scientific research and advances

New study: Iceberg influx into Atlantic during ice age raised tropical methane emissions

CORVALLIS, Ore. – A new study shows how huge influxes of fresh water into the North Atlantic Ocean from icebergs calving off North America during the last ice age had an unexpected effect – they increased the production of methane in the tropical wetlands.

Usually increases in methane levels are linked to warming in the Northern Hemisphere, but scientists who are publishing their findings this week in the journal Science have identified rapid increases in methane during particularly cold intervals during the last ice age.

These findings are important, researchers say, because they identify a critical piece of evidence for how the Earth responds to changes in climate.

“Essentially what happened was that the cold water influx altered the rainfall patterns at the middle of the globe,” said Rachael Rhodes, a research associate in the College of Earth, Ocean, and Atmospheric Sciences at Oregon State University and lead author on the study, which was funded by the National Science Foundation. “The band of tropical rainfall, which includes the monsoons, shifts to the north and south through the year.

“Our data suggest that when the icebergs entered the North Atlantic causing exceptional cooling, the rainfall belt was condensed into the Southern Hemisphere, causing tropical wetland expansion and abrupt spikes in atmospheric methane,” she added.

During the last ice age, much of North America was covered by a giant ice sheet that many scientists believe underwent several catastrophic collapses, causing huge icebergs to enter the North Atlantic – phenomena known as Heinrich events. And though they have known about them for some time, it hasn’t been clear just when they took place and how long they lasted.

Rhodes and her colleagues examined evidence from the highly detailed West Antarctic Ice Sheet Divide ice core (http://www.waisdivide.unh.edu). They used a new analytical method perfected in collaboration with Joe McConnell at the Desert Research Institute in Reno, Nevada, to make extremely detailed measurements of the air trapped in the ice.

“Using this new method, we were able to develop a nearly 60,000-year, ultra-high-resolution record of methane much more efficiently and inexpensively than in past ice core studies, while simultaneously measuring a broad range of other chemical parameters on the same small sample of ice,” McConnell noted.

Utilizing the high resolution of the measurements, the team was able to detect methane fingerprints from the Southern Hemisphere that don’t match temperature records from Greenland ice cores.

“The cooling caused by the iceberg influx was regional but the impact on climate was much broader,” said Edward Brook, an internationally recognized paleoclimatologist from Oregon State University and co-author on the study. “The iceberg surges push the rain belts, or the tropical climate system, to the south and the impact on climate can be rather significant.”

Concentrating monsoon seasons into a smaller geographic area “intensifies the rainfall and lengthens the wet season,” Rhodes said.

“It is a great example of how inter-connected things are when it comes to climate,” she pointed out. “This shows the link between polar areas and the tropics, and these changes can happen very rapidly. Climate models suggest only a decade passed between the iceberg intrusion and a resulting impact in the tropics.”

The study found that the climate effects from the Heinrich events lasted between 740 and 1,520 years.

Media Contact: 

Rachael Rhodes, 541-737-1209, rhodesra@geo.oregonstate.edu; Ed Brook, 541-737-8197, brooke@geo.oregonstate.edu

Multimedia Downloads




















Antarctic Ice Core

Core from the West Antarctic Ice Sheet

Licensing agreement reached on brilliant new blue pigment discovered by happy accident

CORVALLIS, Ore. – A brilliant new blue pigment – discovered serendipitously by Oregon State University chemists in 2009 – is now reaching the marketplace, where it will be used in a wide range of coatings and plastics.

The commercial development has solved a quest that began thousands of years ago, and captured the imagination of ancient Egyptians, the Han dynasty in China, Mayan cultures and others – to develop a near-perfect blue pigment.

It happened accidently.

OSU chemist Mas Subramanian and his team were experimenting with new materials that could be used in electronics applications and they mixed manganese oxide – which is black in color – with other chemicals and heated them in a furnace to nearly 2,000 degrees Fahrenheit. One of their samples turned out to be a vivid blue. Oregon State graduate student Andrew Smith initially made these samples to study their electrical properties.

“It was serendipity, actually; a happy, accidental discovery,” Subramanian said.

The new pigment is formed by a unique crystal structure that allows the manganese ions to absorb red and green wavelengths of light, while only reflecting blue. The vibrant blue is so durable, and its compounds are so stable – even in oil and water – that the color does not fade.

These characteristics make the new pigment versatile for a variety of commercial products. Used in paints, for example, they can help keep buildings cool by reflecting infrared light. Better yet, Subramanian said, none of the pigment’s ingredients are toxic.

OSU has reached an exclusive licensing agreement for the pigment, which is known as “YInMn” blue, with The Shepherd Color Company. It will be used in a wide range of coatings and plastics.

“This new blue pigment is a sign that there are new pigments to be discovered in the inorganic pigments family,” said Geoffrey T. Peake, research and development manager for The Shepherd Color Company. Commercial quantities of the pigment will be available later this year, he added.

The lack of toxic materials is critical, Subramanian pointed out, and a hallmark of the new pigment.

“The basic crystal structure we’re using for these pigments was known before, but no one had ever considered using it for any commercial purpose, including pigments,” Subramanian said.  “Ever since the early Egyptians developed some of the first blue pigments, the pigment industry has been struggling to address problems with safety, toxicity and durability.”

Another commercial use of the product – in addition to coatings and plastics, may be in roofing materials. The new pigment is a “cool blue” compound that has infrared reflectivity of about 40 percent – much high than other blue pigments – and could be used in the blue roofing movement.

“The more we discover about the pigment, the more interesting it gets,” said, Subramanian, who is the Milton Harris Professor of Materials Science in the OSU College of Science.  “We already knew it had advantages of being more durable, safe and fairly easy to produce. Now it also appears to be a new candidate for energy efficiency.”

In addition to testing the blue pigment for other applications, Subramanian is attempting to discover new pigments by creating intentional laboratory “accidents.” His original work was funded by the National Science Foundation.

“Who knows what we may find?,” he said.

Media Contact: 

Mas Subramanian, 541-737-8235, mas.subramanian@oregonstate.edu

Pactamycin analogs offer new, gentler approach to cancer treatment


The study this story is based on is available online: http://bit.ly/1PlJvdS


CORVALLIS, Ore. – Researchers at Oregon State University are pursuing a new concept in treatment of epithelial cancer, especially head and neck cancer, by using two promising “analogs” of an old compound that was once studied as a potent anti-tumor agent, but long ago abandoned because it was too toxic.

The analogs are more highly selective than the parent compound, pactamycin, which originally was found to kill all cells, from bacteria to mammals, by inhibiting their protein synthesis.

The pactamycin analogs, which were developed with biosynthetic engineering, also offer a different approach toward cancer therapy – an effort to essentially put cancer cells to sleep, instead of killing them. If successful, this trend may herald a new future in “kinder and gentler” cancer treatments.

Findings on this promising approach to cancer were just published in PLOS One, in work supported by the National Institute of Health and other agencies.

The effects of the pactamycin analogs, called TM-025 and TM-026, were characterized in head and neck cancer cell lines, which cause the eighth most common cancer in the world. But they may have applications to a wider range of cancers, the researchers said, particularly melanoma.

“A traditional view of chemotherapy is that you try to completely kill cancer cells and destroy tumors,” said Arup Indra, an associate professor in the OSU College of Pharmacy and one of the lead authors on the study. “Sometimes this is effective, sometimes not as much. An alternative approach is to cause rapid cell aging and induce premature senescence, which we believe could become a new frontier in cancer drug development.”

A senescent cancer cell, Indra said, doesn’t usually die, but the growth of it and the larger tumor is slowed or stops, and it continues to live in a vegetative state, almost like being asleep. Such an approach can be an alternative way to control cancer without completely killing it, which may help reduce problems with resistance that can quickly develop to chemotherapeutic drugs. And it also avoids some of the most toxic and debilitating side effects of cancer chemotherapies, which are often caused by cell death.

The new findings showed that these analogs of pactamycin largely stopped cancer cell proliferation and growth, causing cells to age and lose their ability to divide and grow. These effects are partly mediated by tumor suppressor p53, which is frequently mutated in human cancers. They do not yet form the basis for a therapy, researchers said, because methods must still be perfected to get them more selectively into the cancer cells.

“With further research we hope to create a nontoxic nanocarrier that could provide targeted delivery of the TM-025 and TM-026 analogs specifically to cancer cells,” said Gitali Indra, an OSU assistant professor and also a lead and corresponding author on the study. “In some cases, such as oral cancer, it may also be possible to use topical treatments. But this approach should have significant promise if we can develop techniques to adequately target the cancer cells.”

The OSU researchers are continuing work to more fully understand the mode of action of these pactamycin analogs. Collaborators on this study include Taifo Mahmud, an OSU professor in the College of Pharmacy, and researchers from the Oregon Health & Science University.


Arup Indra, 541-737-5775

New program to train international specialists in water conflict resolution

CORVALLIS, Ore. – The increasing need for access to fresh water for drinking, agriculture, fisheries and other uses is at the root of a growing number of geopolitical conflicts around the world, yet there are few resource managers in charge who have training in both water science and diplomacy.

A new cooperative international education program aims to address that shortfall.

Oregon State University, the University for Peace in Costa Rica, and the UNESCO-IHE Water Education Center in The Netherlands are creating an international joint education program aimed at addressing water conflicts in a more professional manner. The program will launch this fall with about 10 students enrolled to earn master’s degrees, eventually growing to 30 students from around the world.

“There is a real need for people trained in the art of ‘hydro-diplomacy,’” said Aaron Wolf, an Oregon State University geographer and internationally recognized expert on water conflict. “The problem is really rather simple – there just isn’t enough water to go around for every need. So if you manage water, you have to know how to manage conflict and that’s where the training has been lacking.

“The good news is that water gives you the opportunity to get certain people into the room that wouldn’t ordinarily sit across from each other,” Wolf added. “And it gives them a common language.”

Students in the new program will study at each of the three sites, ending up at Oregon State where they will be required to conduct a collaborative, applied research project somewhere in the United States where water management issues are in play, according to Mary Santelmann, director of Oregon State’s Water Resources Graduate Program, which will coordinate the new degree in the U.S.

The venture builds on a certificate program OSU offers in water conflict management, and utilizes the expertise of each institution.

“Oregon State has some 90 faculty members who are involved in some aspect of water science and another 20 faculty members who focus on some aspect of public policy and conflict resolution,” Santelmann said. “That expertise, along with OSU’s work with a variety of federal agencies, made the university uniquely positioned to play a lead role in the new educational venture.”

The University for Peace in Costa Rica is a United Nations-mandated institution established in 1980 as a treaty organization by the UN General Assembly. Scholars there have a great deal of experience at high-level diplomacy, as well as conflict theory and geopolitical expertise with developing countries.

The United Nations Educational, Scientific and Cultural Organization (UNESCO) Institute for Water Education is the largest international graduate water education facility in the world, and has researchers with extensive experience in working on water resource issues in Europe and elsewhere.

“There is no single institution that could offer an entire curriculum and suite of experiences necessary to train a generation of students in hydro-diplomacy,” said Wolf, who is a 2015 recipient of the prestigious Heinz Award for public policy. “It had to be collaborative, international and experiential.”

The issues students will deal with are vast. In Oregon, for example, there has been a major conflict over water rights in the Klamath River basin, where agricultural interests compete with fisheries management and tribal rights.

These kinds of issues are not unusual in the United States, Wolf pointed out, and can become even more contentious when an international component is added.

“Ethiopia has been constructing a major dam and Egypt is so concerned about the impact on its water that it has discussed going to war over it,” Wolf said. “There are many countries in central and Southeast Asia where similar border tensions have arisen over water that flows across multiple jurisdictions.”

Water management is conflict management, Santelmann pointed out. The collaborative new program will focus on guiding students to gain skills in a variety of areas through field work, working with experts from different disciplines, and gaining a broad understanding of varying points of view, resolution processes, and water management science.

“Regardless of the scale, there is a demand for people who can ensure that the needs of the people and the ecosystem that rely on this critical resource will be met,” Santelmann said.

Santelmann and Wolf are in Oregon State’s College of Earth, Ocean, and Atmospheric Sciences.

Media Contact: 

Mary Santelmann, 541-737-1215, santelmm@geo.oregonstate.edu;

Aaron Wolf, 541-737-2722; wolfa@geo.oregonstate.edu

Multimedia Downloads




This tributary of the Nu River in China has all of its water diverted by dams and is dry – just one example of water use conflict around the world. A new collaborative program that includes Oregon State University aims to help train leaders in water conflict resolution. (Photo by Kelly Kibler, courtesy of Oregon State University)

Researchers measure giant “internal waves” that help regulate climate

CORVALLIS, Ore. – Once a day, a wave as tall as the Empire State Building and as much as a hundred miles wide forms in the waters between Taiwan and the Philippines and rolls across the South China Sea – but on the surface, it is hardly noticed.

These daily monstrosities are called “internal waves” because they are beneath the ocean surface and though scientists have known about them for years, they weren’t really sure how significant they were because they had never been fully tracked from cradle to grave.

But a new study, published this week in Nature Research Letter, documents what happens to internal waves at the end of their journey and outlines their critical role in global climate. The international research project was funded by the Office of Naval Research and the Taiwan National Science Council.

“Ultimately, they are what mixes heat throughout the ocean,” said Jonathan Nash, an Oregon State University oceanographer and co-author on the study. “Without them, the ocean would be a much different place. It would be significantly more stratified – the surface waters would be much warmer and the deep abyss colder.

“It’s like stirring cream into your coffee,” he added. “Internal waves are the ocean’s spoon.”

Internal waves help move a tremendous amount of energy from Luzon Strait across the South China Sea, but until this project, scientists didn’t know what became of that energy. As it turns out, it’s a rather complicated picture. A large fraction of energy dissipates when the wave gets steep and breaks on the deep slopes off China and Vietnam, much like breakers on the beach.

But part of the energy remains, with waves reflecting from the coast and rebounding back into the ocean in different directions.

The internal waves are caused by strong tides flowing over the topography, said Nash, who is in OSU’s College of Earth, Ocean, and Atmospheric Sciences. The waves originating in Luzon Strait are the largest in the world, based on the region’s tidal flow and topography. A key factor is the depth at which the warm- and cold-water layers of the ocean meet – at about 1,000 meters.

The waves can get as high as 500 meters tall and 100-200 kilometers wide before steepening.

“You can actually see them from satellite images,” Nash said. “They will form little waves at the ocean surface, and you see the surface convergences piling up flotsam and jetsam as the internal wave sucks the water down. They move about 2-3 meters a second.”

The waves also have important global implications. In climate models, predictions of the sea level 50 years from now vary by more than a foot depending on whether the effects of these waves are included.

“These are not small effects,” Nash said.

This new study, which was part of a huge international collaboration involving OSU researchers Nash and James Moum – as well as 40 others from around the world – is the first to document the complete life cycle of these huge undersea waves.

Media Contact: 

Jonathan Nash, 541-737-4573, nash@coas.oregonstate.edu

Multimedia Downloads


Large "internal waves" are generally not seen at the surface, but their signature is - visible slicks and changes in surface roughness and color.

Solomon Islands dolphin hunts cast spotlight on small cetacean survival

NEWPORT, Ore. – A new study on the impact of ‘drive-hunting’ dolphins in the Solomon Islands is casting a spotlight on the increasing vulnerability of small cetaceans around the world.

From 1976 to 2013, more than 15,000 dolphins were killed by villagers in Fanalei alone, where a single dolphin tooth can fetch the equivalent of 70 cents ($0.70 U.S.) – an increase in value of five times just in the last decade.

Results of the Solomon Islands study are being reported this week online in the new journal, Royal Society Open Science.

“In the Solomon Islands, the hunting is as much about culture as economic value,” said Scott Baker, associate director of the Marine Mammal Institute at Oregon State University and co-author on the study. “In other parts of the world, however, the targeting of dolphins and other small cetaceans appears to be increasing as coastal fishing stocks decline.

“The hunting of large whales is managed by the International Whaling Commission,” added Baker, who works out of OSU’s Hatfield Marine Science Center in Newport, Ore. “But there is no international or inter-governmental organization to set quotas or provide management advice for hunting small cetaceans. Unregulated and often undocumented exploitation pose a real threat to the survival of local populations in some regions of the world.”

The drive-hunting of dolphins has a long history in the Solomon Islands, particularly at the island of Malaita, according to Marc Oremus, a biologist with the South Pacific Whale Research Consortium and lead author on the study. In 2010, the most active village, Fanalei, suspended hunting in exchange for financial compensation from an international non-governmental organization. The villagers resumed hunting in 2013.

“After the agreement broke down in 2013, a local newspaper reported that villagers had killed hundreds of dolphins in just a few months,” Oremus said. “So we went to take a look.”

Oremus and co-author John Leqata, a research officer with the Ministry of Fisheries and Marine Resources, visited Fanalei in March of 2013 to document the impact on the population, and examine detailed records of the kills. During the first three months of that year, villagers killed more than 1,500 spotted dolphins, 159 spinner dolphins, and 15 bottlenose dolphins.

This is one of the largest documented hunts of dolphins in the world, rivaling even the more-industrialized hunting of dolphins in Japan, noted Baker, whose genetic identification research was featured in the Academy Award-winning documentary on dolphin exploitation, “The Cove.”

“It is also troubling that teeth are increasing in cash value, apparently creating a commercial incentive for hunting dolphins,” Baker said.

In drive-hunting, the hunters operate in close coordination from 20 to 30 traditional canoes. When dolphins are found, the hunters used rounded stones to create a clapping sound underwater. The hunters maneuver the canoes into a U-shape around the dolphins, using sound as an acoustic barrier to drive them toward shore where they are killed.

“The main objective of the hunt is to obtain dolphin teeth that are used in wedding ceremonies,” Oremus said. “The teeth and meat are also sold for cash.”

Oremus said the Solomon Island hunters understand the risk of exploiting the population.

“The government of the Solomon Islands has contributed substantially to research in recent years, but is not well-equipped to undertake the scale of research needed to estimate abundance and trends of the local dolphin population,” Oremus said. “This problem exists in many island nations with large ‘Exclusive Economic Zones.’”

The research was supported by the International Fund for Animal Welfare, the Pew Environmental Group and the International Whaling Commission.

Media Contact: 

Scott Baker, 541-272-0560, scott.baker@oregonstate.edu

Multimedia Downloads


Dolphin teeth are sold for necklaces

Emeritus OSU geologist outlines earthquake “time bombs” in a forthcoming book

CORVALLIS, Ore. – An emeritus Oregon State University geologist, who was one of the first scientists to point to the possibility of a major earthquake in the Pacific Northwest, outlines some of the world’s seismic “time bombs” in a forthcoming book.

One of those time bombs listed, in a segment he wrote last year, was Nepal where on April 25, an earthquake estimated at magnitude 7.8 struck the region, killing more than 7,500 people and injuring another 14,500.

Robert Yeats’ prescience is eerily familiar.

Five years ago, Yeats was interviewed by Scientific American on earthquake hazards and outlined the dual threats to Port au Prince, Haiti, of poverty and proximity to a major fault line. One week later, that time bomb went off and more than 100,000 people died in a catastrophic earthquake.

When the Scientific American reporter called Yeats after that seismic disaster to ask if he had predicted the quake, he said no.

“I could say where the time bombs are located – large, rapidly growing cities next to a tectonic plate boundary with a past history of earthquakes, but I had no way of knowing that the bomb would go off a week after my interview,” he said.

Fast forward to 2015 – Yeats has completed a new book, “Earthquake Time Bombs,” which will be published later this year by Cambridge University Press. In that book, he identifies other time bombs around the world; one is a region he has visited frequently in the past 30 years – the Himalayas, including Kathmandu, Nepal, a city of more than a million people.

Yeats points to several areas around the worlds where large cities lie on or adjacent to a major plate boundary creating a ticking time bomb: Tehran, the capital of Iran; Kabul in Afghanistan; Jerusalem in the Middle East; Caracas in Venezuela; Guantanamo, Cuba; Los Angeles, California; and the Cascadia Subduction Zone off the northwestern United States and near British Columbia.

“These places should take lessons from the regions that already have experienced major earthquakes, including Nepal,” said Yeats, who is with OSU’s College of Earth, Ocean, and Atmospheric Sciences.

Like Port au Prince, Kathmandu lies on a tectonic plate boundary – the thrust fault between the high Himalayas and the continent of India to the south. The plate began its northward movement 50 million years ago, Yeats said, and is progressing at the rate of about two-thirds of an inch a year. As the plate is forcing its way beneath Tibet, it is triggering periodic earthquakes along the way.

“It takes time to build up a sufficient amount of stress in these systems, but eventually they will rupture,” Yeats said. “The 2015 Nepal quake was, unquestionably, a disaster with losses of life in the thousands. But it could have been worse.”

“With the assistance of an American non-profit seismology group, the city of Kathmandu created a disaster management unit and a National Society for Earthquake Technology that established committees of citizens to raise awareness and upgrade buildings, especially public schools,” Yeats pointed out. “Other ‘time bombs’ would be wise to do the same.”

Making buildings more earthquake-resistant is imperative for cities near a fault, yet economics often preclude such measures. Yeats said some of the greatest losses in the Nepal quake took place in United Nations World Heritage sites of Bhaktapur and Patan, where ancient buildings had not been strengthened.

“We are not able to predict an earthquake, but we can identify potential trouble,” Yeats said. A seismic gap in the Himalayas was identified years ago by the late Indian seismologist K.N. Khattri in between western Himalaya of India and Kathmandu, where a magnitude 8.1 quake hit in 1934, he pointed out. The earthquake on April 25 struck within Khattri’s seismic gap, Yeats noted.

The 1934 earthquake killed an estimated 20 percent of the population of Kathmandu Valle, some 30,000 people. The population there was much smaller than it is today.

“The 1934 epicenter apparently was east of the city, whereas the epicenter of April 25’s earthquake was to the west, meaning that the two earthquakes may have ruptured different parts of the plate-boundary fault,” Yeats said.

Earlier earthquakes that damaged Kathmandu struck in 1833 and 1255. The location and magnitude of those two quakes are uncertain.

“Videos of this year’s earthquake focused on damaged and destroyed buildings and many of these were old historical buildings that had not been upgraded,” Yeats said. “Photos also showed new buildings that did not appear to be damaged. There’s a lesson there.”

Media Contact: 

Robert “Bob” Yeats, yeatsr@science.oregonstate.edu

Researchers think Axial Seamount off Northwest coast is erupting – right on schedule

NEWPORT, Ore. – Axial Seamount, an active underwater volcano located about 300 miles off the coast of Oregon and Washington, appears to be erupting – after two scientists had forecast that such an event would take place there in 2015.

Geologists Bill Chadwick of Oregon State University and Scott Nooner of the University of North Carolina Wilmington made their forecast last September during a public lecture and followed it up with blog posts and a reiteration of their forecast just last week at a scientific workshop.

They based their forecast on some of their previous research – funded by the National Science Foundation (NSF) and the National Oceanic and Atmospheric Administration (NOAA), which showed how the volcano inflates and deflates like a balloon in a repeatable pattern as it responds to magma being fed into the seamount.

Since last Friday, the region has experienced thousands of tiny earthquakes – a sign that magma is moving toward the surface – and the seafloor dropped by 2.4 meters, or nearly eight feet, also a sign of magma being withdrawn from a reservoir beneath the summit. Instrumentation recording the activity is part of the NSF-funded Ocean Observatories Initiative. William Wilcock of the University of Washington first observed the earthquakes.

“It isn’t clear yet whether the earthquakes and deflation at Axial are related to a full-blown eruption, or if it is only a large intrusion of magma that hasn’t quite reached the surface,” said Chadwick, who works out of OSU’s Hatfield Marine Science Center in Newport and also is affiliated with NOAA’s Pacific Marine Environmental Laboratory. “There are some hints that lava did erupt, but we may not know for sure until we can get out there with a ship.”

In any case, the researchers say, such an eruption is not a threat to coastal residents. The earthquakes at Axial Seamount are small and the seafloor movements gradual and thus cannot cause a tsunami. Nor is the possible eruption tied to a possible Cascadia Subduction Zone earthquake.

“I have to say, I was having doubts about the forecast even the night before the activity started,” Chadwick admitted. “We didn’t have any real certainty that it would take place – it was more of a way to test our hypothesis that the pattern we have seen was repeatable and predictable.”

Axial Seamount provides scientists with an ideal laboratory, not only because of its close proximity to the Northwest coast, but for its unique structure.

“Because Axial is on very thin ocean crust, its ‘plumbing system’ is simpler than at most volcanoes on land that are often complicated by other factors related to having a thicker crust,” said Chadwick, who is an adjunct professor in OSU’s College of Earth, Ocean, and Atmospheric Sciences. “Thus Axial can give us insights into how volcano magma systems work – and how eruptions might be predicted.”

Axial Seamount last erupted in 2011 and that event was loosely forecast by Chadwick and Nooner, who had said in 2006 that the volcano would erupt before 2014. Since the 2011 eruption, additional research led to a refined forecast that the next eruption would be in 2015 based on the fact that the rate of inflation had increased by about 400 percent since the last eruption.

“We’ve learned that the supply rate of magma has a big influence on the time between eruptions,” Nooner said. “When the magma rate was lower, it took 13 years between eruptions. But now when the magma rate is high, it took only four years.”

Chadwick and Nooner are scheduled to go back to Axial in August to gather more data, but it may be possible for other researchers to visit the seamount on an expedition as early as May. They hope to confirm the eruption and, if so, measure the volume of lava involved.

Evidence that was key to the successful forecast came in the summer of 2014 via measurements taken by colleagues Dave Caress and Dave Clague of Monterey Bay Aquarium Research Institute and Mark Zumberge and Glenn Sasagawa of Scripps Oceanographic Institution. Those measurements showed the high rate of magma inflation was continuing.

Media Contact: 

Bill Chadwick, 541-867-0179, bill.chadwick@oregonstate.edu

Multimedia Downloads











Boca vent

Axial Seamount vent taken in 2011


Researchers find 200-year lag between climate events in Greenland, Antarctica

CORVALLIS, Ore. – A new study using evidence from a highly detailed ice core from West Antarctica shows a consistent link between abrupt temperature changes on Greenland and Antarctica during the last ice age, giving scientists a clearer picture of the link between climate in the northern and southern hemispheres.

Greenland climate during the last ice age was very unstable, the researchers say, characterized by a number of large, abrupt changes in mean annual temperature that each occurred within several decades. These so-called “Dansgaard-Oeschger events” took place every few thousand years during the last ice age. Temperature changes in Antarctica showed an opposite pattern, with Antarctica cooling when Greenland was warm, and vice versa.

In this study funded by the National Science Foundation and published this week in the journal Nature, the researchers discovered that the abrupt climates changes show up first in Greenland, with the response to the Antarctic climate delayed by about 200 years. The researchers documented 18 abrupt climate events during the past 68,000 years.

“The fact that temperature changes are opposite at the two poles suggests that there is a redistribution of heat going on between the hemispheres,” said Christo Buizert, a post-doctoral research at Oregon State University and lead author on the study. “We still don’t know what caused these past shifts, but understanding their timing gives us important clues about the underlying mechanisms.

“The 200-year lag that we observe certainly hints at an oceanic mechanism,” Buizert added. “If the climatic changes were propagated by the atmosphere, the Antarctic response would have occurred in a matter of years or decades, not two centuries. The ocean is large and sluggish, thus the 200-year time lag is a pretty clear fingerprint of the ocean’s involvement.”

These past episodes of climate change differ in a major way from what is happening today, the researchers note. The abrupt events of the ice age were regional in scope – and likely tied to large-scale changes in ocean circulation. Warming today is global and primarily from human carbon dioxide emissions in the Earth’s atmosphere.

The key to the discovery was the analysis of a new ice core from West Antarctica, drilled to a depth of 3,405 meters in 2011 and spanning the last 68,000 years, according to Oregon State paleoclimatologist Edward Brook, a co-author on the Nature study and an internationally recognized ice core expert.

Because the area where the ice core was drilled gets high annual snowfall, Brook said, the new ice core provides one of the most detailed records of Antarctic temperatures at a very high resolution. Greenland temperatures were already well-established, the researchers say, because of high annual snowfall and more available ice core data.

“Past ice core studies did not reveal the temperature changes as clearly as this remarkable core,” said Eric Steig, a professor in the Department of Earth and Space Sciences at the University of Washington, who co-wrote the paper. Steig’s laboratory made one of the key measurements that provides past Antarctic temperatures.

“Previous work was not precise enough to determine the relative timing of abrupt climate change in Antarctica and Greenland, and so it was unclear which happened first,” Steig noted. “Our new results show unambiguously that the Antarctic changes happen after the rapid temperature changes in Greenland. It is a major advance to know that the Earth behaves in this particular way.”

Kendrick Taylor, chief scientist on the project, said the core enabled the research team to get the relative timing of Greenland and Antarctic temperatures down to several decades.

“We needed a climate record from the Southern Hemisphere that extended at least 60,000 years into the past and was able to resolve fast changes in climate,” said Taylor, from the Desert Research Institute in Nevada. “We considered sites all over Antarctica before selecting the site with the best combination of thick ice, simple ice flow and the right amount of annual snowfall.”

Taylor and colleagues formed a science and engineering team consisting of 28 laboratories from around the United States. “The resulting information provides unprecedented detail about many aspects of the Earth’s past climate,” Taylor said. “This will provide a generation of climate researchers a way to test and improve our understanding of how and why global climate changes.”

OSU’s Buizert said it is “very likely” that the Atlantic Meridional Overturning Circulation, or AMOC, is involved in these abrupt climate reversals.

“This ocean circulation brings warm surface waters from the tropics to the North Atlantic,” said Buizert, who is in OSU’s College of Earth, Ocean, and Atmospheric Sciences. “As these water masses cool, they sink to the bottom off the ocean. This happens right off the coast of Greenland, and therefore Greenland is located in a sweet spot where the climate is very sensitive to changes in the AMOC.”

Brook said the AMOC seems to be critical, but was probably part of a combination of factors that ultimately controlled these past abrupt changes.

“Although ocean circulation may be the key, there are probably other feedbacks involved, such as the rise and fall of sea ice and changes in ice and snow cover on land,” Brook said. “There is probably some kind of threshold in the system – say, in the salinity of the surface ocean – that triggers temperature reversals.

“It’s not a problem to find potential mechanisms; it’s just a question of figuring out which one is right. And the precise timing of these events, like we describe in this study, is an important part of the puzzle.”


Media Contact: 

Christo Buizert, 541-737-1209

Multimedia Downloads

antarctica surface

Drug prices to treat multiple sclerosis soar, point to larger problem

PORTLAND, Ore. – A new study released today found that drugs used to treat multiple sclerosis have soared in price in the past two decades, in some cases more than 700 percent, even though newer drugs have come to the market - a process that normally should have stabilized or reduced the cost of at least the older medications.

There are no multiple sclerosis drugs now available in the United States with a list price below $50,000 a year, which is two to three times more than the price in Canada, Australia or the United Kingdom. The group of drugs available to treat this disease is rising in price at five to seven times the normal rate of drug inflation in the U.S.

The findings of this research also point to a systemic problem in the U.S. pharmaceutical industry, with relevance to more than just drugs for multiple sclerosis, according to the authors of the study, which was supported by the Oregon State University College of Pharmacy.

Enormous, uncontrolled and rapidly increasing prices for some types of drugs, they say, may be linked to non-transparent drug pricing policies, a dysfunctional market and the lack of a national healthcare system to negotiate prices more aggressively and directly with pharmaceutical companies.

The end result, they say in the report, may be another industry “too big to fail.”

This research was published today in Neurology, the medical journal of the American Academy of Neurology, by scientists at the Oregon State University/Oregon Health & Science University College of Pharmacy, the Oregon Health & Science University, and the Veterans Affairs Medical Center in Portland, Oregon.

“The issue of astronomical drug costs, especially for newer drugs or rare conditions, is more and more common,” said Daniel Hartung, lead author of the study and an associate professor in the Oregon State University/Oregon Health & Science University College of Pharmacy.

“There are often several drugs in a class available to treat a disease or condition, and ‘economics 101’ would suggest that competition should lower prices,” Hartung said. “In the pharmaceutical industry we often don’t see that. Many professionals now believe that it’s time to push back, to say enough is enough.”

Escalating costs for specialty pharmaceuticals, for conditions such as multiple sclerosis, cancer, and hepatitis C, have been a growing concern among many in the health care industry, the authors wrote in their study, raising questions about the ethics of our current approach, exorbitant pricing and increased burdens on “our already stressed healthcare system.”

“Pricing in the pharmaceutical industry increasingly is a case of whatever the market will bear,” Hartung said. “We used to think that any drug with $1 billion in sales was a blockbuster, but last year a drug for hepatitis C had 10 times that, or $10 billion in sales. This does not necessarily mean that drug research and innovation will be 10 times better.”

In the specific case of multiple sclerosis, the research looked at first-generation drugs which became available in the 1990s at prices ranging from $8,000 to $10,000 a year. More competition from other drugs then entered the field. But instead of the price of the original drugs staying about the same or going down, as classic economic theory might dictate, their price soared. One drug that originally cost $8,700 now costs $62,400 a year.

The cause for escalation in the cost of these older drugs is unexplained and “alarming,” the researchers said. It most likely was not attributable to a rise in manufacturing costs, and general and prescription drug inflation was only about 3-5 percent a year over the same period.

“The simplest explanation is that pharmaceutical companies raise prices of new and old MS disease modifying therapies in the United States to increase profits, and our healthcare system puts no limits on these increases,” the researchers wrote in their report. “The U.S. Medicare program, the largest single-payer healthcare system in the U.S., is legally prohibited from negotiating drug prices directly with the pharmaceutical industry.”

There’s some evidence that generic drug growth might slow the rising drug costs in the U.S., the researchers said, but so far most multiple sclerosis drugs are not exposed to price competition from generics.

For the patient, the soaring costs of these drugs threaten access to them, the study indicated. Initial denials of insurance coverage for multiple sclerosis drugs, for both new and established patients, occur much more often now than in the past, the study reported, often requiring multiple approval steps for patients and their neurologists.

“As a doctor, I’m deeply concerned about making sure these life-changing drugs are within reach for patients,” said Dr. Ruth H. Whitham, co-author of the study, a professor of neurology in the OHSU School of Medicine, and co-founder of the Multiple Sclerosis Center at OHSU. “The driving force behind this study was our experience that the high cost of MS drugs interferes with our ability to take good care of our patients.

“We decided to shine a light on this growing problem so that those of us who care for patients with chronic illness can work together and advocate for changes to drug pricing mechanisms,” she said.

Hartung suggested that, lacking other major changes in the health care system, public awareness and involvement may be an important first step.

“The court of public opinion is pretty powerful,” he said. “We need to shed some light on this issue and do something about it.”

Authors of the study concluded that “it is time for neurologists to begin a national conversation about unsustainable and suffocating drug costs for people with MS – otherwise we are failing our patients and society.”

Media Contact: 

Dan Hartung, 503-494-4720