OREGON STATE UNIVERSITY

marine science and the coast

Climate report: Wildfires, snowmelt, coastal issues top Northwest risks

CORVALLIS, Ore. – The Northwest is facing increased risks from the decline of forest health, earlier snowmelt leading to low summer stream flows, and an array of issues facing the coastal region, according to a new climate assessment report.

Written by a team of scientists coordinated by the Oregon Climate Change Research Institute (OCCRI) at Oregon State University, the report is the first regional climate assessment released since 1999. Both the 1999 report and the 2013 version were produced as part of the U.S. National Climate Assessment; both Washington and Oregon produced state-level reports in 2009 and 2010.

OSU’s Philip Mote, director of the institute and one of three editors of the 270-page report (as well as the 1999 report), said the document incorporates a lot of new science as well as some additional dimensions – including the impact of climate change on human health and tribal issues. A summary of the report is available online at: http://occri.net/reports

Amy Snover, director of the Climate Impacts Group at the University of Washington, said there are a number of issues facing the Northwest as a result of climate change.

“As we looked across both economic and ecological dimensions, the three that stood out were less snow, more wildfires and challenges to the coastal environment and infrastructure,” said Snover, who is one of the editors on the report.

The report outlines how these three issues are affected by climate change.

“Studies are showing that snowmelt is occurring earlier and earlier and that is leading to a decline in stream flows in summer,” Mote said. “Northwest forests are facing a huge increase in wildfires, disease and other disturbances that are both direct and indirect results of climate change. And coastal issues are mounting and varied, from sea level rise and inundation, to ocean acidification. Increased wave heights in recent decades also threaten coastal dwellings, roads and other infrastructure.”

OCCRI’s Meghan Dalton, lead editor on the report, notes that 2,800 miles of coastal roads are in the 100-year floodplain and some highways may face inundation with just two feet of sea level rise. Sea levels are expected to rise as much as 56 inches, or nearly five feet, by the year 2100.

Earlier snowmelt is a significant concern in the Northwest, where reservoir systems are utilized to maximize water storage. But, Dalton said, the Columbia River basin has a storage capacity that is smaller than its annual flow volume and is “ill-equipped to handle the projected shift to earlier snowmelt…and will likely be forced to pass much of these earlier flows out of the system.”

The earlier peak stream flow may significantly reduce summer hydroelectric power production, and slightly increase winter power production.

The report was funded by the National Oceanic and Atmospheric Administration, through the Oregon Legislature’s support of the Oregon Climate Change Research Institute at OSU, and by in-kind contributions from the authors’ institutions.

Mote said new research has led to improved climate models, which suggest that the Northwest will warm by a range of three to 14 degrees (Fahrenheit) by the year 2100. “The lower range will only be possible if greenhouse gas emissions are significantly reduced.” In contrast, the Northwest warmed by 1.3 degrees from the period of 1895 to 2011.

Future precipitation is harder to project, the report notes, with models forecasting a range from a 10 percent decrease to an 18 percent increase by 2100. Most models do suggest that more precipitation will fall as rain and earlier snowmelt will change river flow patterns.

That could be an issue for agriculture in the future as the “Northwest’s diverse crops depend on adequate water supplies and temperature ranges, which are projected to change during the 21st century,” the report notes. Pinpointing the impacts on agriculture will be difficult, said Sanford Eigenbrode of the University of Idaho, another co-author.

“As carbon dioxide levels rise, yields will increase for some plants, and more rainfall in winter could mean wetter soils in the spring, benefitting some crops,” Eigenbrode pointed out. “Those same conditions could adversely affect other crops. It is very difficult to say how changing climate will affect agriculture overall in the Northwest, but we can say that the availability of summer water will be a concern.”

Mote said there may be additional variables affecting agriculture, such what impacts the changing climate has on pests, diseases and invasive species.

“However, the agricultural sector is resilient and can respond more quickly to new conditions than some other sectors like forestry, where it takes 40 years or longer for trees to reach a harvestable age,” noted Mote, who is a professor in OSU’s College of Earth, Ocean, and Atmospheric Sciences.

The Northwest has not to date been vulnerable to many climate-related health risks, the report notes, but impacts of climate change in the future are more likely to be negative than positive. Concerns include increased morbidity and mortality from heat-related illness, air pollution and allergenic disease, and the emergence of infectious diseases.

“In Oregon, one study showed that each 10-degree (F) increase in daily maximum temperature was associated with a nearly three-fold increase of heat-related illness,” said Jeff Bethel, an assistant professor in the College of Public Health and Human Sciences at OSU and one of the co-authors of the report. “The threshold for triggering heat-related illness – especially among the elderly – isn’t much.”

Northwest tribes may face a greater impact from climate change because of their reliance on natural resources. Fish, shellfish, game and plant species could be adversely affected by a warming climate, resulting in a multitude of impacts.

“When tribes ceded their lands and were restricted to small areas, it resulted in a loss of access to many species that lived there,” said Kathy Lynn, coordinator of the Tribal Climate Change Project at the University of Oregon and a co-author of the report. “Climate change may further reduce the abundance of resources. That carries a profound cultural significance far beyond what we can document from an economic standpoint.”

Snover said that the climate changes projected for the coming decades mean that many of the assumptions “inherent in decisions, infrastructure and policies – where to build, what to grow where, and how to manage variable water sources to meet multiple needs – will become increasingly incorrect.

“Whether the ultimate consequences of the climate impacts outlined in this report are severe or mild depends in part on how well we prepare our communities, economies and natural systems for the changes we know are coming,” Snover said.

Other lead co-authors on the report are Rick Raymondi, Idaho Department of Water Resources; W. Spencer Reeder, Cascadia Consulting Group; Patty Glick, National Wildlife Federation; Susan Capalbo, OSU; and Jeremy Littell, U.S. Geological Survey.

Media Contact: 
Source: 

Philip Mote, 541-737-5694; pmote@coas.oregonstate.edu; Amy Snover, 206-221-0222; aksnover@uw.edu

Multimedia Downloads
Multimedia: 

Major storm Coastal issues

Melting glacier Snowmelt

Trail Creek FireWildfires

Study concludes climate change will wreak havoc on oceans by 2100

CORVALLIS, Ore. – A new study looking at the impacts of climate change on the world’s ocean systems concludes that by the year 2100, about 98 percent of the oceans will be affected by acidification, warming temperatures, low oxygen, or lack of biological productivity – and most areas will be stricken by a multitude of these stressors.

These biogeochemical changes triggered by human-generated greenhouse gas emissions will not only affect marine habitats and organisms, the researchers say, but will often co-occur in areas that are heavily used by humans.

Results of the study are being published this week in the journal PLoS Biology. It was funding by the Norwegian Research Council and Foundation through its support of the International Network for Scientific investigation of deep-sea ecosystems (INDEEP).

“While we estimated that 2 billion people would be impacted by these changes, the most troubling aspect of our results was that we found that many of the environmental stressors will co-occur in areas inhabited by people who can least afford it,” said Andrew Thurber, an Oregon State University oceanographer and co-author on the study.

“If we look on a global scale, between 400 million and 800 million people are both dependent on the ocean for their livelihood and also make less than $4,000 annually,” Thurber pointed out. “Adapting to climate change is a costly endeavor, whether it is retooling a fishing fleet to target a changing fish stock, or moving to a new area or occupation.”

The researchers say the effect on oceans will also create a burden in higher income areas, though “it is a much larger problem for people who simply do not have the financial resources to adapt.”

“What is really sobering about these findings is that they don’t even include other impacts to the world’s oceans such as sea level rise, pollution, over-fishing, and increasing storm intensity and frequency,” added Thurber, a post-doctoral fellow in OSU’s College of Earth, Ocean, and Atmospheric Sciences. “All of these could compound the problem significantly.”

In their study, the researchers used global distribution maps of 32 marine habitats and biodiversity hotspots and overlaid that with climate models developed for the Intergovernmental Panel on Climate Change Fifth Assessment Report, presented in Stockholm, Sweden, this fall. They then compared the results with the latest available data on human use of marine goods and services to estimate the vulnerability of coastal populations worldwide.

The models had a range of outcomes, but all agreed that most of the world’s oceans would suffer negative impacts of varying intensities from the four major stressors. Only a small fraction of the oceans – mostly in Antarctica and to a lesser extent, small areas of the Atlantic – will see potential increases in oxygen or biological productivity, the study noted.

By 2100, nowhere in the world are ocean waters expected to be cooler or less acidic than they are today.

“When you look at overlapping stressors, the Northern Hemisphere appears to be in real trouble,” Thurber said. “The same grim outlook is apparent for the strong upwelling zones off Chile and southern Africa. Another ‘red spot’ is the Pacific Northwest of the United States, which already is seeing the impact of low oxygen and rising acidification.”

It is the combination of stressors that makes upwelling areas – where deep, nutrient-rich water is brought to the surface to fertilize the upper water column – of greatest concern, the researchers noted. The models also suggest that marine food webs based on the production of euphausiids and other krill, or tiny marine crustaceans, are highly at-risk.

“A lot of marine animals, including many whale populations, are dependent upon krill or the other organisms that consume krill, for survival – and krill habitat has some of the greatest overlap in all the stressors we looked at,” Thurber said. “On the other hand, coral reefs – even though they didn’t rank as high as other areas for stressor overlap – are in trouble due to just two of the stressors, acidification and temperature. So a low score doesn’t necessarily mean these areas are unlikely to be affected.”

Thurber and three colleagues originally conceived of the idea of the meta-analysis of data to forecast the impact of climate change on the world’s deep sea, an idea that was re-cast when they organized an international workshop that drew many principal investigators of recent climate change studies. Notable among the researchers was Camila Mora of the University of Hawai’i at Mañoa, who spearheaded an effort to include shallow water and the human elements into the data analysis.

“The consequences of these co-occurring changes are massive,” Mora said. “Everything from species survival to abundance, to range size, to body size, to species richness, to ecosystem functioning are affected by changes in ocean biogeochemistry.”

The study is unusual because of its scope, and the analysis of multiple factors. Most previous studies have looked at one variable – such as ocean warming or increasing acidification – but not multiple stressors, or they focused on one geographic area. It also brought the human dimension into play, which few climate change studies have attempted.

“One of the real highlights of the study is its inclusion of the deep sea into our understanding of human impacts on climate,” Thurber said. “We often think of this vast habitat as immune to human activity, but we found that this largest and most stable area of our planet is likely to see multiple impacts from our activities.”

Among the possible biological responses to the four stressors:

  • Although warming off the surface waters in polar regions may lead to enhanced growth and productivity of some species, in a vast majority of the world it likely will lead to species loss, reduced animal density, and enhanced risk of disease;
  • Acidification will increase mortality of calcifying marine invertebrates and likely lead to species loss;
  • Hypoxia, or low oxygen, will cause mortality in many species and could enhance dominance by other species that are hypoxia-tolerant;
  • As productivity declines, many food web structures will be altered and reduced abundance may lead to dominance shifts from large to small species.
Media Contact: 
Source: 

 Andrew Thurber, 541-737-8251; athurber@coas.oregonstate.edu

Multimedia Downloads
Multimedia: 

Scarred reef
A scarred coral reef

Deep-sea substrate

Deep-sea substrate

 

antarctica surface

Antarctica

OSU Press publishes book on salmon by acclaimed biologist

CORVALLIS, Ore. – For more than 40 years, Jim Lichatowich worked with Pacific salmon as a researcher, resource manager and scientific adviser, and he has seen first-hand the decline of Northwest salmon populations during that time.

In a new book published by the Oregon State University Press, Lichatowich outlines a plan for salmon recovery based on the lessons he has learned during his long career.

His book, “Salmon, People, and Place: A Biologist’s Search for Salmon Recovery,” points out many misconceptions about salmon that have hampered management and limited recovery programs. These programs will continue to fail, he argues, as long as they look at salmon as “products” and ignore their essential relationship with the environment.

Among his suggestions for reforming salmon management and recovery:

  • Holding salmon managers and administrators accountable;
  • Requiring agencies to do more “institutional learning”;
  • Not relying on shifting baselines of data;
  • Undertaking hatchery reform;
  • Returning to place-based salmon management.

John Larison, author of “The Complete Steelheader,” praised the OSU Press book written by Lichatowich. “Part science, part anthropology, part philosophy, this is a revelatory book and essential reading for anyone hoping to understand salmon in the Northwest,” Larison said.

Lichatowich served for years on the Independent Scientific Advisory board for the Columbia River restoration program, as well as on Oregon’s Independent Multidisciplinary Science Team and other science groups in British Columbia and California. He is author of the award-winning book, “Salmon without Rivers: A History of the Pacific Salmon Crisis.”

In his newest book, Lichatowich writes: “We enthusiastically accepted the gift of salmon, but failed to treat it with the respect it deserves. We failed to meet our obligation to return the gift in the way that only humans can. We failed to return the gift of salmon with the gift of stewardship.”

Lichatowich is a graduate of OSU’s Department of Fisheries and Wildlife. He will return to his alma mater in January to present a seminar on his work.

“Salmon, People, and Place” is available in bookstores, online at http://osupress.oregonstate.edu, or can be ordered by calling 1-800-621-2736.

Media Contact: 
Source: 

Micki Reaman, 541-737-4620; Micki.reaman@oregonstate.edu

Multimedia Downloads
Multimedia: 

OSU Press book on salmon

OSU faculty members key contributors to IPCC report

CORVALLIS, Ore. – The Intergovernmental Panel on Climate Change, a United Nations-sponsored group of scientists, issued its latest report on the state of scientific understanding on climate change. Two Oregon State University faculty members played key roles in the landmark report.

Peter Clark, a professor in OSU’s College of Earth, Ocean, and Atmospheric Sciences, was one of two coordinating lead authors on a chapter outlining sea level change. He and fellow coordinating lead author John Church of Australia oversaw the efforts of 12 lead authors and several dozen contributing scientists on the science of sea level change.

Philip Mote, director of the Oregon Climate Change Research Institute at OSU, was one of 12 lead authors on a chapter looking at the cryosphere, which is comprised of snow, river and lake ice, sea ice, glaciers, ice sheets, and frozen ground. The cryosphere plays a key role in the physical, biological and social environment on much of the Earth’s surface.

“Since the last IPCC report, there has been increased scientific understanding of the physical processes leading to sea level change, and that has helped improve our understanding of what will happen in the future,” Clark said.

“One of the things our group concluded with virtual certainty is that the rate of global mean sea level rise has accelerated over the past two centuries – primarily through the thermal expansion of the oceans and melting of glaciers,” Clark added. “Sea level rise will continue to accelerate through the 21st century, and global sea levels could rise by 0.5 meters to at least one meter by the year 2100.”

The rate of that rise will depend on future greenhouse gas emissions.

Among other findings, the sea level chapter also concluded that it is virtually certain that global mean sea level will continue to rise beyond the year 2100, and that substantially higher sea level rise could take place with the collapse of the Antarctic ice sheet.

Mote, who also is a professor in the College of Earth, Ocean, and Atmospheric Sciences, said analyzing the cryosphere is complex and nuanced, though overall the amount of snow and ice on Earth is declining.

The report notes: “Over the last two decades, the Greenland and Antarctic ice sheets have been losing mass, glaciers have continued to shrink almost worldwide, and Arctic sea ice and Northern Hemisphere spring snow cover have continued to decrease in extent.” Other cryosphere changes include:

  • Greenland and Antarctica are not only losing ice, but the rate of decline is accelerating;
  • The amount of sea ice in September has reached new lows;
  • The June snow cover also has reached new lows and has decreased by an average of 11.7 percent per decade – or 53 percent overall – from 1967 to 2012;
  • The reduction in snow cover can formally be attributed to human influence – work done by Mote and David Rupp of OSU.

 Rick Spinrad, OSU’s vice president for research, praised the efforts of the two OSU faculty members for their contributions to the report.

 "OSU is a global leader in environmental research as reflected by the leadership roles of Dr. Clark and Dr. Mote in this seminal assessment,” Spinrad said. “The impact of the IPCC report will be felt by scientists and policy makers for many years to come."

The IPCC report is comprised of 14 chapters, supported by a mass of supplementary material. A total of 209 lead authors and 50 review editors from 39 countries helped lead the effort, and an additional 600 contributing authors from 32 countries participated in the report. Authors responded to more than 54,000 review comments.

The report is available online at the IPCC site: http://www.ipcc.ch/

Media Contact: 
Multimedia Downloads
Multimedia: 

Melting glacier
A shrinking glacier

Coastal waves
Rising sea levels

Researchers going public on quest to identify plankton species

NEWPORT, Ore. – Researchers using an innovative underwater imaging system have taken millions of photos of plankton ranging from tiny zooplankton to small jellyfish – and now they are seeking help from the public to identify the species.

The “Plankton Portal” project is a partnership between the University of Miami, Oregon State University and Zooniverse.org to engage volunteers in an online citizen science effort.

“One of the goals of the project is discovery,” said Robert Cowen, new director of OSU’s Hatfield Marine Science Center in Newport, Ore., who led the project to capture the images while at Miami’s Rosenstiel School of Marine and Atmospheric Sciences. “Computers can take pictures and even analyze images, but it takes humans to identify relationships to other organisms and recognize their behavior.

“Computers don’t really care about context – whether something is up or down in the water column and what else might be in the neighborhood,” he added. “People can do that. And we hope to have thousands of them look at the images.”

Interested persons may sign up for the project at www.planktonportal.org, which goes online this week (the official launch is Sept. 17).

Zooniverse.org is a popular citizen science website that engages millions of participants to study everything from far-away stars, to whale sounds, to cancer cells – and aid scientists with their observations. It works by training volunteers and validating their credibility by how often their observations are accurate.

“It is an increasingly popular pursuit for people interested in science and nature – from high school students to senior citizens,” said Jessica Luo, a University of Miami doctoral student working with Cowen.

“Each image is looked at by multiple users and identification is done by a weighting system,” said Luo, who is now working at OSU’s Hatfield center. “The system not only looks for consensus, but rapidity of conclusion. It works amazingly well and the data from this project will help us better begin to explore the thousands of species in the planktonic world.”

With funding from the National Science Foundation’s Directorate for Geosciences and the National Oceanic and Atmospheric Administration, Cowen developed the “In Situ Ichthyoplankton Imaging System,” or ISIIS, while at Miami – along with Cedric Guigand of UM and Charles Cousin of Bellamare, LLC.

ISIIS combines shadowgraph imaging with a high-resolution line-scan camera to record plankton at 17 images per second. Cowen and his colleagues have used the system to study larval fish, crustaceans and jellyfish in diverse marine systems, including the Gulf of Mexico, the mid-Atlantic Ocean, the California coast, and the Mediterranean Sea.

At the same time ISIIS is capturing images, he says, other instruments are recording oceanographic conditions, including temperature, salinity, dissolved oxygen and other measurements. These data, coupled with the images, are available to the public via Zooniverse.org.

“In three days, we can collect data that would take us more than three years to analyze,” Cowen said, “which is why we need the help of the public. With the volume ISIIS generates, it is impossible for a handful of scientists to classify every image by hand, which is why we are exploring different options for image analysis – from automatic image recognition software to crowd-sourcing to citizen scientists.”

Luo said the researchers hope to secure future funding to study plankton – which includes a variety of crustaceans and jellyfish in the water column – off the Pacific Northwest coast.

“Most images of plankton are taken in a laboratory, or collected from nets on a ship,” said Cowen, who is a professor in OSU’s College of Earth, Ocean, and Atmospheric Sciences. “ISIIS gives us the rare ability to see them in their natural environment, which is a unique perspective that will enable us to learn more about them and the critical role they play in the marine food web.”

Other researchers on the project include graduate student Adam Greer, and undergraduate students Dorothy Tang, Ben Grassian and Jenna Binstein – all at the University of Miami.

Media Contact: 
Source: 

Jessica Luo, 650-387-5700; Jessica.luo@rsmas@miami.edu;

 

Bob Cowen, 541-867-0211; Robert.Cowen@oregonstate.edu

Multimedia Downloads
Multimedia: 

Plankton Portlal

plankton_crew

Plankton Portal

Viruses associated with coral epidemic of “white plague”

CORVALLIS, Ore. – They call it the “white plague,” and like its black counterpart from the Middle Ages, it conjures up visions of catastrophic death, with a cause that was at first uncertain even as it led to widespread destruction – on marine corals in the Caribbean Sea.

Now one of the possible causes of this growing disease epidemic has been identified – a group of viruses that are known as small, circular, single-strand DNA (or SCSD) viruses. Researchers in the College of Science at Oregon State University say these SCSD viruses are associated with a dramatic increase in the white plague that has erupted in recent decades.

Prior to this, it had been believed that the white plague was caused primarily by bacterial pathogens. Researchers are anxious to learn more about this disease and possible ways to prevent it, because its impact on coral reef health has exploded.

“Twenty years ago you had to look pretty hard to find any occurrences of this disease, and now it’s everywhere,” said Nitzan Soffer, a doctoral student in the Department of Microbiology at OSU and lead author on a new study just published in the International Society for Microbial Ecology. “It moves fast and can wipe out a small coral colony in a few days.

“In recent years the white plague has killed 70-80 percent of some coral reefs,” Soffer said. “There are 20 or more unknown pathogens that affect corals and in the past we’ve too-often overlooked the role of viruses, which sometimes can spread very fast.”

This is one of the first studies to show viral association with a severe disease epidemic, scientists said. It was supported by the National Science Foundation.

Marine wildlife diseases are increasing in prevalence, the researchers pointed out. Reports of non-bleaching coral disease have increased more than 50 times since 1965, and are contributing to declines in coral abundance and cover.

White plague is one of the worst. It causes rapid tissue loss, affects many species of coral, and can cause partial or total colony mortality. Some, but not all types are associated with bacteria. Now it appears that viruses also play a role. Corals with white plague disease have higher viral diversity than their healthy counterparts, the study concluded.

Increasing temperatures that stress corals and make them more vulnerable may be part of the equation, because the disease often appears to be at its worst by the end of summer. Overfishing that allows more algae to grow on corals may help spread pathogens, researchers said, as can pollution caused by sewage outflows in some marine habitats.

Viral infection, by itself, does not necessarily cause major problems, the researchers noted. Many healthy corals are infected with herpes-like viruses that are persistent but not fatal, as in many other vertebrate hosts, including humans.

Media Contact: 
Source: 
Multimedia Downloads
Multimedia: 

Coral disease

Coral with white plague


Marine research

Taking samples

Oregon Hatchery Research Center to host open house, festival

CORVALLIS, Ore – The Oregon Hatchery Research Center will hold its annual Fall Creek Festival on Saturday, Nov. 1, from 10 a.m. to 4 p.m.

The center, which is jointly operated by the Oregon Department of Fish and Wildlife and the Oregon State University Department of Fisheries and Wildlife, is located 13 miles west of Alsea on Highway 34. The event is free and open to the public.

The center is an important research site for studying similarities and differences between hatchery-raised and wild salmon and steelhead. It is located on Fall Creek, a tributary of the Alsea River.

“There has been a strong run of salmon this year throughout the Northwest, and festival participants should have an opportunity to view a number of fish,” said David Noakes, a professor of fisheries at OSU and science director for the center.

A free lunch will be provided during the festival, which also includes a number of children’s activities and workshops. Workshops begin at both 10:30 a.m. and 2 p.m., with topics including fish printing, water color painting, wire wrap jewelry-making, salmon cycle jewelry, bird house building, and stamping.

Registration for the festival is required since space is limited. Call 541-487-5512, or email oregonhatchery.researchcenter@state.or.us

Media Contact: 
Source: 

David Noakes, 541-737-1953, david.noakes@oregonstate.edu

Coast conference to explore marine issues

FLORENCE, Ore. – The State of the Coast conference will be held in Florence on Oct. 25, a program designed to bring coastal citizens, business leaders and local government representatives together with scientists and students to explore the current and future state of Oregon’s marine environment.

The day-long event will be at the Florence Events Center, 715 Quince St. It is open to the public, and registration fees are $35 for general admission, $25 for students. Registration opens at 8 a.m. and sessions start at 9 a.m. Lunch is included.

Built on a rich, 10-year history as the Heceta Head Coastal Conference, the 2014 State of the Coast is now being organized by Oregon Sea Grant at Oregon State University. It features a keynote address by Paul Greenberg, the James Beard Award-winning author of the best-selling "Four Fish” and "American Catch" books about seafood and ocean sustainability.

The program includes talks and panel discussions about new marine research, a report on sea star wasting syndrome, coastal seafood cooking demonstrations and a debate featuring OSU fisheries and wildlife students considering the question "Should Oregon promote wave and wind energy in our coastal waters?"

Attendees will have a chance to learn about some of the graduate and undergraduate ocean and coastal research going on at OSU and elsewhere, and talk informally with the young scientists.  More information and registration is available online at http://www.stateofthecoast.com/

Media Contact: 
Source: 

Flaxen Conway, 541-737-1339

Multimedia Downloads
Multimedia: 

Wave Energy

Wave energy testing device

Iron, steel in hatcheries may distort magnetic “map sense” of steelhead

CORVALLIS, Ore. – Exposure to iron pipes and steel rebar, such as the materials found in most hatcheries, affects the navigation ability of young steelhead trout by altering the important magnetic “map sense” they need for migration, according to new research from Oregon State University.

The exposure to iron and steel distorts the magnetic field around the fish, affecting their ability to navigate, said Nathan Putman, who led the study while working as a postdoctoral researcher in the Department of Fisheries and Wildlife, part of OSU’s College of Agricultural Sciences.

Just last year Putman and other researchers presented evidence of a correlation between the oceanic migration patterns of salmon and drift of the Earth’s magnetic field. Earlier this year they confirmed the ability of salmon to navigate using the magnetic field in experiments at the Oregon Hatchery Research Center. Scientists for decades have studied how salmon find their way across vast stretches of ocean.

“The better fish navigate, the higher their survival rate,” said Putman, who conducted the research at the Oregon Hatchery Research Center in the Alsea River basin last year. “When their magnetic field is altered, the fish get confused.”

Subtle differences in the magnetic environment within hatcheries could help explain why some hatchery fish do better than others when they are released into the wild, Putman said. Stabilizing the magnetic field by using alternative forms of hatchery construction may be one way to produce a better yield of fish, he said.

“It’s not a hopeless problem,” he said. “You can fix these kinds of things. Retrofitting hatcheries with non-magnetic materials might be worth doing if it leads to making better fish.”

Putman’s findings were published this week in the journal Biology Letters. The research was funded by Oregon Sea Grant and the Oregon Department of Fish and Wildlife, with support from Oregon State University. Co-authors of the study are OSU’s David Noakes, senior scientist at the Oregon Hatchery Research Center, and Amanda Meinke of the Oregon Hatchery Research Center.

The new findings follow earlier research by Putman and others that confirmed the connection between salmon and the Earth’s magnetic field. Researchers exposed hundreds of juvenile Chinook salmon to different magnetic fields that exist at the latitudinal extremes of their oceanic range.

Fish responded to these “simulated magnetic displacements” by swimming in the direction that would bring them toward the center of their marine feeding grounds. In essence, the research confirmed that fish possess a map sense, determining where they are and which way to swim based on the magnetic fields they encounter.

Putman repeated that experiment with the steelhead trout and achieved similar results. He then expanded the research to determine if changes to the magnetic field in which fish were reared would affect their map sense. One group of fish was maintained in a fiberglass tank, while the other group was raised in a similar tank but in the vicinity of iron pipes and a concrete floor with steel rebar, which produced a sharp gradient of magnetic field intensity within the tank. Iron pipes and steel reinforced concrete are common in fish hatcheries.

The scientists monitored and photographed the juvenile steelhead, called parr, and tracked the direction in which they were swimming during simulated magnetic displacement experiments. The steelhead reared in a natural magnetic field adjusted their map sense and tended to swim in the same direction. But fish that were exposed to the iron pipes and steel-reinforced concrete failed to show the appropriate orientation and swam in random directions.

More research is needed to determine exactly what that means for the fish. The loss of their map sense could be temporary and they could recalibrate their magnetic sense after a period of time, Putman said. Alternatively, if there is a critical window in which the steelhead’s map sense is imprinted, and it is exposed to an altered magnetic field then, the fish could remain confused forever, he said.

“There is evidence in other animals, especially in birds, that either is possible,” said Putman, who now works for the National Oceanic and Atmospheric Administration. “We don’t know enough about fish yet to know which is which. We should be able to figure that out with some simple experiments.”

Media Contact: 
Source: 

Nathan Putman, 205-218-5276 or Nathan.putman@gmail.com; or David Noakes, 541-737-1953, David.noakes@oregonstate.edu

Marine Science Day: An opportunity to explore behind-the-scenes

NEWPORT, Ore. – Oregon State University’s Hatfield Marine Science Center will host its popular Marine Science Day on Saturday, April 12, offering the public an opportunity to meet many of the scientists working at the research facility, as well as take tours and explore the exhibits.

The center also will commemorate the 25th anniversary of the Coastal Oregon Marine Experiment Station (COMES), which is the nation’s first Experiment Station dedicated to marine sciences.

The activities are free and open to the public, running from 10 a.m. to 4 p.m. at the Hatfield Center, located at 2030 S.E. Marine Science Drive in Newport, just south of the Highway 101 bridge over Yaquina Bay. An online schedule of events is available at: hmsc.oregonstate.edu/marinescienceday

The event will feature scientists and educators from OSU, federal and state agencies, Oregon Coast Aquarium, and the NOAA Marine Operations Center-Pacific. It is a chance for the public to explore one of the nation’s leading marine science and education centers.

Visitors can tour the research facilities of the Hatfield Marine Science Center, and see genetics laboratories, animal husbandry areas, and get a close-up view of ongoing research projects. Interactive research exhibits will feature larval fish ecology, bioacoustics of whales, volcanoes and deep ocean vents, and oceanographic tools such as a glider to study low-oxygen on the West Coast. Activities for children include a Bird Beak Buffet from the U.S. Fish and Wildlife Service, and the Mystery Fossil Dig by Oregon Sea Grant. Scheduled events include:

  • 10 a.m. – The open house begins, lasting until 4 p.m.
  • 11 a.m. – “Pumped up for Pinnipeds: Seals and Sea Lions of the Oregon Coast,” a presentation by Oregon Coast Aquarium staff, Hennings Auditorium (repeated at 2 p.m.);
  • 1:30 p.m. – Octopus feeding in the Visitor’s Center;
  • 3 p.m. – “A Food Chain of Fisheries Research: The Amazing Story of Oregon’s Marine Experiment Station,” a presentation by Gil Sylvia, director of COMES; Terry Thompson, a commercial fisherman, county commissioner and COMES board member; and Michael Morrissey, director of the Food Innovation Center in Portland. State Sen. Arnie Roblan will introduce the speakers.

The Coastal Oregon Marine Experiment Station is located in both Newport and Astoria. Researchers in Newport focus on fishery policy and management, marketing, fish stock assessment, aquaculture, ecology, genetics and marine mammal conservation. Astoria researchers at the OSU Seafood Laboratory work on seafood science, processing, safety and innovation.

Media Contact: 
Source: 

Maryann Bozza, 541-867-0234; maryann.bozza@oregonstate.edu