OREGON STATE UNIVERSITY

scientific research and advances

ODFW, OSU to survey hunters about use of lead ammunition

CORVALLIS, Ore. – The Oregon Department of Fish and Wildlife and Oregon State University are collaborating on an effort to survey Oregon hunters about their use and knowledge of lead ammunition.

The random sample of 4,200 Oregon hunters will begin later this month and those selected should receive a letter from ODFW within the next two weeks. Oregon has approximately 250,000 hunters and the survey will include hunters from each geographic region of the state.

The use of lead ammunition has become a national issue because of impacts to wildlife and human health concerns, according to Ron Anglin, ODFW Wildlife Division administrator. Last year, California passed a law banning the use of lead ammunition for all hunting in the state beginning in 2019; other states have adopted voluntary measures encouraging the use of ammunition made from alternative compounds.

“There is no proposal to ban or limit use of lead ammunition in Oregon, but developments outside of Oregon could affect the use of lead ammunition within the state,” Anglin said. “The Environmental Protection Agency was petitioned to ban the use of lead in ammunition on a nationwide basis and there is the potential of condors being restored in northern California.”

The California legislature passed a law banning lead ammunition to protect endangered California condors, according to Dana Sanchez, an OSU Extension wildlife specialist and one of the project leaders. Condors can become ill after scavenging on animals that have been killed by lead bullets. The birds ingest lead fragments and can become sick or die, she said.

“Historically, Oregon has had condors, though none are known to live here now,” Sanchez pointed out. “However, there are efforts to re-establish populations in northern California and if they are successful, it is only a matter of time before condors begin frequenting the southern portions of Oregon.

“Once condors appear in Oregon, they would be subject to federal protection under the Endangered Species Act,” she added.

Sanchez said some conservation organizations in the state are monitoring lead levels in birds of prey brought into wildlife rehabilitation centers. There is increasing concern that lead exposure may be causing impacts to raptors and eagles in some areas, she said.

“This could lead to an initiative or other efforts to eliminate or restrict the use of lead ammunition,” Sanchez said.

The survey was developed by the OSU Survey Research Center, which will collect the data for ODFW and the OSU Wildlife Extension program. Survey results will be used to inform discussions among agencies, groups and others about any potential restrictions in the use of lead ammunition.

The purpose of the survey, Anglin said, is to gather information from the group of stakeholders who would be most affected by any restrictions on lead ammunition – Oregon hunters.

“Ideally, we would like to survey all Oregon hunters, but that is expensive,” Anglin said. “However, by selecting a random sample of hunters from regions across the state, we should get a clear picture of how Oregon hunters feel about lead ammunition and possible alternatives.”

Persons not chosen for the survey are welcome to provide comments on lead ammunition directly to the Oregon Department of Fish & Wildlife at a special email address: ODFW.wildlifeinfo@state.or.us

Anglin said the ODFW/OSU project team plans to conduct a similar survey of non-hunting Oregonians in the future.

Media Contact: 
Source: 

Ron Anglin, 503-947-6301; ODFW.wildlifeinfo@state.or.us; Dana Sanchez, 541-737-6003; dana.sanchez@oregonstate.edu

Technology using microwave heating may impact electronics manufacture

The study this story is based on is available online: http://bit.ly/1pJjhnK

 

CORVALLIS, Ore. – Engineers at Oregon State University have successfully shown that a continuous flow reactor can produce high-quality nanoparticles by using microwave-assisted heating – essentially the same forces that heat up leftover food with such efficiency.

Instead of warming up yesterday’s pizza, however, this concept may provide a technological revolution.

It could change everything from the production of cell phones and televisions to counterfeit-proof money, improved solar energy systems or quick identification of troops in combat.

The findings, recently published in Materials Letters, are essentially a “proof of concept” that a new type of nanoparticle production system should actually work at a commercial level.

“This might be the big step that takes continuous flow reactors to large-scale manufacturing,” said Greg Herman, an associate professor and chemical engineer in the OSU College of Engineering. “We’re all pretty excited about the opportunities that this new technology will enable.”

Nanoparticles are extraordinarily small particles at the forefront of advances in many biomedical, optical and electronic fields, but precise control of their formation is needed and “hot injection” or other existing synthetic approaches are slow, costly, sometimes toxic and often wasteful.

A “continuous flow” system, by contrast, is like a chemical reactor that moves constantly along. It can be fast, cheap, more energy-efficient, and offer lower manufacturing cost. However, heating is necessary in one part of the process, and in the past that was best done only in small reactors.

The new research has proven that microwave heating can be done in larger systems at high speeds. And by varying the microwave power, it can precisely control nucleation temperature and the resulting size and shape of particles.

“For the applications we have in mind, the control of particle uniformity and size is crucial, and we are also able to reduce material waste,” Herman said. “Combining continuous flow with microwave heating could give us the best of both worlds – large, fast reactors with perfectly controlled particle size.”

The researchers said this should both save money and create technologies that work better. Improved LED lighting is one possibility, as well as better TVs with more accurate colors. Wider use of solid state lighting might cut power use for lighting by nearly 50 percent nationally. Cell phones and other portable electronic devices could use less power and last longer on a charge.

The technology also lends itself well to creation of better “taggants,” or compounds with specific infrared emissions that can be used for precise, instant identification – whether of a counterfeit $20 bill or an enemy tank in combat that lacks the proper coding.

In this study, researchers worked with lead selenide nanoparticles, which are particularly good for the taggant technologies. Other materials can be synthesized using this reactor for different applications, including copper zinc tin sulfide and copper indium diselenide for solar cells.

New Oregon jobs and businesses are already evolving from this work.

OSU researchers have applied for a patent on aspects of this technology, and are working with private industry on various applications. Shoei Electronic Materials, one of the collaborators, is pursuing “quantum dot” systems based on this approach, and recently opened new manufacturing facilities in Eugene, Ore., to use this synthetic approach for quantum dot enabled televisions, smartphones and other devices.

The research has been supported by the Air Force Research Laboratory, OSU Venture Funds, and the Oregon Nanoscience and Microtechnologies Institute, or ONAMI.

Media Contact: 
Source: 

Greg Herman, 541-737-2496

Multimedia Downloads
Multimedia: 

Continuous flow reactor

Continuous flow reactor

Statin use associated with less physical activity

CORVALLIS, Ore. – One of the longest studies of its type has found that use of statins in older men is associated with less physical activity, a significant issue for a population that’s already sedentary.

The findings, published today in JAMA Internal Medicine, raise concerns about a decline in much-needed physical activity among men who take some of the most widely prescribed medications in the world. Almost one-third of older Americans take statins, usually to reduce their cholesterol levels.

The research did not identify why men who took statins exercised less – it just confirmed that they did. Possible causes include the muscle pain that can be a side effect of statin use, and also disruption of the mitochondrial function in cells, which could contribute to fatigue and muscle weakness.

Physical activity in older adults helps to maintain a proper weight, prevent cardiovascular disease and helps to maintain physical strength and function,” said David Lee, an assistant professor in the Oregon State University/Oregon Health & Science University College of Pharmacy, and lead author of the study.

“We’re trying to find ways to get older adults to exercise more, not less,” Lee said. “It’s a fairly serious concern if use of statins is doing something that makes people less likely to exercise.”

Muscle pain is found in 5-30 percent of people who take statins, Lee said, and some people also report feeling less energetic, weak or tired.

In an analysis of 3,071 community-living men, age 65 or older, from six geographic regions in the United States, researchers found that men who took statins averaged about 40 minutes less of moderate physical activity over a one-week period, compared to those who weren’t taking the medication.

That would equate to the loss of 150 minutes a week of slow-paced walking, Lee said.

“For an older population that’s already pretty sedentary, that’s a significant amount less exercise,” he said. “Even moderate amounts of exercise can make a big difference.”

Of some significance, the study also found that new statin users had the largest drop in physical activity. An increase in sedentary behavior, which is associated with all-cause mortality and also death from cardiovascular disease, was also observed in statin users.

Some previous studies with older adults and statins had found similar results, but those analyses were short-term. This research followed men for almost seven years after initial baseline studies were done, and compared changes in physical activity among users and non-users of statins. In parts of the experiments, men wore accelerometers for a week to track by the minute their level of activity.

“Given these results, we should be aware of a possible decrease in physical activity among people taking a statin,” Lee said.

“This could decrease the benefit of the medication,” he said. “If someone is already weak, frail, or sedentary, they may want to consider this issue, and consult with their doctor to determine if statin use is still appropriate.”

This study was done with older men, and generalization of the findings to older women may not be appropriate, the researchers noted in their study.

The research was done by scientists from OSU; the Oregon Health & Science University; the Department of Veterans Affairs Medical Center in Portland, Ore.; the California Pacific Medical Center Research Institute in San Francisco; the Stanford Prevention Research Center; and the Department of Medicine at the University of California.

The study was supported by the National Institutes of Health and the Medical Research Foundation of Oregon.

Media Contact: 
Source: 

David Lee, 503-494-2258

Multimedia Downloads
Multimedia: 

Maintaining activity levels

Maintaining activity

Research could lead to new cancer assay, aid both dogs and humans

CORVALLIS, Ore. – Veterinary researchers at Oregon State University have identified a unique group of proteins that indicate the presence of transitional cell carcinoma – the most common cause of bladder cancer – and may lead to a new assay which could better diagnose this disease in both dogs and humans.

Bladder cancer is particularly common in some dog breeds, such as collies, sheepdogs and terriers, but is rarely diagnosed in animals before it has spread significantly. Some assays exist to detect it in humans, but they often have a high-number of false-positive identifications.

An improved assay to detect this serious disease much earlier in both animals and humans should be possible, scientists said, and may even become affordable enough that it could be used as an over-the-counter product to test urine, much like a human pregnancy test. Some of the work may also contribute to new therapies, they said.

“Research of this type should first help us develop a reliable assay for this cancer in dogs, and improve the chance the disease can be caught early enough that treatments are effective,” said Shay Bracha, an assistant professor in the OSU College of Veterinary Medicine.

“However, this type of cancer is essentially the same in dogs and humans,” Bracha said. “Dogs are an excellent model for human cancer research, and an assay that works with dogs should be directly relevant to creation of a similar assay for humans. We hope to make it inexpensive and convenient, something that people could use routinely to protect either the health of their pets or themselves.”

The findings were published recently in Analytical Chemistry, a professional journal.

In this research, scientists used mass spectrometry and the evolving science of proteomics to identify 96 proteins that appear related to transitional cell carcinoma. This is a fairly common cancer in dogs, often as a result of exposure to pesticides, herbicides, and poor quality foods; and in humans is closely related to smoking.

Advanced-stage disease in both dogs and humans has a poor prognosis, as chemotherapy and radiation treatments are often ineffective. Average survival time is less than one year. Some assays exist to help identify the disease in humans but can produce false positive results, often as a result of urinary tract infections. And the biopsies used to make a definitive diagnosis require general anesthesia and also run the risk of actually spreading the disease.

The group of proteins identified in this research already have a 90 percent accuracy, and researchers say they hope to improve upon that with continued research.

However, researchers say that some of these proteins are more than just biomarkers of the disease – they are part of the disease process. Identifying proteins that are integral to the spread of the cancer may allow new targets for intervention and cancer therapies, they said.

Collaborators on this research included the OSU Department of Chemistry. A mathematical model that was integral to the study was created by Jan Medlock, an OSU assistant professor of veterinary medicine, and veterinary researchers Michael McNamara and Ian Hilgart helped initiate the project. The work was supported in part by the National Institutes of Health.

Media Contact: 
Source: 

Shay Bracha, 541-737-4844

Multimedia Downloads
Multimedia: 

Border collie

Border collie

Sea star disease epidemic surges in Oregon, local extinctions expected

CORVALLIS, Ore. – Just in the past two weeks, the incidence of sea star wasting syndrome has exploded along the Oregon Coast and created an epidemic of historic magnitude, one that threatens to decimate the entire population of purple ochre sea stars.

Prior to this, Oregon had been the only part of the West Coast that had been largely spared this devastating disease.

The ochre sea star, which is the species most heavily affected by the disease in the intertidal zone, may be headed toward localized extinction in Oregon, according to researchers at Oregon State University who have been monitoring the outbreak. As a “keystone” predator, its loss could disrupt the entire marine intertidal ecosystem.

Researchers say this is the first time that die-offs of sea stars, more commonly known as starfish, have ever been identified at one time along such a wide expanse of the West Coast, and the sudden increase in Oregon has been extraordinary.

The best information is from the intertidal zone, which is easier to access for monitoring. In this area, less than 1 percent of the ochre sea stars in Oregon were affected in April, and only slightly more than that by mid-May.

Today, an estimated 30-50 percent of the Oregon populations of this sea star species in the intertidal zone have the disease. The highest losses are at Fogarty Creek, where about 60 percent are affected. Researchers project that the epidemic will intensify and, at some sites, nearly 100 percent of the ochre sea stars could die.

“This is an unprecedented event,” said Bruce Menge, the Wayne and Gladys Valley Professor of Marine Biology in the Department of Integrative Biology of the OSU College of Science. “We’ve never seen anything of this magnitude before.

“We have no clue what’s causing this epidemic, how severe the damage might be or how long that damage might last,” he said. “It’s very serious. Some of the sea stars most heavily affected are keystone predators that influence the whole diversity of life in the intertidal zone.”

Colleagues from the Oregon Coast Aquarium are monitoring subtidal sites in Yaquina Bay, where wasting was first observed in April. Photos and video of that work are available at http://bit.ly/1kMlG9s

Altogether, mortality has been documented in 10 species of sea stars on the West Coast. No definitive cause has yet been identified, and it could include bacterial or viral pathogens. Researchers around the nation are working on the issue. More information, including an interactive map of all observations, and opportunities for interested citizens to participate in the observation effort are available online at http://bit.ly/1o5bWNi

Sea star wasting syndrome is a traumatic process in which, over the course of a week or less, the sea stars begin to lose legs, disintegrate, ultimately die and rot. They sometimes physically tear their bodies apart. Various epidemics of the syndrome have been observed in the past, but none of this extent or severity.

In a healthy ecosystem, sea stars are beautiful, but also tenacious and important parts of the marine ecosystem. In particular, they attack mussels and keep their populations under control. Absent enough sea stars, mussel populations can explode, covering up algae and other small invertebrates. Some affected sea stars also eat sea urchins. This could lead to increased numbers of sea urchins that can overgraze kelp and sea grass beds, reducing habitat for other fish that use such areas for food and refuge.

The very ecological concept of “keystone predators,” in fact, originated from work in 1969 at the University of Washington using this same purple ochre sea star as a model.

“Parts of California, Washington, and British Columbia had already been affected by this outbreak of the wasting syndrome,” said Kristen Milligan, program coordinator at OSU for the Partnership for Interdisciplinary Studies of Coastal Oceans, or PISCO, which is a collaboration of OSU, the University of California/Santa Cruz, UC/Santa Barbara and Stanford University.

“It wasn’t clear why those areas had been hit and Oregon had not,” Milligan said. “We were hoping that Oregon’s coast would be spared. Although it was hit late, we are obviously being hit hard by this potentially devastating syndrome.”

A group of OSU undergraduate students have assisted in recent monitoring of the OSU outbreak, studying conditions at 10 sites from south of Cape Blanco to north of Depoe Bay. Researchers say this is one of the best documented outbreaks of marine disease ever undertaken in North America.

Besides OSU and PISCO, other collaborators in this Oregon initiative include the Oregon Department of Fish and Wildlife, the Oregon Coast Aquarium, OSU Hatfield Marine Science Center, Oregon Coast Watch, Haystack Rock Awareness Program in Cannon Beach, and the Multi-Agency Rocky Intertidal Network. Oregon Sea Grant provides funding for volunteer surveys in the intertidal zone, and the David and Lucile Packard Foundation provides support to PISCO.

In some past cases, ecosystems have recovered from severe losses of sea stars, but in others damage has been long-lasting.

In the past, some of the outbreaks were associated with warm-water conditions during El Nino events, but currently the water temperatures in Oregon “are only at the high end of a normal range,” Menge said.

 

Media Contact: 
Source: 

Kristen Milligan, 541-737-8862

Multimedia Downloads
Multimedia: 

Dying sea star

Dying sea star


Sea star monitoring

Oregon Coast Aquarium diver monitoring


Monitoring sea star epidemic

OSU students monitoring


YouTube video
http://bit.ly/1mazKuT

Tracking potato famine pathogen to its home may aid $6 billion global fight

CORVALLIS, Ore. – The cause of potato late blight and the Great Irish Famine of the 1840s has been tracked to a pretty, alpine valley in central Mexico, which is ringed by mountains and now known to be the ancestral home of one of the most costly and deadly plant diseases in human history.

Research published today in the Proceedings of the National Academy of Sciences, by researchers from Oregon State University, the USDA Agricultural Research Service and five other institutions, concludes that Phytophthora infestans originated in this valley and co-evolved with potatoes over hundreds or maybe a few thousand years, and later spread repeatedly to much of the world.

Knowing the origin of the pathogen does more than just fill in a few facts in agricultural history, the scientists say. It provides new avenues to discover resistance genes, and helps explain the mechanisms of repeated emergence of this disease, which to this day is still the most costly potato pathogen in the world.

Potato late blight continues to be a major threat to global food security and at least $6 billion a year is spent to combat it, mostly due to the cost of fungicides and substantial yield losses. But P. infestans is now one of the few plant pathogens in the world with a well-characterized center of origin.

“This is immensely important,” said Niklaus Grunwald, who is a courtesy professor in the Department of Botany and Plant Pathology in the College of Agricultural Sciences at Oregon State University, a researcher with the USDA Agricultural Research Service, and lead author on the study.

“This is just a textbook example of a center of origin for a pathogen, and it’s a real treat,” Grunwald said. “I can’t think of another system so well understood. This should allow us to make significant headway in finding additional genes that provide resistance to P. infestans.”

Finding ways to genetically resist the potato late blight, scientists say, could help reduce the use of fungicides, and the expense and environmental concerns associated with them.

There had been competing theories about where P. infestans may have evolved, with the leading candidates being the Toluca Valley near Mexico City, or areas in South America where the potato itself actually evolved thousands of years ago.

Gene sequencing technology used by this research group helped pin down the Toluca Valley as the ancestral hot spot. The P. infestans pathogen co-evolved there hundreds of years ago with plants that were distant cousins of modern potatoes, which produced tubers but were more often thought of as a weed than a vegetable crop.

Today, the newly-confirmed home of this pathogen awaits researchers almost as a huge, natural laboratory, Grunwald said. Since different potato varieties, plants and pathogens have been co-evolving there for hundreds of years, it offers some of the best hope to discover genes that provide some type of resistance.

Along with other staple foods such as corn, rice and wheat, the potato forms a substantial portion of the modern human diet. A recent United Nations report indicated that every person on Earth eats, on average, more than 70 pounds of potatoes a year. Potatoes contain a range of vitamins, minerals, phytochemicals, fiber and – for hungry populations – needed calories.

It’s believed that the potato was first domesticated more than 7,000 years ago in parts of what are now Peru and Bolivia, and it was brought to Europe by Spanish explorers in the late 1500s. A cheap and plentiful crop that can grow in many locations, the ability to increase food production with the potato eventually aided a European population boom in the 1800s.

But what the New World provided, it also took away - in the form of a potato late blight attack that originated from Mexico, caused multiple crop failures and led, among other things, to the Irish potato famine that began in 1845. Before it was over, 1 million people had died and another 1 million emigrated, many to the U.S.

That famine was exacerbated by lack of potato diversity, as some of the varieties most vulnerable to P. infestans were also the varieties most widely cultivated.

Collaborators on the research were from the University of Florida, the James Hutton Institute in Scotland, the University of the Andes in Colombia, Cornell University, and the International Potato Center in Beijing. It was supported by the U.S. Department of Agriculture and the Scottish government.

Media Contact: 
Source: 

Niklaus Grunwald, 541-738-4049

Multimedia Downloads
Multimedia: 

Toluca Valley

Toluca Valley


Potato relative

Potato relative


Infected potato plant

Infected plant

Amber discovery indicates Lyme disease is older than human race

CORVALLIS, Ore. – Lyme disease is a stealthy, often misdiagnosed disease that was only recognized about 40 years ago, but new discoveries of ticks fossilized in amber show that the bacteria which cause it may have been lurking around for 15 million years – long before any humans walked on Earth.

The findings were made by researchers from Oregon State University, who studied 15-20 million-year-old amber from the Dominican Republic that offer the oldest fossil evidence ever found of Borrelia, a type of spirochete-like bacteria that to this day causes Lyme disease. They were published in the journal Historical Biology.

In a related study, published in Cretaceous Research, OSU scientists announced the first fossil record of Rickettsial-like cells, a bacteria that can cause various types of spotted fever. Those fossils from Myanmar were found in ticks about 100 million years old.

As summer arrives and millions of people head for the outdoors, it’s worth considering that these tick-borne diseases may be far more common than has been historically appreciated, and they’ve been around for a long, long time.

“Ticks and the bacteria they carry are very opportunistic,” said George Poinar, Jr., a professor emeritus in the Department of Integrative Biology of the OSU College of Science, and one of the world’s leading experts on plant and animal life forms found preserved in amber. “They are very efficient at maintaining populations of microbes in their tissues, and can infect mammals, birds, reptiles and other animals.

“In the United States, Europe and Asia, ticks are a more important insect vector of disease than mosquitos,” Poinar said. “They can carry bacteria that cause a wide range of diseases, affect many different animal species, and often are not even understood or recognized by doctors.

“It’s likely that many ailments in human history for which doctors had no explanation have been caused by tick-borne disease.”

Lyme disease is a perfect example. It can cause problems with joints, the heart and central nervous system, but researchers didn’t even know it existed until 1975. If recognized early and treated with antibiotics, it can be cured. But it’s often mistaken for other health conditions. And surging deer populations in many areas are causing a rapid increase in Lyme disease – the confirmed and probable cases of Lyme disease in Nova Scotia nearly tripled in 2013 over the previous year.

The new research shows these problems with tick-borne disease have been around for millions of years.

Bacteria are an ancient group that date back about 3.6 billion years, almost as old as the planet itself. As soft-bodied organisms they are rarely preserved in the fossil record, but an exception is amber, which begins as a free-flowing tree sap that traps and preserves material in exquisite detail as it slowly turns into a semi-precious mineral.

A series of four ticks from Dominican amber were analyzed in this study, revealing a large population of spirochete-like cells that most closely resemble those of the present-day Borrelia species. In a separate report, Poinar found cells that resemble Rickettsia bacteria, the cause of Rocky Mountain spotted fever and related illnesses. This is the oldest fossil evidence of ticks associated with such bacteria.

In 30 years of studying diseases revealed in the fossil record, Poinar has documented the ancient presence of such diseases as malaria, leishmania, and others. Evidence suggests that dinosaurs could have been infected with Rickettsial pathogens.

Humans have probably been getting diseases, including Lyme disease, from tick-borne bacteria as long as there have been humans, Poinar said. The oldest documented case is the Tyrolean iceman, a 5,300-year-old mummy found in a glacier in the Italian Alps.

“Before he was frozen in the glacier, the iceman was probably already in misery from Lyme disease,” Poinar said. “He had a lot of health problems and was really a mess.”

Source: 
Multimedia Downloads
Multimedia: 

Tick carrying spirochetes
Tick carrying spirochetes


Group of spirochetes

Spirochetes that carry lyme disease



 Fossil rickettsia cells

Rickettsia-like cells


Rickettsia Cretaceous tick (4)

Tick carrying rickettsia

Humpback whale populations more distinct than previously thought

CORVALLIS, Ore. – A new genetic study concludes that humpback whales in three different ocean basins are distinct from one another and are on independent evolutionary trajectories – and should be considered separate subspecies.

The research, led by scientists from the British Antarctic Survey and Oregon State University, is being published this week in Proceedings of the Royal Society B.

The new study builds on previous research led by Scott Baker at Oregon State and published in December 2013, which identified five distinct populations of humpback whales in the North Pacific Ocean. This latest study found that populations of humpback whales in the North Pacific, North Atlantic and Southern Hemisphere are more distinct than previously thought.

Lead author Jennifer Jackson, of the British Antarctic Survey, said that despite seasonal migrations by humpback whales of more than 16,000 kilometers, whale populations are more isolated from one another than previously thought.

“Their oceanic populations appear separated by warm equatorial waters that they rarely cross,” Jackson said. “But until this study, we didn’t realize the extent of long-term isolation between the North Pacific, the North Atlantic and the Southern Hemisphere.”

Humpback whales are listed as endangered in the United States under the Endangered Species Act, but had recently been downlisted by the International Union for the Conservation of Nature on a global level, according to Baker, who is associate director of the Marine Mammal Institute at Oregon State’s Hatfield Marine Science Center in Newport, Ore.

However, two population segments recently were relisted as endangered by the IUCN – one in the Sea of Arabia, the other in Oceania (the South Pacific) – and it is likely that at least one of the newly identified populations in the North Pacific will be considered endangered, Baker pointed out.

The newest findings – that humpback whales in the world’s major ocean basins are genetically different – should change the way scientists and resource managers look at these animals, the researchers say.

“This has implications for how we think about conservation of humpback whales,” Baker said. “We now propose that oceanic populations should be recognized as subspecies. Within ocean basins, we would also recognize a number of ‘Distinct Population Segments’ – each of which has a different history of exploitation and recovery.”

The researchers gathered genetic samples from free-swimming humpback whales using a small biopsy dart and then analyzed both mitochondrial DNA inherited from the mother and nuclear DNA from both parents. Mitochondrial DNA enabled the researchers to trace the exchange of female humpback whales among the world’s oceans over the past million years; the nuclear DNA provided insight into male interchange and reproductive isolation.

“We found that although female whales have crossed from one hemisphere to another at certain times in the last few thousand years, they generally stay in the ocean of birth,” Jackson said. “This isolation means oceanic populations have been evolving independently on an evolutionary time scale.”

In addition to Jackson and Baker, the project team included researchers from Florida State University, James Cook University, University of Auckland, Fundacion CEQUA, Wildlife Conservation Society, the American Museum of Natural History and the South Pacific Whale Research Consortium.

The study was funded by the New Zealand Royal Society Marsden Fund and the Lenfest Ocean Program.

Media Contact: 
Source: 

Scott Baker, 541-867-0255 (cell phone: 541-272-0560), scott.baker@oregonstate.edu

Study finds Oregon’s most common fish at least three distinct species

CORVALLIS, Ore. – A new study has found that the most common fish species in Oregon – the speckled dace – is actually at least three separate and distinct species.

The findings suggest that Oregon may have greater biological diversity in its native fish populations than previously recognized, said researchers at Oregon State University who led the study. The management implications for the discovery are not yet known.

Results of the study are being published this week in the journal Molecular Phylogenetics and Evolution.

The speckled dace is a small minnow that appears in ponds, rivers, springs, lakes and other waterways from Canada to Mexico. It is the most common fish in Oregon, meaning that it appears in more bodies of water than any other fish, the researchers say, yet little is known about its genetic makeup.

“For some reason, the speckled dace has never been fully investigated,” said Kendra Hoekzema, a faculty research assistant in OSU’s Department of Fisheries and Wildlife and lead author on the study. “Yet it varies greatly in genetics and morphology and now we’re finding that more than one species is out there in a small corner of Oregon.

“Who knows how many other species there might be?” she added. “The Great Basin has a lot of springs.”

The study began as a review of the Foskett Spring speckled dace which, as a listed federally threatened subspecies, must be investigated every five years. This particular dace has only been found in a single spring within Warner Valley in southeast Oregon, and as part of her study, Hoekzema collected speckled dace from surrounding basins, including the Warner system, Goose Lake, Lake Abert, Silver Lake and the Malheur River system, as well as Stinking Lake Spring on the Malheur National Wildlife Refuge.

DNA analysis led Hoekzema and co-author Brian Sidlauskas, an assistant professor in the Department of Fisheries and Wildlife at OSU, to determine that there are three “highly divergent” evolutionary lineages of speckled dace that warrant species-level status – the Malheur stream dace, Stinking Lake Spring dace, and dace from the other four basins combined.

“The speckled dace has been on the books for decades as one species and yet when we look at one small corner of Oregon, we find three distinct species,” Sidlauskas said. “Typically, when we think about new species being discovered, we think about some isolated part of the tropics. This is in our own backyard.”

“It goes to show both how much diversity may exist,” he added, “and how little we know about it.”

Hoekzema said the Stinking Lake Spring dace appeared to have branched off genetically some 2.5 million years ago, while the Foskett Spring dace – and perhaps others – became isolated just 10,000 years ago.

The researchers also recommended that the Foskett Spring dace should be listed as an “Evolutionarily Significant Unit” (ESU) and not a subspecies, a technical status change that would not necessarily affect how it is protected.

Paul Scheerer, a biologist with the Oregon Department of Fish and Wildlife, has been working at Foskett Spring since 2005 evaluating population status, trends and habitat conditions. He and his colleagues became concerned, Scheerer said, that the speckled daces’ population was declining and that their habitat was shifting from open water vegetated habitat to emergent marsh.

The Bureau of Land Management, ODFW and the U.S. Fish and Wildlife Service conducted controlled burns of some of the vegetation in 2009 and then excavated new pools fed by the spring.

“Foskett speckled dace quickly expanded into the new pools,” Scheerer said, “and since then we’ve experienced a seven-fold increase in the speckled dace to about 13,000 fish. We also introduced dace into nearby, recently restored ponds to expand their abundance and reduce the risk of catastrophic loss.

“The OSU study results suggest there are more dace species out there than we previously knew,” he added. “It will allow us to adequately protect and enhance these unique fish into the future. The work by OSU is invaluable and will allow us to better understand the diversity of the fish fauna that has evolved in these isolated desert basins.”

The management implications on a broader scale are unclear, Sidlauskas said, because while the new species have been recognized as genetically distinct, their full geographic ranges are unknown. Nevertheless, the discovery of a distinct, unrecognized and possibly endemic species within the Malheur refuge underscores the importance of such areas, he added.

“This suggests that the refuge may harbor even more diversity than we knew and highlights the importance of preserving and valuing such wild places,” Sidlauskas said.

Although the minnows, which grow to a length of about three inches, don’t carry the iconic status of Northwest salmon or steelhead, they are important parts of the food web in many areas. Many species of fish-eating fish love them.

“Speckled dace are the bon-bons of the fish world for piscatorial fish,” Sidlauskas said, “and they are likely important prey for birds and other animals as well.”

The study was funded by the Bureau of Land Management, Oregon Department of Fish and Wildlife, the OSU College of Agricultural Sciences, and the OSU Research Office.

Media Contact: 
Source: 

Kendra Hoekzema, 541-737-6035, Kendra.hoekzema@oregonstate.edu; Brian Sidlauskas, 541-737-6789, brian.sidlauskas@oregonstate.edu

Multimedia Downloads
Multimedia: 

 

 

 

 

 

 

 

 

 

 

speckled dace photo

speckled dace

 

Seining for dace

Collecting dace

 

MobileTissuingLab

Mobile lab

 

ColemanLake

Coleman Lake

Study of marine life near Newport finds no red flags for toxicity

NEWPORT, Ore. – Oregon State University scientists have examined a variety of coastal marine species near Newport, Ore., for concentrations of heavy metals and organic pollutants and found only trace amounts with no bioaccumulation of significant concern.

Their report is being presented May 19 to the City of Newport, which commissioned the study. It is available online at: http://www.thecityofnewport.net/

Newport city officials were concerned that effluent from a Georgia-Pacific containerboard plant outfall pipe, located some 4,000 feet off Nye Beach, may be exposing some marine life to contaminants. A 2010 study by CH2M-Hill looked for heavy metals in the surrounding water and sediments and found little with which to be concerned. Their study did not investigate marine organisms, however.

“There was some concern that metals and organic pollutants may be bioaccumulating in nearby marine life,” said Sarah Henkel, a marine ecologist at OSU’s Hatfield Marine Science Center and primary investigator on the study. “We tested for 137 different chemicals and only detected 38 of them – none at levels that remotely approach concern for humans.”

The City of Newport had asked the OSU researchers to look at a variety of species, including flatfish (speckled sand dab), crustaceans (Dungeness crab and Crangon shrimp), and mollusks (mussels and olive snails) because they could bioaccumulate metals and organic pollutants at different rates. The researchers collected a variety of samples in 2012 near the G-P outfall, as well as at sites north of Yaquina Head and south of Yaquina Bay. In fall of 2013, they also collected and analyzed rock scallops.

The organisms were analyzed for trace metals including copper and lead, polychlorinated biphenyls (PCBs) and congeners, polybrominated diphenyl ethers (PBDEs), which are used in flame-retardant materials, and other potentially carcinogenic compounds. They also were analyzed for organic-based compounds, which are commonly derived from pesticides.

Not a single organism was found with a bioaccumulation of metals or organic pollutants that approached levels of concern for humans established by the U.S. Food and Drug Administration, the researchers reported.

“The system is pretty darn clean,” said Scott Heppell, a biologist with the OSU Department of Fisheries and Wildlife and co-primary investigator on the study.  “I was certainly interested personally going into the study because my family goes crabbing in some of the places we sampled. If we had found anything, we would have had to come up with a new place. But we found nothing approaching the level of intervention for humans and that’s reassuring.”

The OSU researchers did find one area of potential future concern – trace levels of arsenic in mussels at sites both north and south of Yaquina Bay. The arsenic levels were still below the FDA level of concern for human consumption (86 parts per million), Heppell said, but in some cases exceeded the established level of concern for impacts to the mussels themselves, which is 3.6 ppm. Some of the samples analyzed by the researchers reached 5.0 ppm.

“It is still 15 times lower than the threshold for human concern, but there is potential for damage to the mussels themselves,” Heppell said. “It is also worth noting because the arsenic was in virtually all of the mussel samples we collected on beaches from Seal Rock to north of Yaquina Head. There is no way to draw a link to the G-P outfall.

“But because it was so common, it may be a good idea to study mussel populations up and down the entire coast to see what arsenic levels are at beyond our study area.”

Arsenic is often used in pressure-treated lumber and wood preservatives, the researchers noted.

Among other findings:

  • The researchers found three derivatives of dichlorodiphenyltrichloroethane, or DDT, a pesticide that has been banned for 40 years. Although it was detected at very small amounts, “the fact that it is still present in organisms four decades later shows why it was banned,” Henkel said.
  • No significant bioaccumulation could be attributed to the G-P outfall. In fact, fish, crabs and shrimp collected from subtidal sites away from the outfall often had higher concentrations of metals than those adjacent to the pipe, though still at levels safe for human consumption.
  • Two DDT derivatives (2,4’-DDE and 4,4’-DDD) were found in a single crab sample. Another, hexochloro-benzene, was detected in just two crab samples – at concentrations some 10,000 times less than the toxicity level listed as potentially affecting the crabs themselves.

“It is worth noting that the instrumentation today is so sensitive it can detect trace amounts of compounds at concentrations not possible just a few years ago,” Heppell said.

The OSU researchers praised the City of Newport for seeking data that potentially could have been damaging, yet was important to know.

“This is one of those reports that, thankfully, turns out to be rather boring,” Henkel said.

Other researchers on the project included Selina Heppell, a biologist with the OSU Department of Fisheries and Wildlife; and OSU faculty research assistants Kristin Politano and Vincent Politano.

Media Contact: 
Source: 

Sarah Henkel, 541-867-0316, sarah.henkel@oregonstate.edu; Scott Heppell, 541-737-1086, scott.heppell@oregonstate.edu