OREGON STATE UNIVERSITY

scientific research and advances

Oregon Sea Grant announces 2016-18 research grant recipients

CORVALLIS, Ore. – Oregon Sea Grant, a marine research, outreach, education and communication program based at Oregon State University, is awarding $1.7 million in competitive, federally funded research grants for 2016-18.

The grants will go to eight principal investigators at OSU, Oregon Health & Science University, and the University of Oregon for research into marine-related issues.

"Oregon Sea Grant is committed to supporting the science needed to address challenges facing our coastal communities and ecosystems,” said Shelby Walker, director of Oregon Sea Grant. “These projects reflect a broad array of issues important to the future of coastal Oregonians, communities and our environment."

The projects and their principal investigators are listed below (click on the links for additional information):

  • “Indexing the vulnerability and adaptive capacity of marine shellfish to combined stressors of ocean acidification and hypoxia,” Francis Chan, OSU Department of Integrative Biology. (Co-PIs are Eli Meyer and Kristin Milligan, OSU; and Steven Rumrill, Oregon Department of Fish and Wildlife) More information.
  • “Does ocean productivity contribute to dune ecosystem function? Connecting wrack subsidies to Oregon dune coastal protection and conservation services,” Sally Hacker, OSU Department of Integrative Biology. (Co-PIs are Peter Ruggiero and Francis Chan, OSU) More information.
  • “Distribution and degradation of the anti-diabetic drug, Metformin, and its breakdown product, guanylurea, in the Columbia River basin,” Tawnya Peterson, OHSU Institute of Environmental Health. (Co-PI is Joseph Needoba, OHSU). More information.
  • “Utilizing uranium-to-calcium ratios to determine best management practices for shell planting and oyster culture to mitigate ocean acidification impacts,” Alyssa Shiel, OSU College of Earth, Ocean, and Atmospheric Sciences. (Co-PIs Adam Kent and George Waldbusser, OSU). More information.
  • “Improving coastal ocean forecasting and visualization through collaboration in discovery, learning and practice,” Ted Strub, OSU College of Earth, Ocean, and Atmospheric Sciences. (Co-PIs Flaxen Conway and Alexander Kurapov, OSU). More information.
  • “Predatory impacts of large medusa on ichthyoplankton in the Northern California Current,” Kelly Sutherland, University of Oregon’s Oregon Institute of Marine Biology. (Co-PI Richard Brodeur, NOAA’s Northwest Fisheries Science Center). More information.
  • “Evaluating the vulnerability of Oregon seagrass beds to eutrophication,” Fiona Tomas Nash, OSU Department of Fisheries and Wildlife. (Co-PIs Steven Rumrill and Anthony D’Andrea, ODFW; James Kaldy, U.S. Environmental Protection Agency; Bree Yednock and Joy Tally, South Slough National Estuarine Research Reserve; and Renee O’Neill, OSU). More information.
  • “Competing effects of relative sea-level rise and fluvial inputs on blue carbon sequestration in Oregon salt marshes,” Robert Wheatcroft, OSU College of Earth, Ocean, and Atmospheric Sciences. (Co-PIs Laura Brophy and Michael Ewald, Institute for Applied Ecology; Erin Peck, OSU). More information.

As part of the National Oceanic and Atmospheric Administration’s nationwide Sea Grant College Program, Oregon Sea Grant receives a share of congressionally appropriated research dollars every two years to award via a competitive process to university-based scientists studying ocean and coastal issues important to the region and the nation.

Story By: 
Source: 

Shelby Walker, 541-737-6200, Shelby.walker@oregonstate.edu

72 scientists ink letter to U.S. presidential candidates urging leadership on clean energy

CORVALLIS, Ore. – A group of 72 leading climate change scientists have written a letter to major United States presidential candidates urging strong American leadership on clean energy – and calling for a “vibrant economy free from carbon pollution by mid-century.”

The effort began as a letter from nine scientists from Harvard University, Stanford University, University of California at Berkeley, Tufts and elsewhere – part of the Union of Concerned Scientists. Other scientists, including Philip Mote of Oregon State University, recently joined the initiative.

Mote, who directs the Oregon Climate Change Research Institute at Oregon State, and also provides leadership on two joint federal climate change centers at the university, said focusing on clean, renewable sources of energy is not a choice between a strong economy and a healthy environment.

“These are not mutually exclusive,” said Mote, a professor in OSU’s College of Earth, Ocean, and Atmospheric Sciences. “Many of the largest and most influential companies in the world are using energy from renewable sources, including Apple, Google and others. It’s not just a good environmental strategy – they see it as a good business strategy.”

“Oregon’s emission of greenhouse gases peaked in 1999 and has been declining, showing that we can grow the economy and reduce emissions,” Mote added.

In their letter, the climate scientists point to the gradual shift away from non-sustainable fossil fuels to solar and wind power – in part because of rapidly advancing technology. The next U.S. president “will be uniquely positioned to ensure that our nation sustains and accelerates this transition,” they wrote. “The dangers of inaction are also increasingly apparent and lend great urgency to this appeal.”

The letter is being released this week as policy-makers and others convene in Paris for the annual international climate summit.  Limiting carbon emissions from fossil fuels is critical in slowing the rate of warming the Earth is experiencing, the scientists note, and the effects are being seen world-wide – from rapidly warming and acidifying oceans to melting glaciers.

Yet much of the public – and many political leaders – has been slow to accept what many scientists say is overwhelming evidence that our planet is in peril, Mote said.

“This week, as some of Oregon’s rivers are rising, we are reminded that a warming climate accentuates existing risks like flooding,” Mote said.  “Additional risks for the region include increased wildfires and coastal inundation. Limiting emissions will reduce the size of future changes."

The scientists call for the next president to pursue key goals, including:

  • Following through on the U.S. commitment to reduce carbon emissions by 26 to 28 percent below 2005 levels by the year 2025;
  • Phasing out fossil energy subsidies and putting a price on carbon to “ensure a level playing field” for renewable energy, nuclear power and other low- or zero-carbon technologies;
  • Modernizing antiquated energy transmission, distribution and transportation systems;
  • Increasing investment in clean energy research.

Mote was a lead author on the 2007 Intergovernmental Panel on Climate Change report, which led to a Nobel Prize, and a lead author for the fifth IPCC report in 2013 in a chapter focusing on the cryosphere.

Story By: 
Source: 

Phil Mote, 541-737-5692, pmote@coas.oregonstate.edu

Report: Willamette Valley water future mostly bright, though gaps may need to be addressed

CORVALLIS, Ore. – During the next 85 years, temperatures in Oregon’s Willamette River basin are expected to rise significantly, mountain snowpack levels will shrink dramatically, and the population of the region and urban water use may double – but there should be enough water to meet human needs, a new report concludes.

Fish may not be so lucky. Although ample water may be available throughout most of the year, the Willamette Valley and its tributaries likely will become sufficiently warm as to threaten cold-water fish species, including salmon and steelhead, the scientists say.

These are among the key findings of the Willamette Water 2100 Project, a five-year, $4.3 million study funded by the National Science Foundation and led by Oregon State University, in partnership with researchers from the University of Oregon, Portland State University and University of California at Santa Barbara.

“The Willamette River basin today is characterized by abundant annual water and sometime seasonal shortages,” said Anne Nolin, an OSU professor of environmental sciences and principal investigator on the study. “That should continue into 2100, despite much warmer temperatures, more people and a substantial loss of snowpack.

“The reason for optimism is the region’s 11 storage reservoirs coordinated by the Army Corps of Engineers that act as a valve for seasonal differences and preserve water for times of need,” Nolin added. “Without them, the picture would look quite a bit different.”

Analysis of global circulation models suggest that the Willamette River basin will warm between two and 13 degrees (Fahrenheit) by the year 2100, thus scientists used three separate scenarios to look at potential impacts based on low, medium and high rates of temperature increase. These temperature increases will result in a dramatic decline in snowpack – from 63 to 95 percent lower than average – changing seasonal water flow patterns.

Scientists also explored results from a range of population, economic and policy scenarios that allowed them to ask “what if?” questions for different human changes and interactions with climate changes. Much of the climate modeling for the project was developed through a regional integrated sciences and assessments (RISA) program at Oregon State, which is funded by NOAA and led by OSU Professor Philip Mote.

There is little doubt that temperatures will increase, the report notes, but there is less certainty about the impact of a changing climate on precipitation. Winters may actually be slightly wetter, though more of the precipitation will fall as rain instead of snow. Summers should be drier, necessitating more reliance on water held behind the region’s 11 storage reservoirs.

“Although there are a number of government entities – federal and state – involved in regulating water use from those reservoirs, there appears to be enough flexibility in the system to adequately adapt for changing conditions in the future,” said Nolin, a professor in OSU’s College of Earth, Ocean, and Atmospheric Sciences.

The report notes that warmer temperatures, less snowpack and drier summers will greatly increase the danger of wildfire in the mountains feeding the Willamette River basin – by about 200 to 900 percent. Their simulations show that fire will open up lands to new forest types and reduce the availability of forestland for timber harvest.

Increasing urban use of water from a population that could double will involve costly expansions in infrastructure. As the population grows, more agricultural land near urban areas will be developed for housing and other needs, according to Samuel Chan, a watershed health specialist with Oregon Sea Grant and the broader impacts outreach lead for the Willamette Water 2100 Project.

However, the report shows that in some cases where urban areas are expanding into what are now irrigated farmlands, these locations may see a net decline in water use.

“The report notes the difference between water ‘diversions’ and water ‘consumptive use,’” Chan noted. “As the population grows, the need for water will increase, but much of it will be used, and then treated in wastewater plants and returned to the system. Other uses, like forests and agriculture, consume the water through evaporation and transpiration to the atmosphere.”

“The downside, though, is that treated water that is returned to the river is often warmer, increasing the impact on cold-water fish species,” he added.

The main drivers for changing water needs, the report concludes, are climate change, and growth in population and income.

“The dams built above the Willamette Valley were engineered for reducing the risk of floods, but they also do a valuable job in storing water for use during summer,” Nolin said. “They can store large amounts of water in the summer, when they are not kept empty for flood prevention and there is existing flexibility in water allocation policies that could help western Oregon adapt to a climate that may be quite different in the future.”

“Unlike many parts of the country, those of us who live in the Willamette Valley are lucky because we have abundant water for human use, and we have institutional capacity to help mitigate water scarcity,” she added. “However, the biggest negative impacts are likely to be for native cold-water fish and we will likely be facing a significant challenge in managing stream temperature for fish.”

Story By: 
Source: 

Anne Nolin, 541-737-8051, nolina@geo.oregonstate.edu;

Sam Chan, (cell: 503-679-4828), Samuel.chan@oregonstate.edu

Photonic “sintering” may create new solar, electronics manufacturing technologies

CORVALLIS, Ore. – Engineers at Oregon State University have made a fundamental breakthrough in understanding the physics of photonic “sintering,” which could lead to many new advances in solar cells, flexible electronics, various types of sensors and other high-tech products printed onto something as simple as a sheet of paper or plastic.

Sintering is the fusing of nanoparticles to form a solid, functional thin-film that can be used for many purposes, and the process could have considerable value for new technologies.

Photonic sintering has the possible advantage of higher speed and lower cost, compared to other technologies for nanoparticle sintering.

In the new research, OSU experts discovered that previous approaches to understand and control photonic sintering had been based on a flawed view of the basic physics involved, which had led to a gross overestimation of product quality and process efficiency.

Based on the new perspective of this process, which has been outlined in Nature Scientific Reports, researchers now believe they can create high quality products at much lower temperatures, at least twice as fast and with 10 times more energy efficiency.

Removing constraints on production temperatures, speed and cost, the researchers say, should allow the creation of many new high-tech products printed onto substrates as cheap as paper or plastic wrap.

“Photonic sintering is one way to deposit nanoparticles in a controlled way and then join them together, and it’s been of significant interest,” said Rajiv Malhotra, an assistant professor of mechanical engineering in the OSU College of Engineering. “Until now, however, we didn’t really understand the underlying physics of what was going on. It was thought, for instance, that temperature change and the degree of fusion weren’t related – but in fact that matters a lot.”

With the concepts outlined in the new study, the door is open to precise control of temperature with smaller nanoparticle sizes. This allows increased speed of the process and high quality production at temperatures at least two times lower than before. An inherent “self-damping” effect was identified that has a major impact on obtaining the desired quality of the finished film.

“Lower temperature is a real key,” Malhotra said. “To lower costs, we want to print these nanotech products on things like paper and plastic, which would burn or melt at higher temperatures. We now know that is possible, and how to do it. We should be able to create production processes that are both fast and cheap, without a loss of quality.”

Products that could evolve from the research, Malhotra said, include solar cells, gas sensors, radiofrequency identification tags, and a wide range of flexible electronics. Wearable biomedical sensors could emerge, along with new sensing devices for environmental applications.

In this technology, light from a xenon lamp can be broadcast over comparatively large areas to fuse nanoparticles into functional thin films, much faster than with conventional thermal methods. It should be possible to scale up the process to large manufacturing levels for industrial use.

This advance was made possible by a four-year, $1.5 million National Science Foundation Scalable Nanomanufacturing Grant, which focuses on transcending the scientific barriers to industry-level production of nanomaterials. Collaborators at OSU include Chih-hung Chang, Alan Wang and Greg Herman.

OSU researchers will work with two manufacturers in private industry to create a proof-of-concept facility in the laboratory, as the next step in bringing this technology toward commercial production.

Story By: 
Source: 

Discovery could open door to frozen preservation of tissues, whole organs

CORVALLIS, Ore. – Researchers in the College of Engineering at Oregon State University have discovered a new approach to “vitrification,” or ice-free cryopreservation, that could ultimately allow a much wider use of extreme cold to preserve tissues and even organs for later use.

The findings were announced today in PLOS ONE, in work supported by the National Science Foundation.

“This could be an important step toward the preservation of more complex tissues and structures,” said Adam Higgins, an associate professor in the OSU School of Chemical, Biological and Environmental Engineering, and expert on medical bioprocessing.

Cryopreservation has already found widespread use in simpler applications such as preserving semen, blood, embryos, plant seeds and some other biological applications. But it is often constrained by the crystallization that occurs when water freezes, which can damage or destroy tissues and cells, Higgins said. This is similar to what happens to some food products when they are stored in a freezer, and lose much of their texture when thawed.

To address this, researchers have used various types of cryoprotectants that help reduce cell damage during the freezing process – among them is ethylene glycol, literally the same compound often used in automobile radiators to prevent freezing.

A problem, Higgins said, is that many of these cryoprotectants are toxic, and can damage or kill the very cells they are trying to protect from the forces of extreme cold.

In the new OSU research, the engineers developed a mathematical model to simulate the freezing process in the presence of cryoprotectants, and identified a way to minimize damage. They found that if cells are initially exposed to a low concentration of cryoprotectant and time is allowed for the cells to swell, then the sample can be vitrified after rapidly adding a high concentration of cryoprotectants. The end result is much less overall toxicity, Higgins said.

The research showed that healthy cell survival following vitrification rose from about 10 percent with a conventional approach to more than 80 percent with the new optimized procedure.

“The biggest single problem and limiting factor in vitrification is cryoprotectant toxicity, and this helps to address that,” Higgins said. “The model should also help us identify less toxic cryoprotectants, and ultimately open the door to vitrification of more complex tissues and perhaps complete organs.”

If that were possible, many more applications of vitrification could be feasible, especially as future progress is made in the rapidly advancing field of tissue regeneration, in which stem cells can be used to grow new tissues or even organs.

Tissues could be made in small amounts and then stored until needed for transplantation. Organs being used for transplants could be routinely preserved until a precise immunological match was found for their use. Conceptually, a person could even grow a spare heart or liver from their own stem cells and preserve it through vitrification in case it was ever needed, Higgins said.

Important applications might also be found in new drug development.

Drug testing is now carried out with traditional cell culture systems or animal models, which in many cases don’t accurately predict the effect of the drug in humans. To address this, researchers are developing “organs-on-a-chip,” or microfluidic chambers that contain human cells cultured under conditions that mimic native tissues or organs.

These new “organ-on-a-chip” systems may be able to more accurately predict drug responses in humans, but to deploy them, cells must be preserved in long-term storage. The new research could help address this by making it possible to store the systems in a vitrified state.

Story By: 
Source: 

Adam Higgins, 541-737-6245

Barriers to health care increase disease, death risk for rural elderly

CORVALLIS, Ore. – A new study of adults ages 85 or older has found that rural residents have significantly higher levels of chronic disease, take more medications, and die several years earlier than their urban counterparts.

The findings were just published in The Journal of Rural Health by researchers from Oregon State University and the Oregon Health & Science University.

The research confirms some of the special challenges facing older populations in rural or remote areas, who often have less access to physicians, long distances to travel for care, sometimes a lower socioeconomic and educational level, and other issues. It also reflects health problems that might have been reduced if they were treated earlier or more aggressively, researchers say.

Data from several different study groups found that rural residents measured significantly higher on the Modified Cumulative Illness Rating Scale, with about an 18 percent higher disease burden.

“It’s been known for some time that health care is harder to access in rural areas, and this helps us better understand the extent of the problem,” said Leah Goeres, a postdoctoral scholar who led the research at the Oregon State University/Oregon Health & Science University College of Pharmacy.

“Many physicians do the best they can in rural areas given the challenges they face,” Goeres said. “But there are fewer physicians, fewer specialists, a higher caseload. Doctors have less support staff and patients have less public transportation. A patient sometimes might need to wait months to see a doctor, and have to drive significant distances. Adverse effects can increase from taking multiple medications.

“These are real barriers to choice and access, and they affect the quality of care that’s available.”

Also worth noting, Goeres said, is that especially in very old populations, illness can lead to more illness and quickly spiral out of control. A patient in an urban setting might receive prompt treatment for a mild ulcer, whereas the same person in a rural setting might have to wait while the condition worsens and may even lead to cancer.

“It’s of particular concern that rural older adults start with more disease burden, which significantly increased over the next five years, but the average number of medications they used decreased over the same time period,” said David Lee, an assistant professor in the OSU College of Pharmacy who oversaw the research.

“This may be due to difficulty accessing health care, leading to more disease burden over time, yet less use of medications,” Lee said. “The opposite trends are seen in urban older adults.”

This research was done in Oregon with three cohorts of older adults, one rural and two urban, and 296 people altogether. It was supported by the Oregon Alzheimer’s Disease Tax Checkoff Fund and the National Institutes of Health.

The findings of the new study include:

  • The rural population of Oregon contains a greater proportion of older adults than the urban population.
  • The use of many medications can be especially risky for people in their 80s and 90s, leading to a concern called “polypharmacy” when a person takes five or more medications.
  • Rural participants were found to use an average of 5.5 medications, compared to 3.7 for urban participants.
  • At baseline measurements, valuable medications to aid bone mineralization were often used less in rural populations, but pain-killing opioids were used more often.
  • Medication use for high blood pressure went up significantly over time for rural populations, but not urban ones, in which their use had already been higher.  
  • The rate of disease accumulation was significant in the rural cohort, and negligible in their urban counterparts.
  • The median survival time of the rural cohort was 3.5 years, compared to 7.1 years for the urban older adults.
  • Risk factors of chronic diseases were low education, poor socioeconomic status, a history of chronic disease, being female, and older age. These factors are associated with a typical rural population.
  • Living with someone, and/or having a large social network are protective factors against chronic disease, and may be more common in an urban or suburban population.
  • Both urban and rural residents used a large number of over-the-counter agents, including vitamins, minerals and herbal supplements.

Increased access to health care, health education, increased supervision from clinicians, and better management of both prescription and over-the-counter medications could all be of value in helping rural residents to live longer and healthier livers, the researchers said in their conclusion.

Story By: 
Source: 

David Lee, 503-494-2258

OSU applying to feds for permission to conduct industrial hemp research

CORVALLIS, Ore. – Faculty in the Oregon State University College of Agricultural Sciences have submitted an application to the federal Drug Enforcement Administration seeking permission to conduct research on industrial hemp.

OSU faculty members believe there is interest within Oregon for industrial hemp production and related research, as well as potential to promote the crop’s agricultural and economic opportunities.

Jay Noller, head of the crop and soil science department in the College of Agricultural Sciences at OSU, said the university hopes to secure approval from the DEA and the Oregon Department of Agriculture to begin approved industrial hemp research trials for the 2016 growing season. The research likely would focus on learning more about the crop’s productivity, yield and growing conditions in western Oregon.

“We still need to secure funding for the research once the other hurdles are cleared,” Noller said. OSU expects that the results of peer-reviewed research regarding industrial hemp will be available in three to five years and that research planned over that time frame will require as much as $2.5 million in funding.

The growing and distribution of industrial hemp is regulated by the federal Controlled Substances Act, according to Steve Clark, OSU vice president for University Relations and Marketing. That act precludes Oregon State faculty from performing research that involves the possession, use, or distribution of hemp – unless such research is in compliance with already established federal guidelines.

“Thanks to the leaders of the Oregon Congressional delegation, the federal 2014 Farm Bill provided important authority regarding hemp research,” Clark said. “A provision in the bill enables higher education institutions to conduct industrial hemp research if the institution is located in a state in which industrial hemp production is legal.”

Industrial hemp has many uses, proponents say, including paper, textiles, biodegradable plastics, fuel, and health and food products. It is a fast-growing plant that requires few pesticides, and it potentially could lead to replacing some environmentally harmful products.

Clark said the university’s decision to seek state and federal approval to conduct industrial hemp research will not extend to research related to the cultivation or propagation of marijuana.

Media Contact: 

Steve Clark, 541-737-3808, steve.clark@oregonstate.edu

Source: 

Jay Noller, 54-737-6187, jay.noller@oregonstate.edu

Storage advance may boost solar thermal energy potential

CORVALLIS, Ore. – Engineers at Oregon State University have identified a new approach for the storage of concentrated solar thermal energy, to reduce its cost and make it more practical for wider use.

The advance is based on a new innovation with thermochemical storage, in which chemical transformation is used in repeated cycles to hold heat, use it to drive turbines, and then be re-heated to continue the cycle. Most commonly this might be done over a 24-hour period, with variable levels of solar-powered electricity available at any time of day, as dictated by demand.

The findings have been published in ChemSusChem, a professional journal covering sustainable chemistry. The work was supported by the SunShot Initiative of the U.S. Department of Energy, and done in collaboration with researchers at the University of Florida.

Conceptually, all of the energy produced could be stored indefinitely and used later when the electricity is most needed. Alternatively, some energy could be used immediately and the rest stored for later use.

Storage of this type helps to solve one of the key factors limiting the wider use of solar energy – by eliminating the need to use the electricity immediately. The underlying power source is based on production that varies enormously, not just night and day, but some days, or times of day, that solar intensity is more or less powerful. Many alternative energy systems are constrained by this lack of dependability and consistent energy flow.

Solar thermal electricity has been of considerable interest because of its potential to lower costs. In contrast to conventional solar photovoltaic cells that produce electricity directly from sunlight, solar thermal generation of energy is developed as a large power plant in which acres of mirrors precisely reflect sunlight onto a solar receiver. That energy has been used to heat a fluid that in turn drives a turbine to produce electricity.

Such technology is appealing because it’s safe, long-lasting, friendly to the environment and produces no greenhouse gas emissions. Cost, dependability and efficiency have been the primary constraints.

“With the compounds we’re studying, there’s significant potential to lower costs and increase efficiency,” said Nick AuYeung, an assistant professor of chemical engineering in the OSU College of Engineering, corresponding author on this study, and an expert in novel applications and use of sustainable energy.

“In these types of systems, energy efficiency is closely related to use of the highest temperatures possible,” AuYeung said. “The molten salts now being used to store solar thermal energy can only work at about 600 degrees centigrade, and also require large containers and corrosive materials. The compound we’re studying can be used at up to 1,200 degrees, and might be twice as efficient as existing systems.

“This has the potential for a real breakthrough in energy storage,” he said.

According to AuYeung, thermochemical storage resembles a battery, in which chemical bonds are used to store and release energy – but in this case, the transfer is based on heat, not electricity.

The system hinges on the reversible decomposition of strontium carbonate into strontium oxide and carbon dioxide, which consumes thermal energy. During discharge, the recombination of strontium oxide and carbon dioxide releases the stored heat. These materials are nonflammable, readily available and environmentally safe.

In comparison to existing approaches, the new system could also allow a 10-fold increase in energy density – it’s physically much smaller and would be cheaper to build.

The proposed system would work at such high temperatures that it could first be used to directly heat air which would drive a turbine to produce electricity, and then residual heat could be used to make steam to drive yet another turbine.

In laboratory tests, one concern arose when the energy storage capacity of the process declined after 45 heating and cooling cycles, due to some changes in the underlying materials. Further research will be needed to identify ways to reprocess the materials or significantly extend the number of cycles that could be performed before any reprocessing was needed, AuYeung said.

Other refinements may also be necessary to test the system at larger scales and resolve issues such as thermal shocks, he said, before a prototype could be ready for testing at a national laboratory.

Story By: 
Source: 

Nick AuYeung, 541-737-4600

Multimedia Downloads
Multimedia: 

Thermochemical energy
Thermal energy storage

Obese people need more vitamin E, but actually get less

CORVALLIS, Ore. – A recent study suggests that obese people with metabolic syndrome face an unexpected quandary when it comes to vitamin E – they need more than normal levels of the vitamin because their weight and other problems are causing increased oxidative stress, but those same problems actually cause their effective use of vitamin E to be reduced.

As a result, experts in the Linus Pauling Institute at Oregon State University say that a huge number of Americans may be chronically deficient in vitamin E, which could compound the wide range of diseases known to be associated with metabolic syndrome, including heart disease, diabetes, Alzheimer’s disease and cancer.

Metabolic syndrome affects more than one out of every three adults in the U.S. It is characterized in people who have at least three of five common issues that raise health concerns – excess abdominal fat, high blood pressure, low “good” cholesterol, and/or high levels of blood sugar and triglycerides.

Some of the findings of this study are counterintuitive, the researchers said, because vitamin E is a fat soluble micronutrient and, in theory, should be available at increased levels in people who are overweight and eat large amounts of fatty foods.

However, a study in the American Journal of Clinical Nutrition found that even though circulating vitamin E in the bloodstream may be high, in obese people this essential micronutrient is not finding its way into tissues where it is most needed.

“Vitamin E is associated with lipids, or the fats found in the blood, but it’s mostly just a micronutrient that’s going along for the ride,” said Maret Traber, a professor in the College of Public Health and Human Sciences at OSU, and a principal investigator in the Linus Pauling Institute.

“What we found was that tissues of obese people are rejecting intake of some of these lipids because they already have enough fat,” Traber said. “In the process they also reject the associated vitamin E. So even though the tissues are facing serious oxidative stress, the delivery of vitamin E to them is being impaired, and they are not getting enough of this important micronutrient.”

Fat generates oxidants that increase metabolic stress, Traber said. Vitamin E, along with vitamin C and some other antioxidants, are natural dietary defenses against this problem. However, millions of Americans – more than 92 percent by some measures – eat a diet deficient in vitamin E, often about half the desired amount. It’s found at highest levels in some foods such as nuts, seeds, and olive oil.

“Another concern is that when people try to lose weight, often the first thing they do is limit their fat intake,” Traber said. “This may make sense if you are trying to reduce calories, but fat is the most common source of vitamin E in our diets, so that approach to weight loss can sometimes actually worsen a nutrient deficiency.”

A reasonable approach, Traber said, would be to try to eat a balanced and healthy diet, even if attempting to lose weight, while also taking a daily multivitamin that includes 100 percent of the recommended daily allowance of vitamin E, which is 15 milligrams per day. It’s also important to eat some food containing at least a little fat when taking a supplement, because otherwise this fat-soluble vitamin – in the form found in most dietary supplements – will not be well-absorbed.

In this study, the researchers made their findings with a double-blind study of adults, some of whom were healthy and others with metabolic syndrome. The authors concluded that its findings support higher dietary requirements of vitamin E for adults with metabolic syndrome.

This work was done in collaboration with researchers at The Ohio State University, with support from the National Dairy Council.

Source: 

Maret Traber, 541-737-7977

Multimedia Downloads
Multimedia: 

Olive oil
Source of vitamin E

“Spring-mass” technology heralds the future of walking robots

CORVALLIS, Ore. – A study by engineers at Oregon State University suggests that they have achieved the most realistic robotic implementation of human walking dynamics that has ever been done, which may ultimately allow human-like versatility and performance.

The system is based on a concept called “spring-mass” walking that was theorized less than a decade ago, and combines passive dynamics of a mechanical system with computer control. It provides the ability to blindly react to rough terrain, maintain balance, retain an efficiency of motion and essentially walk like humans do.

As such, this approach to robots that can walk and run like humans opens the door to entire new industries, jobs and mechanized systems that do not today exist.

The findings on spring-mass walking have been reported for the first time in IEEE Transactions on Robotics, by engineers from OSU and Germany. The work has been supported by the National Science Foundation, the Defense Advanced Research Projects Agency and the Human Frontier Science Program.

The technologies developed at OSU have evolved from intense studies of both human and animal walking and running, to learn how animals achieve a fluidity of motion with a high degree of energy efficiency. Animals combine a sensory input from nerves, vision, muscles and tendons to create locomotion that researchers have now translated into a working robotic system.

The system is also efficient. Studies done with their ATRIAS robot model, which incorporates the spring-mass theory, showed that it’s three times more energy-efficient than any other human-sized bipedal robots.

“I’m confident that this is the future of legged robotic locomotion,” said Jonathan Hurst, an OSU professor of mechanical engineering and director of the Dynamic Robotics Laboratory in the OSU College of Engineering.

“We’ve basically demonstrated the fundamental science of how humans walk,” he said.

“Other robotic approaches may have legs and motion, but don’t really capture the underlying physics,” he said. “We’re convinced this is the approach on which the most successful legged robots will work. It retains the substance and science of legged animal locomotion, and animals demonstrate performance that far exceeds any other approach we’ve seen. This is the way to go.”

The current technology, Hurst said, is still a crude illustration of what the future may hold. When further refined and perfected, walking and running robots may work in the armed forces. As fire fighters they may charge upstairs in burning buildings to save lives. They could play new roles in factories or do ordinary household chores.

Aspects of the locomotion technology may also assist people with disabilities, the researchers said.

“Robots are already used for gait training, and we see the first commercial exoskeletons on the market,” said Daniel Renjewski, the lead author on the study with the Technische Universitat Munchen. “However, only now do we have an idea how human-like walking works in a robot. This enables us to build an entirely new class of wearable robots and prostheses that could allow the user to regain a natural walking gait.” 

There are few limits to this technology, the researchers said.

“It will be some time, but we think legged robots will enable integration of robots into our daily lives,” Hurst said. “We know it is possible, based on the example of animals. So it’s inevitable that we will solve the problem with robots. This could become as big as the automotive industry.”

And much of this, the scientists said, will be based on the “spring-mass” concept, which animals have been perfecting through millions of years of evolution. 

The robots being constructed at OSU were designed to mimic this “spring-legged” action of bipedal animals. With minor variations, muscles, tendons and bones form a structure that exhibits most of the required behavior, and conscious control just nudges things a little to keep it going in the right direction. The effort is smooth and elastic, and once understood, can be simulated in walking robots by springs and other technology.

ATRIAS, the human-sized robot most recently created at OSU, has six electric motors powered by a lithium polymer battery about the size of a half-gallon of milk, which is substantially smaller than the power packs of some other mobile robots. It can take impacts and retain its balance. It can walk over rough and bumpy terrain.

Researchers said in their new study that this technology “has the potential to enhance legged robots to ultimately match the efficiency, agility and robustness of animals over a wide variety of terrain.”

In continued research, work will be done to improve steering, efficiency, leg configuration, inertial actuation, robust operation, external sensing, transmissions and actuators, and other technologies.

Other collaborators in the development of this technology have included Jessy Grizzle at the University of Michigan and Hartmut Geyer at Carnegie Mellon University. Scientific work on the motion of animals was done with Monica Daley at the Royal Veterinary College, which guided the robot’s development.

Story By: 
Source: 

Jonathan Hurst, 541-737-7010

Multimedia Downloads
Multimedia: 

A YouTube video is available of the walking robot: http://bit.ly/1HQKqOZ


Walking robot
Walking robot