPMO approved and then go back and use these antibiotics that had become useless.”

In addition to Geller, the research team included Oregon State postdoctoral scholars Erin Sully and Lixin Li and OSU undergraduate student Christina Moody, as well as scientists from Sarepta Therapeutics, Harvard Medical School, the University of Fribourg, and the University of Texas Southwestern.

Media Contact: 

Steve Lundeberg, 541-737-4039

Source: 
Multimedia Downloads
Multimedia: 

geller Bruce Geller

Millions of people with metabolic syndrome may need more vitamin E

CORVALLIS, Ore. – New research has shown that people with metabolic syndrome need significantly more vitamin E – which could be a serious public health concern, in light of the millions of people who have this condition that’s often related to obesity.

A study just published in the American Journal of Clinical Nutrition also made it clear that conventional tests to measure vitamin E levels in the blood may have limited accuracy compared to tests made in research laboratories, to the point that conventional tests can actually mask an underlying problem.

Vitamin E – one of the more difficult micronutrients to obtain by dietary means – is an antioxidant important for cell protection. It also affects gene expression, immune function, aids in repair of wounds and the damage of atherosclerosis, is important for vision and neurologic function, and largely prevents fat from going rancid.

Nutrition surveys have estimated that 92 percent of men and 96 percent of women in the United States fail to get an adequate daily intake of vitamin E in their diet. It is found at high levels in almonds, wheat germ, various seeds and oils, and at much lower levels in some vegetables and salad greens, such as spinach and kale.

This study was done by researchers in the Linus Pauling Institute at Oregon State University and the Human Nutrition Program at The Ohio State University, as a double-blind, crossover clinical trial focusing on vitamin E levels in people with metabolic syndrome. It was supported by the National Institutes of Health, the National Dairy Council and DSM Nutrition.

“The research showed that people with metabolic syndrome need about 30-50 percent more vitamin E than those who are generally healthy,” said Maret Traber, a professor in the OSU College of Public Health and Human Sciences, and Ava Helen Pauling Professor in the Linus Pauling Institute.

“In previous work we showed that people with metabolic syndrome had lower bioavailability of vitamin E. Our current work uses a novel approach to measure how much vitamin E the body needs. This study clearly demonstrates that people with metabolic syndrome need a higher intake of this vitamin.”

More than 30 percent of the American public are obese, and more than 25 percent of the adults in the United States meet the criteria for metabolic syndrome, putting them at significantly increased risk for cardiovascular disease and type-2 diabetes – primary causes of death in the developed world.

That syndrome is defined by diagnosis of three or more of several conditions, including abdominal obesity, elevated lipids, high blood pressure, pro-inflammatory state, a pro-thrombotic state and insulin resistance or impaired glucose tolerance.

This research, for the first time, also clearly outlined a flaw with conventional approaches to measuring vitamin E.

By “labeling” vitamin E with deuterium, a stable isotope of hydrogen, scientists were able to measure the amount of the micronutrient that was eliminated by the body, compared to the intake. The advanced research laboratory tests, which are not available to the general public, showed that people with metabolic syndrome retained 30-50 percent more vitamin E than healthy people – showing that they needed it. When the body doesn’t need vitamin E, the excess is excreted.

But in the group with metabolic syndrome, even as their tissues were taking up and retaining the needed vitamin E, their blood levels by conventional measurement appeared about the same as those of a normal, healthy person.

“We’ve discovered that vitamin E levels often look normal in the blood, because this micronutrient is attracted to high cholesterol and fat,” Traber said. “So vitamin E can stay at higher levels in the circulatory system and give the illusion of adequate levels, even as tissues are deficient.

“This basically means that conventional vitamin E blood tests as they are now being done are useless.”

The findings support the conclusion that people with metabolic syndrome have higher levels of oxidative and inflammatory stress, scientists said in their conclusion, and require more antioxidants such as vitamins E as a result.

Story By: 
Source: 

Maret Traber, 541-737-7977

maret.traber@oregonstate.edu

Multimedia Downloads
Multimedia: 

Vitamin E
Vitamin E supplements

Air pollution and lack of physical activity pose competing threats to children in China

CORVALLIS, Ore. – Children and adolescents in mainland China are facing two serious and conflicting public health threats: ongoing exposure to air pollution and an increasingly sedentary lifestyle with little regular physical activity outside school.

Health workers and policymakers need to find ways to address both of these issues so that

children can be more physically active without suffering the health risks caused by exposure to air pollution, an Oregon State University researcher suggests in a new commentary published this month in The Journal of Pediatrics

“The question is how do we balance the virtues of physical activity with the hazards of air pollution?” said Brad Cardinal, a kinesiology professor in the College of Public Health and Human Sciences at Oregon State University and a national expert on the benefits of physical activity. “Ultimately, we have to find ways for people to stay active despite the air pollution.”

Many cities and countries around the world grapple with air pollution issues, but there is particular concern for children growing up in China in part because they tend to commute more on foot or bike and their playgrounds and sports fields are often found near busy streets or highways, Cardinal said. The impacts of air pollution contributed to 1.2 million deaths in 2010. 

At the same time, very few Chinese children today are participating in moderate or vigorous physical activity outside of school, and the number of overweight and obese children in China has more than doubled in the last 25 years.

Children are particularly susceptible to adverse health impacts from both short- and long-term exposure to air pollution, in part because they have higher rates of respiration and tend to take shallower breaths. Air pollution has been associated with increases in asthma, chronic cough and other respiratory problems in children that are likely to be exacerbated by heavy breathing from vigorous exercise, Cardinal said. 

So how do public health officials approach these competing challenges? Cardinal and his co-author, Qi Si of Zhejiang University in China and a former visiting scholar at OSU, suggest the two problems should be addressed together.

They recommend four urgent steps for health officials and policymakers who are grappling with these issues: 

  • Increase awareness among parents, children, health workers, educators, and policymakers on the causes and impacts of air pollution on children and adolescents, as well as the potential harm when coupled with outdoor physical activity
  • Add air quality systems at school sites, so pollution can be measured when and where children are engaging in physical activity
  • Adjust the intensity of outdoor physical activity during the school day on the basis of air pollution monitoring results
  • Educate children about exercising in polluted environments, including instruction to stop activity when they notice problems such as coughing, chest tightness or wheezing

Since schools are the base for much of the physical activity of today’s children, they are a critical piece in addressing both issues, Cardinal said. Monitoring the micro-climate at a school would provide better, more localized information for school officials making decisions about whether children should be outside exercising or at what level of intensity. 

“Doing some kind of physical activity, even if it is not as vigorous, is still better than having no physical activity for the children,” he said.

Clothing accessories or fitness equipment could also be designed to help protect children from pollution during outdoor play activities on days when air quality levels were low, he said.

“The goal is to get people thinking about these complex problems and real-world solutions,” Cardinal said. “The hope is that someone will innovate appropriate solutions for addressing both of these problems.” 

The National Health and Fitness Technology Research Key Laboratory of Zhejiang Province provided support for this project.

Story By: 
Source: 

Brad Cardinal, 541-737-2506, brad.cardinal@oregonstate.edu

Multimedia Downloads
Multimedia: 

Brad Cardinal

brad_cardinal

El Niño, Pacific Decadal Oscillation implicated in domoic acid shellfish toxicity

CORVALLIS, Ore. – Researchers today reported in Proceedings of the National Academy of Sciences a strong correlation between toxic levels of domoic acid in shellfish and the warm-water ocean conditions orchestrated by two powerful forces – El Niño events and the Pacific Decadal Oscillation.

Using a combination of time-series data spanning two decades, the scientists not only showed a clear link between domoic acid and these larger climatic phenomena, but also developed a new model to predict with some accuracy the timing of domoic acid risks in the Pacific Northwest.

The model is based on interpreting the status of the “Oceanic Niño Index” and the Pacific Decadal Oscillation – both of which are measures of climate, ocean water movement, currents and temperature. It’s designed to help coastal resource managers more effectively monitor this issue and protect public health.

The findings were made by researchers from Oregon State University, the University of Oregon, the National Oceanic and Atmospheric Association (NOAA), and the Oregon Department of Fish and Wildlife. The work was primarily supported by NOAA.

Researchers also pointed out that the findings are particularly timely, given the potential for greater domoic acid outbreak occurrences as oceans continue to warm due to climate change.

Domoic acid, a potent neurotoxin produced by specific types of phytoplankton and ingested by shellfish, can cause serious health effects in humans and some other animals. In recent years, dangerous levels of these toxins have led to the repeated closure of crab and shellfish harvesting in the Pacific Northwest and elsewhere. The problem threatens public health, marine wildlife and can cost millions for coastal economies. Until now, its connection to larger climatic forces has been suspected, but not confirmed.

“In the natural world there are always variations, and it’s been difficult to connect a specific event to larger forces that operate over periods of years and decades,” said Angelicque White, an associate professor and research team leader in the OSU College of Earth, Oceanic and Atmospheric Sciences.

“To do so, long observational time-series are crucial. With NOAA’s commitment to sponsored coastal ocean research and monitoring, along with state support for monitoring shellfish toxins, we’ve finally been able to tease out short term variability from natural climate forcing.”

Beyond problems with domoic acid levels, White said, this correlation also appears to mirror problems with green crabs, an invasive species of significant concern in the Pacific Northwest. These same warm climate phases lead to increased numbers of green crabs in Oregon waters, where they compete with native Dungeness crabs. The conditions also deliver communities of lipid-poor “copepods” – types of small crustaceans that float with currents – from the south, that are associated with reduced salmon runs.

The new study shows that oscillations to positive, or warm-favorable conditions in natural climate cycles can reduce the strength of the south-flowing California Current. This allows more movement northwards of both warmer waters and higher levels of toxic plankton, and also brings that toxic mix closer to shore where it can infiltrate shellfish.

“Part of the concern is that a large influx of the plankton that produce domoic acid can have long-term impacts,” said Morgaine McKibben, an OSU doctoral student and lead author on the study.

“For example, razor clams are filter-feeders that bioaccumulate this toxin in their muscles, so they take much longer to flush it out than other shellfish. The higher the toxin levels, the longer it takes for razor clams to be safe to eat again, perhaps up to a year after warm ocean conditions have subsided.”

Domoic acid is produced by the diatom genus Pseudo-nitzschia, and enters the marine food web when toxic blooms of these micro-algae are ingested by animals such as anchovies and shellfish. Referred to as “amnesic shellfish poisoning,” human symptoms can range from gastrointestinal disturbance to seizures, memory loss or, rarely, death. It was only first identified as a public health threat in 1987, and has been monitored on the U.S. West Coast since 1991.

Domoic acid events have been linked to mass deaths of marine mammals, like sea lions, sea otters, dolphins and whales. And closures of Pacific Northwest beaches to shellfish harvests, such as those that occurred in 2003, 2015 and 2016, can result in large economic impacts to coastal towns and tourism. In 2015, domoic-acid related closures led to a decline in value of nearly $100 million for the West Coast Dungeness crab fishery, according to the Fisheries of the U.S. Report 2015.

“Advance warning of when domoic acid levels are likely to exceed our public health thresholds in shellfish is extremely helpful,” said Matt Hunter, co-author of the study with the Oregon Department of Fish and Wildlife. “Agencies like mine can use this model to anticipate domoic acid risks and prepare for periods of more intensive monitoring and testing, helping to better inform our decisions and ensure the safety of harvested crab and shellfish.”

Story By: 
Source: 

Angelicque White, 541-737-6397

awhite@coas.oregonstate.edu

Multimedia Downloads
Multimedia: 

West Coast algae


Algae on West Coast


Diatom
Diatom that makes domoic acid

Off-grid power in remote areas will require special business model to succeed

CORVALLIS, Ore. – Low-cost, off-grid solar energy could provide significant economic benefit to people living in some remote areas, but a new study suggests they generally lack the access to financial resources, commercial institutions and markets needed to bring solar electricity to their communities.

Around the world, more than 1.2 billion people lack access to basic electricity service. The majority of those people are living in developing nations, in rural or isolated areas with high rates of poverty. Steep costs and remote terrain often make it impractical or even impossible to extend the electric grid. 

Developing a successful business model that could deliver off-grid power to this market will require addressing challenges unique to the population, an Oregon State University researcher concluded in a study published recently in Renewable and Sustainable Energy Reviews.

“Surviving and growing in this market is very different than in a typical commercial enterprise,” said Inara Scott, an assistant professor in the College of Business. “There are a lot of people working on off-grid solar products on the small scale, but the problem becomes how can they scale the programs up and make them profitable?” 

When rural, isolated communities do gain access to solar power, the impact on residents can be profound, Scott said. Children are more likely to go to and complete schooling, because they have light to study by. Kerosene lamps, which create a lot of indoor air pollution, are no longer needed, improving people’s health. And work hours are increased, giving people more time to earn money or build home-based businesses.

“Providing electricity starts an incredible cycle of improvement for communities without reliance on charities or government aid,” she said. “There are also environmental benefits to encouraging sustainable development using renewable resources.” 

The market for small solar lighting and charging units has grown dramatically in the last few years, and solar home systems offer cleaner, safer and cheaper lighting over time than kerosene, the primary alternative for lighting in developing nations. But even a small cost can be out of reach for people whose annual incomes are often less than $3,000 per year, Scott said.

She examined successful business models for serving these populations, known as “base of the pyramid” markets, and successful renewable energy enterprises, looking for intersections that might aid businesses looking to market solar energy to base-of-pyramid markets. 

Scott found that a successful enterprise would include four primary components, and she developed a framework around them. Her recommendations:

  • Community interaction: Work with local communities to understand local norms, culture, social issues and economic systems that might influence the effort.
  • Partnerships: Join forces with other companies, government organizations, non-profit groups or non-governmental organizations to share ideas and resources and gain support.
  • Local capacity building: People in the community may lack product knowledge and have little experience with technology, while the community may not have typical distribution channels. Consider the potential customers as both producers and consumers, training local entrepreneurs as distributors, marketers and equipment installation/repair technicians.
  • Barriers unique to the off-grid market: Address issues such as financing of upfront costs, which may be prohibitive to consumers; educate people on the products and their benefits; build trust in quality and reliability; and develop multiple strong distribution networks.

“You’re not going to be successful just trying to sell a product,” she said. “This is really a social enterprise, with the goal of trying to bring people out of poverty while also emphasizing sustainable development.” 

There are a lot of socially-minded enterprises with good intentions that would like to work in these rural, remote and high-poverty areas, Scott noted. Her framework could serve as a checklist of sorts for organizations looking to put their ideas into action, she said.

“It’s a way to pause for a minute and ask yourself if you have all the right pieces in place to be successful,” she said.

Story By: 
Source: 

Inara Scott, 541-737-4102, Inara.Scott@oregonstate.edu

Scientists discover a molecular motor has a “gear” for directional switching

CORVALLIS, Ore. – A study published today offers a new understanding of the complex cellular machinery that animal and fungi cells use to ensure normal cell division, and scientists say it could one day lead to new treatment approaches for certain types of cancers.

The research revealed a totally unexpected behavior about a “motor” protein that functions as chromosomes are segregated during cell division. The findings were published in Nature Communications.

The work was led by Weihong Qiu, an assistant professor of physics in the College of Science at Oregon State University, in collaboration with researchers from Henan University in China and the Uniformed Services University of the Health Sciences in Maryland.

Motor proteins are tiny molecular machines that convert chemical energy into mechanical work. They are the miniature “vehicles” of a cell, and move on a network of tracks commonly referred to as the cytoskeleton. They shuttle cellular cargos between locations and generate forces to position chromosomes. But in spite of intensive research efforts over many years, mechanisms underlying the actions of many motor proteins are still unclear.

In this study, researchers focused on a particular motor protein, called KlpA, and used a high-sensitivity light microscopy method to directly follow the movement of individual KlpA molecules on the cytoskeleton track. They discovered that KlpA is able to move in opposite directions - an unusual finding. KlpA-like motor proteins are thought to be exclusively one-way vehicles.

The researchers also discovered that KlpA contains a gear-like component that enables it to switch direction of movement. This allows it to localize to different regions inside the cell so it can help ensure that chromosomes are properly divided for normal cell division.  

“In the past, KlpA-like motor proteins were thought to be largely redundant, and as a result they haven’t been studied very much,” Qiu said.

“It’s becoming clear that KlpA-like motors in humans are crucial to cancer cell proliferation and survival. Our results help better understand other KlpA-like motor proteins including the ones from humans, which could eventually lead to novel approaches to cancer treatment.”

Qiu and colleagues say they are excited about their future research, which may uncover the design principle at the atomic level that allows KlpA to move in opposite directions. And there may be other applications.

“KlpA is a fascinating motor protein because it is the first of its kind to demonstrate bidirectional movement,” Qiu said. “It provides a golden opportunity for us to learn from Mother Nature the rules that we can use to design motor protein-based transport devices.  Hopefully in the near future, we could engineer motor protein-based robotics for drug delivery in a more precise and controllable manner.”

The work was done with partial support from the National Science Foundation.

Story By: 
Source: 

Weihong Qiu, 541-737-7377

weihong.qiu@physics.oregonstate.edu

Multimedia Downloads
Multimedia: 

Switching directions
Switching direction

Varmint hunters’ ammo selection influences lead exposure in avian scavengers

CORVALLIS, Ore. – Varmint hunters’ choice of ammunition plays a role in the amount of lead that scavengers such as golden eagles could ingest, a new study shows, and offers a way to minimize the lead exposure to wildlife.

Using a new bullet-fragment recovery technique known as “digestion,” the research also suggests that radiographs, or X-rays, a common tool for estimating how much of the toxic metal left is behind in shot pests or game animals, tend to produce low estimates.

A team of researchers that included Oregon State University undergraduate student Mason Wagner and U.S. Geological Survey scientists collected 127 Belding’s ground squirrel carcasses from alfalfa fields in southern Oregon and northern California.

Eleven western states produce roughly 40 percent of the U.S.’s alfalfa, and burrowing mammals such as ground squirrels and prairie dogs can cause significant yield loss. Shooting the rodents is an important form of pest control as well as a popular recreational pastime throughout the West.

The carcasses are typically left on the fields, where avian scavengers like eagles, hawks and kestrels descend upon the carrion to feed both themselves and their nestlings.

This study looked at how much lead remained in the carcasses and how that correlated with the type of bullet used. Models were also created to estimate from radiographs the amount of lead left in a carcass and the potential effect of the lead on nestlings’ mortality, growth and production of an enzyme critical to the blood’s ability to carry oxygen.

Results of the study by Oregon State’s College of Agricultural Sciences and the USGS were recently published in PLOS ONE.

The research found 80 percent of shot carcasses had detectible fragments of lead. The study also found bullet type didn’t have an effect on the number of fragments, but it did influence the mass of the retained fragments. Also, smaller carcasses showed more “pass-through,” i.e. less retained lead.

Squirrels shot with high-velocity, high-mass .17-caliber Super Mag bullets, for example, had 28 times the retained fragment mass of those shot with .22-caliber solid bullets. One percent of the Super Mags’ original mass was left behind, by far the highest percentage of any ammo type, and the Super Mag fragments also dispersed more than two times farther through the carcass – making them more likely to be eaten by a scavenging animal.

Modeling suggested that hawk and eagle nestlings fed regularly with shot ground squirrels could likely lose more than half the production of the key enzyme ALAD throughout the nestling period, though no nestlings would be expected to die of lead poisoning. They could, though, eat enough lead to impair late-nestling-stage growth, but by then they would have done most of their growing anyway.

The digestion procedure for extracting bullet fragments involved processing carcasses into a solution that was run through sieves and a gold-prospecting sluice box. Researchers used digestion on 30 carcasses to determine a relationship between digestion results and radiography results.

“We found that radiographs are not very accurate at estimating how much lead is left in a carcass,” said study co-author Collin Eagles-Smith, a USGS ecologist and OSU courtesy assistant professor of fisheries and wildlife. “They underestimate density when there are more small fragments. Small ones are the pieces that are more digestible and likely to enter the circulatory system.”

Radiography has also been used to estimate how much lead is present in shot game animals such as deer and elk.

In addition to providing a check on the accuracy of estimating via radiography, the research also suggests a way for hunters to minimize the amount of lead left in varmint carcasses.

“The sheer number of carcasses after a hunting session is a challenge to pick up, assuming you can even find all of the carcasses,” said lead author Garth Herring, also a USGS ecologist. “Picking up every last carcass is not realistic, but there are choices people can make regarding ammunition that may result in smaller amounts of lead in the carcasses left behind.”

Eagles-Smith noted that rodenticides, an alternative to shooting, have their own toxicological implications.

“These pests are really an economic threat to farmers, and shooting them is one method to control their numbers,” he said. “Choosing an ammunition type, such as .22-caliber solid bullets, that creates substantially fewer fragments can be a way to minimize lead exposure to scavengers and other wildlife.” 

Media Contact: 

Steve Lundeberg, 541-737-4039

Multimedia Downloads
Multimedia: 

Belding's Ground Squirrel

Belding's ground squirrel

New tag revolutionizes whale research - and makes them partners in science

NEWPORT, Ore. – A sophisticated new type of “tag” on whales that can record data every second for hours, days and weeks at a time provides a view of whale behavior, biology and travels never before possible, scientists from Oregon State University reported today in a new study.

This “Advanced Dive Behavior,” or ADB tag, has allowed researchers to expand their knowledge of whale ecology to areas deep beneath the sea, over thousands of miles of travel, and outline their interaction with the prey they depend upon for food.

It has even turned whales into scientific colleagues to help understand ocean conditions and climate change.

The findings, just published in the journal Ecology and Evolution, showed sperm whales diving all the way to the sea floor, more than 1000 meters deep, and being submerged for up to 75 minutes. It reported baleen whales lunging after their food; provided a basis to better understand whale reactions to undersea noises such as sonar or seismic exploration; and is helping scientists observe how whales react to changes in water temperature.

The ADB tag is a pretty revolutionary breakthrough,” said Bruce Mate, professor and director of OSU’s Marine Mammal Institute in the College of Agricultural Sciences. “This provides us a broad picture of whale behavior and ecology that we’ve never had before.

“This technology has even made whales our partners in acquiring data to better understand ocean conditions and climate change,” Mate said. “It gives us vast amounts of new data about water temperatures through space and time, over large distances and in remote locations. We’re learning more about whales, and the whales are helping us to learn more about our own planet.”

The new tag, the researchers say, expands by several orders of magnitude the observations that can be made of whale feeding and behavior. Researchers say it’s showing what whales do while underwater; when, how and where they feed; how they might be affected by passing ships or other noises; and what types of water temperatures they prefer.

In the new study, researchers outlined the continued evolution and improvements made in the ADB technology from 2007-15, in which it was used on sperm, blue and fin whales. The research has been supported by the Office of Naval Research, the U.S. Navy and the International Association of Oil and Gas Producers.

“By using this technology on three different species, we’ve seen the full range of behavior that is specific to each species,” said Daniel Palacios, a co-author on the study. “Sperm whales, for instance, really like to dive deep, staying down a long time and appearing to forage along the seafloor at times. During summer the baleen whales will feed as much as possible in one area, and then they move on, probably after the prey density gets too low.”

Unlike earlier technology that could not return data from the deep sea for much longer than a day, the new ADB tags are designed to acquire data constantly, for up to seven weeks at a time, before they detach from the whale, float to the surface and are retrieved in the open sea to download data. The retrieval itself is a little tricky – scientists compare it to searching for a hamburger floating in thousands of square miles of open ocean – but it has worked pretty well, thanks to the tags transmitting GPS-quality locations and flashing LED lights once they have released.

The tag can sense water depth, whale movement and body orientation, water temperature and light levels.

“With this system we can acquire much more data at a lower cost, with far less commitment of time by ships and personnel,” said Ladd Irvine, the corresponding author on the study. “This tag type yields amazing results. It’s going to significantly expand what we can accomplish, learning both about whale ecology and the ocean itself.”

Story By: 
Source: 

Bruce Mate, 541-867-0202

bruce.mate@oregonstate.edu

Multimedia Downloads
Multimedia: 

Whale tag

Whale with tag


Whale tag 2

Whale with tag

Whale travels
Whale travel and feeding

Advance in intense pulsed light sintering opens door to improved electronics manufacturing

CORVALLIS, Ore. – Faster production of advanced, flexible electronics is among the potential benefits of a discovery by researchers at Oregon State University’s College of Engineering.

Taking a deeper look at photonic sintering of silver nanoparticle films – the use of intense pulsed light, or IPL, to rapidly fuse functional conductive nanoparticles – scientists uncovered a relationship between film temperature and densification. Densification in IPL increases the density of a nanoparticle thin-film or pattern, with greater density leading to functional improvements such as greater electrical conductivity.

The engineers found a temperature turning point in IPL despite no change in pulsing energy, and discovered that this turning point appears because densification during IPL reduces the nanoparticles’ ability to absorb further energy from the light.

This previously unknown interaction between optical absorption and densification creates a new understanding of why densification levels off after the temperature turning point in IPL, and further enables large-area, high-speed IPL to realize its full potential as a scalable and efficient manufacturing process.

Rajiv Malhotra, assistant professor of mechanical engineering at OSU, and graduate student Shalu Bansal conducted the research. The results were recently published in Nanotechnology.

“For some applications we want to have maximum density possible,” Malhotra said. “For some we don’t. Thus, it becomes important to control the densification of the material. Since densification in IPL depends significantly on the temperature, it is important to understand and control temperature evolution during the process. This research can lead to much better process control and equipment design in IPL.”

Intense pulsed light sintering allows for faster densification – in a matter of seconds – over larger areas compared to conventional sintering processes such as oven-based and laser-based. IPL can potentially be used to sinter nanoparticles for applications in printed electronics, solar cells, gas sensing and photocatalysis.

Earlier research showed that nanoparticle densification begins above a critical optical fluence per pulse but that it does not change significantly beyond a certain number of pulses.

This OSU study explains why, for a constant fluence, there is a critical number of pulses beyond which the densification levels off.

“The leveling off in density occurs even though there’s been no change in the optical energy and even though densification is not complete,” Malhotra said. “It occurs because of the temperature history of the nanoparticle film, i.e. the temperature turning point. The combination of fluence and pulses needs to be carefully considered to make sure you get the film density you want.”

A smaller number of high-fluence pulses quickly produces high density. For greater density control, a larger number of low-fluence pulses is required.

“We were sintering in around 20 seconds with a maximum temperature of around 250 degrees Celsius in this work,” Malhotra. “More recent work we have done can sinter within less than two seconds and at much lower temperatures, down to around 120 degrees Celsius. Lower temperature is critical to flexible electronics manufacturing. To lower costs, we want to print these flexible electronics on substrates like paper and plastic, which would burn or melt at higher temperatures. By using IPL, we should be able to create production processes that are both faster and cheaper, without a loss in product quality.”

Products that could evolve from the research, Malhotra said, are radiofrequency identification tags, a wide range of flexible electronics, wearable biomedical sensors, and sensing devices for environmental applications.

The advance in IPL resulted from a four-year, $1.5 million National Science Foundation Scalable Nanomanufacturing Grant in collaboration with OSU researchers Chih-hung Chang, Alan Wang and Greg Herman. The grant focuses on overcoming scientific barriers to industry-level nanomanufacturing. Support also came from the Murdock Charitable Trust and the Oregon Nanoscience and Microtechnologies Institute.

Media Contact: 

Steve Lundeberg, 541-737-4039

Source: 
Multimedia Downloads
Multimedia: 

unsintered and sintered

Unsintered, left, and sintered nanoparticles

Wave energy center receives $40 million to construct world’s premier test facility

NEWPORT, Ore. – Oregon State University’s Northwest National Marine Renewable Energy Center today was awarded up to $40 million from the U.S. Department of Energy, to create the world’s premier wave energy test facility in Newport.

The NNMREC facility, known as the Pacific Marine Energy Center South Energy Test Site, or PMEC-SETS, is planned to be operational by 2020. It will be able to test wave energy “converters” that harness the energy of ocean waves and turn it into electricity. Companies around the world are already anticipating construction of the new facility to test and perfect their technologies, OSU officials say.

“We anticipate this will be the world’s most advanced wave energy test facility,” said Belinda Batten, the director of NNMREC and a professor in the OSU College of Engineering.

“This is a tribute to the support we received from the state of Oregon, and the efforts of many other people who have worked for the past four years – in some cases since the mid-2000s – to see this facility become a reality. It will play an integral role in moving forward on the testing and refinement of wave energy technologies.”

Those technologies, Batten said, are complex and expensive.

“These devices have to perform in hostile ocean conditions; stand up to a 100-year storm; be energy efficient, durable, environmentally benign – and perhaps most important, cost-competitive with other energy sources,” Batten said. “This facility will help answer all of those questions, and is literally the last step before commercialization.”

The DOE award is subject to appropriations, federal officials said today, and will be used to design, permit, and construct an open-water, grid-connected national wave energy testing facility. It will include four grid-connected test berths.

“OSU researchers are already international leaders on several new sources of energy that will be dependable, cost-competitive and efficient,” said OSU President Edward J. Ray.

“This is another enormous step for alternative energy, especially for an energy resource that Oregon is so well-suited to pursue. In coming years this new facility, aided by the assistance of OSU experts, will provide great learning opportunities for our students and have repercussions for wave energy development around the world.”

In making the award, the agency noted that more than 50 percent of the U.S. population lives within 50 miles of coastlines, offering America the potential to develop a domestic wave energy industry that could help provide reliable power to coastal regions.

Investments in marine and hydrokinetic energy technology will encourage domestic manufacturing, create jobs, and advance this technology to help achieve the nation’s energy goals, DOE officials said in their announcement of this award. Studies have estimated that even if only a small portion of the energy available from waves is recovered, millions of homes could be powered.

The new facility and award also received support from a range of academic and political leaders:

Oregon U.S. Sen. Ron Wyden: “This is great news for OSU and its partners and will launch a new level of local job creation and clean energy innovation. Oregon will use this opportunity to build on its solid position nationally and internationally as a leader in renewable wave energy."

Oregon U.S. Sen. Jeff Merkley: "This is a huge success story for Oregon State University, and I thank the Department of Energy for helping us harness the enormous potential of wave energy off the Oregon coast. This test facility will make Oregon the leader in bringing wave energy to the United States, which will create good-paying local jobs, and strengthen our coastal economies."

Oregon U.S. Rep. Kurt Schrader: "Being able to tap into our rich marine energy resources will unleash the potential for billions of dollars in investment along our coastlines. The research that will be made possible through this grant is absolutely critical to the full and effective implementation of wave energy converters into the U.S. green energy portfolio. This federal support is terrific news for OSU and the entire local economy as it allows Oregonians to lead the pack here at home on wave energy."

Oregon U.S. Rep. Suzanne Bonamici: "OSU is at the forefront of wave energy research. Wave energy has tremendous potential as a renewable resource to put our country on a path to a clean energy future. This critical federal support will allow the university, researchers, and students to continue to investigate and test the potential of wave energy. With this investment we are one important step closer to harnessing the power of the ocean to meet our nation’s clean energy needs, create good-paying jobs, and spur economic growth in our communities.”

Oregon Gov. Kate Brown: “I commend the talented team of Oregon State University researchers, staff, and students who lead the nation in research and development of wave energy technology. This U.S. Department of Energy grant announcement of up to $40 million leverages years of work and partnership with our state. This innovative work will contribute to Oregon and the nation’s clean energy mix of the future.”

Oregon State Sen. Arnie Roblan: “After the work of the coastal caucus during the 2016 session to secure a state match for this grant, I am pleased by this news. This grant will enable cutting edge research that will bring a variety of individual innovators to the Oregon coast. We are uniquely positioned to help the nation determine the efficacy of their energy devices to Oregon.”

Cynthia Sagers, vice president for research at OSU: “This award is a major win for Dr. Batten and her team.  It comes after years of collaboration among OSU researchers, state and federal agencies, and industry partners. With it, we are one step closer to a clean, affordable and reliable energy future.”

Story By: 
Source: 

Belinda Batten, 541-737-9492

belinda.batten@oregonstate.edu

Multimedia Downloads
Multimedia: 

Wave energy test site
Wave energy test center