marine science and the coast

AAS Panel: Long-lived Deep-sea Fishes Imperiled by Technology, Overfishing

SAN FRANCISCO – Many commercially prized fish from the depths of the world’s oceans are severely threatened by over-fishing and the species’ ability to recover is constrained by the fishes’ long lifespans and low reproductive success, a panel of experts said today at the annual meeting of the American Association of the Advancement of Science.

Some of the fish species living at depths greater than 500 meters take decades to reach breeding maturity, so there are no quick-fix remedies available to replenish the population, said Selina Heppell, a fisheries biologist from Oregon State University.

“The harvest of deep-sea fishes is a lot like the harvest of old-growth timber,” Heppell said, “except we don’t ‘replant’ the fish. We have to depend on the fish to replenish themselves. And the habitat that used to provide them protection – the deep ocean – is now accessible to fishing because of new technologies.”

Among the most recognized deep-sea species at-risk are orange roughy and Patagonian toothfish, better known as Chilean sea bass. In the deep ocean off the Pacific Northwest, sablefish – also known as black cod – are another depleted species.

Deep-sea fishes grow slowly because of limited food sources and slow metabolisms; many don’t reach sexual maturity for 30-40 years, Heppell said. The harvest of older fish may have an even greater impact on threatened populations because they are more likely to breed successfully than younger fish.

“When you buy orange roughy at the store, you are probably purchasing a filet from a fish that is at least 50 years old,” Heppell said. “Most people don’t think of the implications of that. Perhaps we need a guideline that says we shouldn’t eat fish that are as old as our grandmothers.”

Most of the deep-sea fishes are in international waters, where there are no guidelines and protections – unlike within United States territorial waters. Most of these fish are caught by deep trawlers near seamounts, where they congregate because of food.

Technological advances have made targeting these fish easier, the panelists pointed out, because powerful ships can drag huge nets hundreds of feet below the surface. New refrigeration techniques, including “flash freezing,” allow ships to range far out into the ocean for days at a time. And sophisticated global positioning systems (GPS) and fish finders can target schools of fish or seamounts with ease.

“One reason that many of these fish species were fished sustainably in the past is that we couldn’t fish all of the places all of the time,” Heppell said. “That isn’t necessarily true anymore.”

Heppell is a faculty member in the Department of Fisheries and Wildlife at Oregon State, where she studies fish dynamics, populations and life cycles. The deep-sea fishes are among the hardest to study for obvious reasons, she said, and additional research is critical to protect these species.

Long-lived fish usually have low reproductive rates, either because of low breeding success or high mortality. In the case of deep-sea fishes, both scenarios often play out.

In some species, such as sharks, the fish may only produce a handful of offspring and the chances of survival by an individual are low. In other species, including orange roughy and oreos, an individual fish produces thousands of eggs – most of which die through predation or starvation.

“One of the things we need to know more about is how the fish larvae get transported,” Heppell said. “We don’t know whether fish from different seamounts are genetically distinct or whether larvae from one seamount end up populating another. The odds against these fish are so high that, in a reproductive sense, they have to wait for the stars to align before they successfully produce offspring that will survive until maturity.”

Natural and human-influenced climate factors including El Niño, the Pacific Decadal Oscillation and hypoxia zones all can influence shallow-water fishes’ breeding and mortality rates, but deep-sea environments are usually stable. The deep sea is almost completely dark, very near freezing and has very little food – reasons for the fishes’ slow growth and low productivity.

“Old fish don’t necessarily need to breed every year,” Heppell pointed out, “so when nature throws a bad reproductive year at them, the species can survive. But the point remains that you have to have older fish to replenish the stock when those bad years come.”

Conversely, Heppell said, good years often can carry the population in a phenomenon known as “episodic recruitment.” In studies of long-lived fish species, it isn’t unusual to find a school with numerous 18-year-old fish, for example, but very few fish that are 17 or 19 years of age. Scientists can determine the age of fish through their otoliths, or ear bones, which regularly accumulate rings much like trees. Variations in the size of the rings can indicate ocean productivity that year.

Harvesting older fish lessens the likelihood of many productive breeding years, Heppell pointed out, and lengthens the time species need to recover.

“There are models that estimate the recovery time for some rockfish species is at least 200 years,” Heppell said. “And we still don’t know all of the factors that influence their survival.”

Story By: 

Selina Heppell,

Changes in West Coast Marine Ecosystems Significant, Scientists Say at AAAS

SAN FRANCISCO – The California Current system has experienced significant changes during the past decade, resulting in dramatic variations in the ecosystem characterized by shifts in phytoplankton production, expanding hypoxic zones, and the collapse of marine food webs off the western coast of the United States.

These changes, driven by new wind patterns, are consistent with predictive models of global climate change, scientists said this week at the annual meeting of the American Association for the Advancement of Science.

But the researchers stopped short of saying that climate change was the definitive cause.

“This coming year will be important,” said Jack Barth, a professor of oceanic and atmospheric sciences at Oregon State University. “If the persistent wind patterns of the last few years continue through 2007, it might be enough to tip the scales in favor of climate change as a cause for these extreme variations in our West Coast marine environment.

“Our research has shown there is a ‘wobble’ in the Jet Stream that in some years has tended to overpower the more historic day-to-day variations in climate in favor of these two- to three-week wind patterns that influence upwelling and ultimately, ocean production.”

Eight scientists, including five with ties to Oregon State University, are part of a AAAS symposium, “Predicting the Unpredictable: Marine Die-Offs along the West Coast.” This week, they outlined how marine ecosystems are responding to widely different climate-driven variables, beginning in 1997-98 with one of the most powerful El Nino episodes on record.

During that El Niño, ocean waters off the West Coast grew warmer, nutrients decreased, biological production was reduced, and species from zooplankton to salmon disappeared, were drastically reduced or moved from their typical habitats. The El Niño capped what had been a series of years through the 1990s characterized by warm waters and weak upwelling.

That regime ended abruptly in late 1998, and the California Current system entered a four-year period of cold ocean conditions, according to Bill Peterson, a NOAA oceanographer who works out of OSU’s Hatfield Marine Science Center in Newport, Ore.

The ecosystem response to this change, Peterson said, was immediate and dramatic.

“Zooplankton stocks more than doubled in biomass, and the zooplankton community structure suddenly changed to one dominated by cold-water, lipid-rich species,” Peterson said. “Salmon stocks rebounded immediately and the good conditions lasted for four years. But the cold-water period ended as quickly as it began, in late 2002, and the ecosystem began to revert to conditions seen during the 1990s.”

Before the change, however, the West Coast experienced an unprecedented invasion of sub-arctic water in the summer of 2002. This cold, nutrient-rich water triggered massive phytoplankton production in the surface waters, and as the organisms decayed and sank to the bottom, they sucked oxygen out of the lower water column, leading to hypoxia and marine die-offs.

And though the ocean waters warmed over the next four years, the West Coast experienced hypoxia events every summer, according to Francis Chan, a senior research assistant professor at Oregon State University.

“When it comes to upwelling and phytoplankton production, there can be too much of a good thing,” Chan said. “Although the low-oxygen zone has varied in intensity from year to year, 2006 saw an unexpected expansion and degradation in oxygen conditions. At least 3,000 square kilometers of the continental shelf along the Oregon coast were affected.

“This latest hypoxic event,” he added, “was off the charts.”

Nature threw a different wrinkle at the California Current system in 2005, when the spring upwelling was delayed by a month. Winds that normally cause upwelling were absent, creating the lowest “upwelling-favorable wind stress” in 20 years. Near-shore waters were two degrees (C) warmer than average, surf zone chlorophyll levels were 50 percent of normal, and nutrient levels were reduced by one-third. Changes in water movement, triggered by the wind shifts, had a drastic effect on mussel and barnacle larvae, which decreased by 83 and 66 percent respectively.

What this showed scientists is that changes to the system are multi-faceted. Large-scale changes have an imprint on the entire ecosystem, but there are surprises in local systems that may depend on the timing of winds as much as their overall strength and duration.

“We used to think we could look at the wind and predict runs of salmon,” Peterson said. “That’s not necessarily the case. It’s a lot more complex out there.”

OSU marine ecologist Bruce Menge said another lesson scientists have learned is that there are ecologic winners and losers during these climatic variations. The general perception that cold water cycles are good for the ocean may be true for the open ocean environment, he said, but they can disrupt near-shore communities such as kelp forests and rocky intertidal zones. And while El Niño events and warm water cycles lower ocean production in general, they also can boost near-shore food webs.

“I think what we’re seeing is that the Pacific Decadal Oscillation has shifted,” Menge said. “The 20- to 30-year cycles are becoming less prominent than these four-year cycles. What we don’t yet know is whether these last couple of four-year cycles are just blips, or the whole system has gone haywire.”

Oregon State University’s Jane Lubchenco, a co-organizer of the West Coast variability symposium and past president of the AAAS, said the bottom line is that the dramatic events of the past few years have shown how vulnerable our oceans are to changes in overall climate – and how quickly ecosystems respond.

“Wild fluctuations in the timing and intensity of the winds that drive the system are wreaking havoc with the historically rich ocean ecosystems off the West Coast,” Lubchenco said. “As climate continues to change, these arrhythmias may become more erratic. Improved monitoring and understand of the connection between temperatures, winds, upwelling and ecosystem responses will greatly facilitate capacity to manage those parts of the system we can control.”

Story By: 

Jack Barth,

Oregon teens to compete in annual Salmon Bowl Competition

CORVALLIS, Ore. - Eleven Oregon high school teams will test their knowledge of marine sciences on Saturday, Feb. 24, during the annual Salmon Bowl competition at Oregon State University.

The winning team will earn a trip to the national competition in Stony Brook, N.Y., in April. About 100 volunteers, including faculty, staff and students in the OSU College of Oceanic and Atmospheric Sciences, will help host the event as part of their effort to boost science literacy and interest in the world's oceans.

"As the public becomes more exposed to issues of global warming, low oxygen ‘hypoxia’ zones, declining fish stocks and harmful algal blooms, they become increasingly interested in the world’s oceans,” said Pete Strutton, a faculty member in the OSU college and an adviser for the Salmon Bowl. “The event is a fun way to help foster that interest among high school students.”

The public is invited to watch the Salmon Bowl, held on the OSU campus from 9 a.m. to 4:30 p.m. in Burt Hall, Wilkinson Hall, and the College of Oceanic and Atmospheric Sciences administrative building. All three facilities are located roughly at 26th Street and Monroe in Corvallis. Admission is free.

This statewide competition is part of the National Ocean Sciences Bowl, which aims to develop the next generation of marine scientists, policy makers, educators, explorers, researchers and advocates. It is organized by the Consortium for Oceanographic Research and Education, a group of 85 universities and aquaria, including OSU. More information is available at: http://www.nosb.org/

Last year's winning team, Neah-Kah-Nie, returns to defend its title.

Competing teams will tackle questions about the global carbon cycle, phytoplankton, ocean currents, tsunamis, undersea earthquakes, fisheries and climate change – to name just a few.

Care to test your own knowledge? Here’s one sample question: “The period for deep water circulation of the ocean is on the order of A) 10,000 years; B) 1,000 years; C) 200 years; or D) 10 years. The correct answer is “B.”

Another question: Which of the following is responsible for approximately 16 percent of global sulfur-based emissions? A) automobiles; B) large ocean vessels; C) power plants; or D) airplanes? Correct answer: “B.”

And finally, which ocean is the youngest among the Pacific, Atlantic, Indian and Southern oceans? If you came up with the Atlantic, you were correct.

"These students face some tough questions," said Coral Gehrke, a graduate student in OSU's College of Oceanic and Atmospheric Sciences, who is coordinating the event, along with Eleanor Hodak, another grad student. "Some of them are things that we are learning as graduate students – and some are based upon the research of our major professors at OSU, which is exciting.”

For more information on OSU's College of Oceanic and Atmospheric Sciences, visit the college website at: http://www.coas.oregonstate.edu/

Competing Salmon Bowl teams, individuals and coaches are listed below:


  • Astoria High School Team A: Andrea Phillips, Alexandria Chandler, Alex Bonham, Elijah Knight, Colton Schwarz, Coach Lee Cain.
  • Astoria High School Team B: Elliot Leback, Christina Tweed, Maia Donachy, Kevin Speer, Jonathan Skillman, Coach Lee Cain.
  • Grants Pass

  • Hidden Valley High School: Chris Dunne, Max McClarnon, Ron Foster, Noah Bacon, Coach Wayne Brown.
  • Neah-Kah-Nie

  • Neah-Kah-Nie High School A&B Teams: Mikaela Atkinson, Sarah Aagesen, Stephanie Kosydar, Samantha Ferber, Laura Aravwen, Cameron DuBois, Josh DeGayner, Sean Compton, Kevin Filosi, Jared Haddock, Bryan Delgadillo, Coach Beth Gienger, Coach Peter Walczak.
  • Portland

  • Benson Polytechnic Team A: Nikesh Hajan, Tony Mac, Albert Le, Keenon Ono, Phuong Pham, Coach Dave Burmester.
  • Benson Polytechnic Team B: Vicki Lam, Eileen Tom, Logan Stowell, Tram Phan, Kim-Ngan Nguyen, Coach Matt Pellico.
  • Catlin Gabel High School: Laura Hays, Lucas Baker, Cole Perkinson, Kent Hays, Coach Lynda Jones.
  • Grant High School A&B Teams: Rachel Ostbergs, Casey Petry, Steven Stewart, Ashley Parker, Michelle Chu, Derrick Moten, Nancy Huynh, Gaedwyn Swails, Alex Luttman, Zen Pendragon, Coach Linda Driscoll.
  • Salem

  • South Salem High School: Michael St. Jacques, Teresa Anderson, Melanie Hunt, Sarah Perkins, Alicia Gorospe, Franziska Breyer, Ashley Taft, Coach Chad Rutan.
  • Story By: 

    Pete Strutton,


    Hatfield Visitor Center hosts Fossil Fest Feb. 17

    NEWPORT, Ore. – In the days of the dinosaurs, ocean waves crashed on Idaho beaches. And long before that, in a time when armored fish plied ancient waters, the North American coastline was dotted by islands that would one day become eastern Oregon.

    Curious? How and why did the beach move to Newport? How is climate change recorded in beaches and fossils across Oregon? These are among the topics to be presented at Oregon State University’s Hatfield Marine Science Center in Newport during the annual Fossil Fest, Saturday, Feb. 17.

    Ellen Morris Bishop, of the Oregon Paleo Lands Institute, will tell the moving-beach story at 11 a.m.; at 1:30 p.m., William Orr of the University of Oregon will give an illustrated presentation on fossil insects, which he terms “a most improbable happenstance."

    Both Morris Bishop and Orr will also be on hand to identify fossils brought in by visitors.

    In addition, representative fossils from the local Astoria and Nye formations (15-20 million years ago) will be on display. Other table displays will include local fossils collected by Guy DiTorrice and fossils from both Oregon and Washington collected by the North America Research Group.

    Hands-on activities include a fossil swap, in which visitors can trade their extra fossils, and the chance to grow-your-own fossil, using seeds of Oregon's new official State Fossil, a Metasequoia tree. And children will enjoy sifting through an archaeological collection for Bone Valley fossil shark teeth.

    “Kids will get to screen for these and keep two or three that they find,” said Bill Hanshumaker, Sea Grant marine educator at the HMSC Visitor Center.

    A field trip or two is also in the offing. From noon to 1:30 p.m., the Oregon Paleo Lands Institute will lead a trip to explore the coastal outcrops of Columbia River basalts in Yaquina Head and pillow lavas at Depoe Bay. These two very different kinds of lavas underlie the coast, and fossils might even be discovered on the trek, said Hanshumaker. Weather and light permitting, the trip will repeat at 3 p.m.

    The Visitor Center opens for Fossil Fest at 10 a.m. and closes at 5 p.m.


    Bill Hanshumaker,

    OSU graduate helping out as a legislative fellow

    CORVALLIS, Ore. - How does knowledge matter in politics? Oregon Sea Grant’s new legislative fellow, Ephraim Temple, is in the process of finding out.

    Throughout the 2007 Oregon legislative session, Temple, who recently completed an Oregon State University graduate degree in fisheries and wildlife (with a minor in marine resource management), is offering technical expertise on marine and coastal issues to legislators. He works specifically with the bipartisan Coastal Caucus.

    At the same time, he’s learning about the legislative process and is developing the skills to work with various levels of Oregon government and with private and state resource organizations. Temple is hosted by Rep. Deborah Boone of Cannon Beach, chair of the Coastal Caucus.

    While Temple’s master’s degree has equipped him with the latest academic perspectives on coastal issues, he also brings real-world experience from living in Hawaii, Tonga, Australia, and California, as well as Oregon since 2004. He’s worked on coastal policy issues, knows his way around a conversation with both fishermen and resource managers, but the legislature is something new.

    When the fellowship is over at the end of this session, Temple will produce a scholarly report to the sponsoring organization, Sea Grant, analyzing the progress and final outcome of marine and coastal issues dealt with during the session.

    Oregon Sea Grant, based at OSU, has been supporting the legislative fellowship since 1987.


    Jay Rasmussen,


    OSU’s Mate, Marine Mammal Institute featured in new documentary

    NEWPORT, Ore. – The pioneering work of Oregon State University researcher Bruce Mate and OSU’s Marine Mammal Institute will be featured in a new documentary filmed by the British Broadcasting System and airing on the Animal Planet network on Monday, Feb. 5.

    The show, part of the network’s Incredible Animal Journeys series, features the tracking of gray whale females and their offspring from calving areas off Mexico to feeding grounds in the high Arctic.

    Mate has been a pioneer in the use of satellites to track tagged whales over his last two decades of research that has yielded a wealth of information about the animals’ migration routes between feeding and calving areas, as well as their overall behavior. This recent OSU project, filmed in 2005, documents the first tracking of gray whales from their calving areas to feeding areas.

    The work is important because it shows how whales migrate in close proximity to human activities and how their feeding areas have changed in recent years in response to warming in the Bering Sea.

    “Even though we were tracking the tagged whales by satellite, it turned out to be incredibly difficult to locate those specific whales during their migration for the filming crews,” Mate said. “Whales are difficult to tell from one another, unless we get really close to them, and weather frequently kept us from making a timely rendezvous with the tagged individuals.

    “At one point, we had an airplane, two boats, and a person located on a hillside with a direction finder looking for our whales,” Mate added with a laugh. “But it worked out well in the end. The research was significant and the exposure for Oregon State University and our new institute is tremendous.”

    The OSU researchers tagged 17 gray whales during the project. Six of those animals lost their tags even before the whales left their wintering lagoon – probably because the one-ton calves frequently rub against their mothers. One tag was lost when the whale was temporarily entangled in a gill net in Mexico, one whale died of unknown causes (not related to the tag), and one was killed during a Russian whale hunt.

    “It’s a rough world out there for whales,” Mate said, “and both the research and the documentary demonstrate that.”

    The gray whale episode of Incredible Animal Journeys is scheduled to debut at 8 p.m. (Pacific time) on Feb. 5 on the Animal Planet network, and will be replayed several times over subsequent weeks.

    Story By: 

    Bruce Mate,

    Multimedia Downloads

    Bruce Mate
    Bruce Mate

    Scientists’ study of Antarctic seals may lead to insights on aging

    NEWPORT, Ore. – A team of scientists has just returned from McMurdo Sound in Antarctica, where they have been analyzing the diving and oxygen-carrying capacity of aging Weddell seals in a study that may shed new light on aging and possible protective mechanisms.

    The study is unusual because its focus is on older animals and how they retain their ability to hunt for food and reproduce despite a lifetime of seemingly debilitating physical exertion.

    “Weddell seals have well-known compensatory mechanisms that allow them to routinely swim underwater while holding their breaths for 30 minutes to an hour,” said Markus Horning, a researcher with the Marine Mammal Institute at Oregon State University and principal investigator on the study. “Such diving behavior is likely to result in periodic hypoxia – or low levels of oxygen – in some tissues, especially swimming muscles.

    “When a mammal’s system is suddenly re-oxygenated after hypoxia, it is likely to create high levels of reactive oxygen species that are implicated in aging and can cause damage to cells, as happens to mountain climbers and other extreme athletes,” Horning added.

    Since diving animals routinely experience reoxygenation when breathing at the surface following a dive, the researchers expected to find that Weddell seals would exhibit fairly rapid aging. But few such signs appeared.

    “Older seals appear to be diving quite well and have no trouble feeding or reproducing,” Horning said. “Their only apparent sign of aging was some wear and tear on their teeth. If aging occurs, then it will happen at the level of organs and tissues, while the whole organism still remains quite functional.”

    Horning said these findings suggest that Weddell seals have a compensatory or protective mechanism – either physiological or behavioral – that reduces the impact of possible oxidative stress.

    This was the first of two field seasons for the researchers in the study, funded by the National Science Foundation. Horning, who also is an assistant professor of fisheries and wildlife at OSU, worked with co-principal investigator Jo-Ann Mellish, from the University of Alaska-Fairbanks.

    McMurdo Sound Weddell seals are an ideal species for this aging study, Horning says, because almost all of them have been tagged, documented and identified as individuals by researchers since the 1970s and the ages of those individuals are well-established. An added benefit is that this particular group of seals rarely strays beyond the sound, sealed in by the sea ice, creating a natural laboratory.

    During the recent December 2006 field study, the researchers collected small blood and muscle samples from seals. They also applied recording devices to the seals’ fur to monitor their diving depth, swimming speed and flipper movement, while also recording electro-cardiograms (EKGs). They were able to determine how long these large seals – which weigh 500 to 1,300 pounds – would maintain their dives, how frequently they summoned up bursts of energy, and what their recovery rate was from an exerting dive.

    What they discovered was a fascinating physiological response by the seals. When diving, the animals reduced the flow of blood to many of their organs including their skin, liver and kidneys, while keeping their hearts, brains and swimming muscles supplied with blood and oxygen. They reduced their heart rate from about 100 beats per minute down to 40 beats – and sometimes as low as five per minute – to adjust blood output from the heart to this reduced circuit.

    “This ability demonstrates the remarkable capacity of seals to manipulate their physiology and metabolism, and to adjust to extreme circumstances,” Horning said. “One of our next steps is to compare how older animals adapt their blood flow and heart rate and compare it to younger animals. That may be one area where the older seals may exhibit compensatory mechanism to reduce the impact of reduced muscle performance.”

    The scientists theorize that the seals’ compensatory process could come in a couple of different ways. One possibility is that their “plasticity,” or range of physical behavior, is so wide that efficient dives fit within their physical abilities – even with declining muscle performance at an advanced age. Or they could have highly active anti-oxidant enzymes, or “scavenging systems,” that remove the reactive oxygen species as they form, reducing oxidative stress and slowing the decline in muscle performance.

    “It’s also possible there is a combination of both ideas,” Horning said. “They may have a wide behavioral plasticity and physiological protective mechanisms to reduce the damage.”

    If the seals do have enzyme-powered scavenging systems that help them compensate, it could have implications for understanding how humans might deal with oxidative stress and related aging.

    Horning says the study should also help researchers fine-tune population models for different marine mammal species in addition to Weddell seals. Many of the current models, he says, may not accurately reflect the continuing role of aging adults.

    “A lot of these seals are 25 to 30 years old,” Horning said, “and they are still actively hunting for food and reproducing and showing little negative effect.”

    Story By: 

    Markus Horning,

    Multimedia Downloads

    Markus Horning (left) checks the gums of a Weddell seal as part of a National Science Foundation-funded study on aging, while other researchers draw blood samples and prepare for other tests. The seal recovered rapidly and was released. (photo courtesy of Oregon State University)

    Part of the research team leaves a Weddell seal to recover and focuses on removing equipment and other gear before the ice melts. (photo by Markus Horning, OSU)

    Markus Horning
    Markus Horning

    Public Forums on Marine Reserves Set in Eight Coastal Communities

    CORVALLIS, OR. – A series of “listening and learning” forums in eight communities up and down the Oregon coast this month will seek to gather a wide range of interests and viewpoints surrounding the issue of marine reserves.

    The forums, starting in North Bend on Feb. 18, are being organized by Oregon Sea Grant, a marine research and outreach program based at Oregon State University, at the request of the state's Ocean Policy Advisory Council (OPAC).

    As defined by OPAC, marine reserves are areas of the ocean closed to fishing and other extractive activities "in order to conserve marine habitats and biodiversity to provide reference areas for research and monitoring." Oregon Gov. Ted Kulongoski has asked OPAC to come up with a set of recommendations for establishing fewer “than 10 marine reserves – large enough for scientific testing but small enough to avoid economic or social impacts such as the loss of significant fishing opportunities.”

    OPAC members asked Sea Grant to conduct the community outreach process because of the program's 40-year history of engaging with coastal communities on issues as wide-ranging as fisheries management, coastal hazards and regional research planning.

    The forums are intended to engage coastal communities and ocean users, share scientific and local knowledge, and show people how they can continue to be involved in the process of nominating potential sites for marine reserves.

    Forums will be moderated by Ginny Goblirsch, a long-time Sea Grant Extension agent with both professional and personal background in the fishing community. Goblirsch, who lives in Newport, was brought out of retirement to coordinate the outreach effort.

    Scientific background on marine reserves will be presented by Patty Burke, marine resources manager for the Oregon Department of Fish and Wildlife, and Selina Heppell, a faculty researcher with the OSU Department of Fisheries and Wildlife.

    Participants will hear “what and why” background about marine reserves, receive copies of material OPAC intends to use to make its recommendations, and meet others with whom they may continue working on the issue after the forums.

    Targeted participants include:

    • Commercial, charter, and recreational fishermen;

    • Seafood industry and fishing support services;

    • Port commissioners and managers;

    • Community conservation leaders;

    • Coastal recreation interests;

    • Local government and staff;

    • The public at large.

    Those planning to attend the two-hour forums are encouraged to prepare in advance by visiting http://seagrant.oregonstate.edu/outreach/reserves.html and reading the background documents provided there by OPAC. Print versions of the documents will also be available at the offices of local ports.

    To ensure that their knowledge, ideas and perspectives are considered in the decision-making process, participants are also urged to bring written comments to turn in at the forums.

    All forums will take place from 6:30 to 8:30 p.m. at the following dates and places:

    • Feb. 18: North Bend Community Center, 2222 Broadway, North Bend

    • Feb. 20: Garibaldi City Hall, 107 6th St., Garibaldi

    • Feb. 21: Newport City Hall, 169 SW Coast Hwy, Newport

    • Feb. 22: Florence Events Center, 715 Quince St., Florence

    • Feb. 26: Port of Umpqua, 364 N 4th St., Reedsport

    • Feb. 27: Chetco Grange Community Center, 97895 Shopping Center Ave, Harbor

    • Feb. 28: Port Orford City Hall, 555 W 20th, Port Orford

    • Feb. 29: Warrenton Community Center, 170 SW 3rd St, Warrenton

    Residents of surrounding communities are encouraged to attend the forum nearest to them.

    Sea Grant is under a mid-March OPAC deadline to conduct these and other listening and engagement activities and deliver an interim outreach report to the Kulongoski, OPAC, and state agencies involved in the marine reserves process. One possible outcome could be the formation of local nearshore working groups to further study the issue and, if they choose, nominate areas in their regions as potential marine reserves.

    For more information, contact Ginny Goblirsch at 541-737-8002, or by e-mail to marinereserves@oregonstate.edu

    Story By: 

    Ginny Goblirsch,

    Low-Oxygen Events Unprecedented, Disrupt Ocean Ecosystem

    CORVALLIS, Ore. – A review of all available ocean data records concludes that the low-oxygen events that have plagued the Pacific Northwest coast since 2002 are unprecedented in the five decades prior to that, and may well be linked to the stronger, persistent winds that are expected to occur with global warming.

    In a new study to be published Friday in the journal Science, researchers from Oregon State University outline a “potential for rapid reorganization” in basic marine ecosystems and the climatic forces that drive them – and suggest that these low-oxygen, or “hypoxic” events are now more likely to be the rule rather than the exception.

    “In this part of the marine environment, we may have crossed a tipping point,” said Jane Lubchenco, the Wayne and Gladys Valley Professor of Marine Biology at OSU, and the lead scientist for PISCO, the Partnership for Interdisciplinary Studies of Coastal Oceans.

    “Levels of oxygen in the summertime have suddenly become much lower than levels in the previous 50 years,” Lubchenco said. “And 2006 broke all records, with parts of the shallow shelf actually becoming anoxic, meaning that they lacked oxygen altogether. We’ve never seen that before.”

    The rapid and disturbing shift of ocean conditions in what has traditionally been one of the world’s more productive marine areas – what’s called the California Current Large Marine Ecosystem – has garnered much attention in recent years, also raising questions about whether it has happened before, and what is causing it.

    “People keep asking us, ‘Is this situation really all that different or not?’” Lubchenco said. “Now we have the answer to that question, and it’s an unequivocal ‘yes.’ The low oxygen levels we’ve measured in the last six years are abnormally low for our system. We haven’t seen conditions like this in many, many decades, and now with varying intensity we’ve seen them in each of the last six summers.”

    In these events, water oxygen levels have repeatedly reached hypoxic levels, below which most marine animals suffocate or are severely stressed if they cannot escape the area. If oxygen levels drop to zero, most animals die. The massive 2006 event covered at least 3,000 square kilometers, lasted for four months, and occupied up to 80 percent of the water column in shallow shelf areas, the report said. Fish either died or fled these areas, thousands of crabs died, and marine seafloor life that could not move faced almost total mortality. Recovery has been slow.

    It’s less certain why this is happening, but the events are completely consistent with global climate change, the OSU researchers say.

    “There have always been unusual weather events, such as hurricanes, droughts, and changes in wind patterns,” said Jack Barth, an OSU professor of physical oceanography and a lead scientist with PISCO. “So it’s difficult to prove that any one event is caused by global warming. Having said that, we expect global warming to generally cause stronger and more persistent winds. These winds contribute to the hypoxic events by increasing plankton production and holding low-oxygen water on the continental shelf for longer periods.

    “At this point,” Barth added, “I’d be surprised if this trend towards hypoxic events didn’t continue.”

    Francis Chan, a marine ecologist with OSU and PISCO, conducted a survey of all known records of oxygen levels on the Oregon continental shelf over the last 60 years, with measurements taken by research cruises and ocean-going vessels from more than 3,000 stations.

    “The data make it pretty clear that the recent conditions are unprecedented during any period that has been measured,” Chan said. “We’re now seeing very low-oxygen water, lasting for long periods, and closer to shore than at any time in more than 50 years.”

    That long period of time included several El Nino and La Nina events, possible suspects in any change of Pacific Ocean conditions, and also shifts in the Pacific Decadal Oscillation, another player in near-term climate trends. None of those appeared to have any correlation to the hypoxic events.

    Hypoxic conditions in ocean waters – often popularly called “dead zones” – are usually associated with serious nitrate loads or other nutrient pollution, such as in the Gulf of Mexico or Chesapeake Bay. Pollution-caused hypoxic zones are found with much less frequency in regions where significant upwelling occurs – a process that is usually beneficial to productive marine food webs.

    “Coastal upwelling ecosystems occupy only about 1 percent of the ocean surface area, but they produce about 20 percent of global fishery production,” Lubchenco said. “These areas have historically been highly productive. The appearance or increase in severity of hypoxia in these ecosystems would be cause for concern.”

    Some other areas of the world bear more similarity to the recent situation off the Pacific Northwest, such as the Benguela Current off South Africa and Humboldt Current off Chile. They historically have had hypoxic conditions before – which may be getting worse.

    “The Namibian system in the past decade seems to be seeing lower oxygen levels and more frequent hypoxic events than it had previously,” Barth said. “Historically it has even more extreme upwelling than we have in the Pacific Northwest, and more frequent marine life die-offs.”

    A concern, researchers say, is whether that system is a harbinger of the future for the Pacific Northwest.

    Editor’s Note: Digital photographs to illustrate this story can be obtained at the PISCO web site at http://www.piscoweb.org/outreach/topics/hypoxia.


    Story By: 

    Francis Chan,

    Multimedia Downloads

    AAAS Panel: Climate Change Creating Major Impacts on World’s Oceans

    BOSTON, Mass. – Climate change is rapidly transforming the world’s oceans by increasing the temperature and acidity of seawater, and altering atmospheric and oceanic circulation, reported a panel of scientists this week at the American Association for the Advancement of Science (AAAS) annual meeting in Boston.

    “The vastness of our oceans may have engendered a sense of complacency about potential impacts from global climate change,” said Jane Lubchenco, the Wayne and Gladys Valley Chair of Marine Biology at Oregon State University, who moderated the panel. “The world’s oceans are undergoing profound physical, chemical and biological changes whose impacts are just beginning to be felt.”

    Panelist Gretchen Hofmann, a molecular physiologist at the University of California, Santa Barbara, describes the situation as “multiple jeopardy.”

    “Ocean ecosystems are facing new stresses and new combinations of stress,” Hofmann said. “The water is warmer, circulation patterns are changing in unpredictable ways, and oceans are becoming acidic.”

    Rising greenhouse gas emissions are warming the world’s oceans and providing yet a new threat to coral reefs, which already are among the most threatened of all marine ecosystems, the panelists say. Even modest warming of a degree or two above normal maximum temperatures can cause a breakdown in the relationship between corals and their symbiotic algae, zooxanthellae, said Nancy Knowlton, a marine biologist with the Smithsonian Institution.

    Without zooxanthellae corals appear white, or “bleached,” and grow more slowly. They also are more susceptible to disease and may not reproduce. In 1998 there were worldwide mass bleaching events, Knowlton pointed out, affecting 80 percent of the corals in the Indian Ocean, 20 percent of which died. In 2005, severe bleaching occurred over much of the Caribbean as a result of overly warm water temperatures.

    “We have already lost some 80 percent of the reef corals in the Caribbean over the last three decades, and losses in the Pacific Ocean also are widespread and severe,” Knowlton said. “Reefs are like cities, with some parts growing and some parts being destroyed, and only when net growth is positive can reefs persist. These reefs already are under threat to overfishing and local pollution and unless drastic action to reduce greenhouse gas emissions is taken soon, these reefs will cease to exist as we know them.”

    These same greenhouse gas emissions also are creating dramatic buildup of atmospheric carbon dioxide, which is rapidly making the world’s oceans more acidic, said panelist Scott Doney of the Woods Hole Oceanographic Institution. Current CO2 levels of 380 parts per million already are 30 percent higher than pre-industrial values and many scientific models predict that those rates will triple by the end of the century under “business as usual” scenarios.

    While much of the scientific attention on ocean acidification has looked at the impact of coral reefs, the potential danger to other marine ecosystems is equally severe, Doney said.

    “Ocean acidification harms plants and animals that form shells from calcium carbonate,” he said. “Calcifying organisms include not just corals, but many plankton, pteropods (marine snails), clams and oysters, and lobsters. Many of these organisms provide critical food sources or habitats for other organisms and the impact of acidification on food webs and higher trophic levels is not well understood.

    “Newly emerging evidence suggests that larval and juvenile fish may also be susceptible to changes in ocean pH levels,” Doney added. “Ocean acidification is rapidly becoming a real problem.”

    Michael Behrenfeld, an oceanographer from Oregon State University, is studying relationships between climate and the global activity of ocean plants called phytoplankton.

    “Phytoplankton are of tremendous human importance because their photosynthesis yields oxygen for us to breathe and they are the base of the ocean food webs that support our global fisheries,” Behrenfeld said. “Using NASA satellites, we can track changes in phytoplankton on a global basis and what we find is that warming ocean temperatures are linked to decreasing photosynthesis. Satellites are one of the most important tools we have for understanding the link between climate and ocean biology because they provide measurements of the whole planet on a daily basis, which could never be accomplished by ship.

    “Unfortunately,” he added, “it is at this very time when we need satellites most that we are facing the end of NASA ocean biology satellites because of budget cutbacks or new priorities. This is a serious issue that needs to be addressed.

    “Instead of facing the end of these critical missions and becoming blind to the changes occurring in our oceans,” Behrenfeld said, “we should be building even better ones to see more clearly than we have in the past, and to gauge the potential consequences of climate change on ocean productivity.”

    The panelists also called for greater investment in ocean observing systems that would allow scientists to better measure changing in the ocean ecosystem, including large-scale circulation and coastal upwelling systems around the world. Klaus Keller of Penn State University reported on the economic costs and benefits of effective ocean observing systems to detect changes in the north Atlantic Meridional Overturning Circulation.

    Jack Barth, an oceanographer at Oregon State University, reported on the hypoxia events that have plagued the Pacific Northwest coast since 2000. These low-oxygen zones in the near-shore are unprecedented over the last five decades of scientific observation and likely linked to stronger, more persistent winds that are expected to occur with global warming. The California Current System provides a case study for similar changes in coastal upwelling zones off South America, southern Africa and northern Africa, Barth said.

    “One of the things we’ve observed is how wind patterns have changed and greatly affected upwelling,” Barth said. “Two decades ago, the winds would last for three or four days, and then subside. Now they persist for 20 to 40 days before settling down. This creates significant impacts on upwelling and biological productivity, but these impacts can swing wildly from one extreme to another and have been difficult to predict.”

    The AAAS symposium was organized by the Partnership for Interdisciplinary Studies of Coastal Oceans, a multi-university research effort headquartered at Oregon State University and funded by the David and Lucile Packard Foundation, the Gordon and Betty Moore Foundation, the National Science Foundation and other sources.

    Story By: 

    Jane Lubchenco,