marine science and the coast

Survey: Oyster industry more sold on ocean acidification impacts than public

CORVALLIS, Ore. – Although some people in the general public remain skeptical about the impacts of ocean acidification, a growing number of professionals who make their living off the ocean have become believers.

A newly published survey found that more than 80 percent of respondents from the United States shellfish industry on the West Coast are convinced that acidification is having consequences – a figure more than four times higher than that of public perception, researchers say. About half of the people in the industry report having already experienced some impact from acidification.

Results of the study, led by researchers at Oregon State University, are being published this week in the Journal of Shellfish Research. It was funded by Oregon Sea Grant.

“The shellfish industry recognizes the consequences of ocean acidification for people today, people in this lifetime, and for future generations – to a far greater extent than the U.S. public,” said Rebecca Mabardy, a former OSU graduate student and lead author on the study. “The good news is that more than half of the respondents expressed optimism – at least, guarded optimism – for the industry’s ability to adapt to acidification.”

The mechanisms causing ocean acidification are complex and few in the shellfish industry initially understood the science behind the issue, noted George Waldbusser, an OSU marine ecologist who has worked with Northwest oyster growers on mitigating the effects of ocean acidification. However, he added, many have developed a rather sophisticated understanding of the basic concepts of carbon dioxide impacts on the ocean and understand the risks to their enterprise.

“Many have seen the negative effects of acidified water on the survival of their juvenile oysters – and those who have experienced a direct impact obviously have a higher degree of concern about the issue,” Waldbusser pointed out. “Others are anticipating the effects of acidification and want to know just what will happen, and how long the impacts may last.”

“Because of some of the success we’ve had in helping some hatcheries adapt to changing conditions, there is a degree of optimism that the industry can adapt,” added Waldbusser, who was Mabardy’s mentor in the College of Earth, Ocean, and Atmospheric Sciences at OSU.

Waldbusser’s colleague Burke Hales has worked with the Whiskey Creek Shellfish Hatchery and others to create a chemical monitoring and treatment regimen for seawater. Waldbusser’s research has shown there is a fine line in how quickly larval oysters must develop their shell at a stage when they are most vulnerable to the corrosiveness of acidified water.

Shellfish industry leaders were asked who should take the lead in responding to the challenges of acidification and their strong preference was the shellfish industry itself, followed by academic researchers. A majority said that any governmental regulations should be led by federal agencies, followed by the state and then local government.

“As a whole, the industry felt that they should be working closely with the academic community on acidification issues,” Waldbusser said. “In the spirit of full disclosure, there were some people who reported a distrust of academics – though without any specifics – so we clearly have some work to do to establish credibility with that subset of the industry.”

Among the other findings:

  • Of those respondents who said they have been affected by ocean acidification, 97 percent reported financial damage, while 68 percent cited emotional stress.
  • The level of concern reported by industry was: 36 percent, extremely concerned; 39 percent, very concerned; 20 percent, somewhat concerned; 4 percent, not too concerned; and 1 percent, not at all concerned.
  • Most respondents felt that ocean acidification was happening globally (85 percent), along the U.S. West Coast (86 percent), and in their local estuary (84 percent).

“One thing that came out of this survey is that we learned that not only is the shellfish industry experiencing and acknowledging ocean acidification,” Mabardy said, “they are committed to learning about the issue and its implications for their business. They want to share their insights as they are forced into action.”

“The next step is to continue shifting conversations about ocean acidification from acknowledgement of the problem, toward solution-oriented strategies,” she added.

Since graduating from OSU, Mabardy has worked at Taylor Creek Shellfish Hatchery in Washington and is now beginning a position as the outreach and project coordinator for the Pacific Coast Shellfish Growers Association.

Story By: 

George Waldbusser, 541-737-8964, waldbuss@coas.oregonstate.edu;

Becky Mabardy, beckymabardy@gmail.com

Multimedia Downloads




George Waldbusser (near) and Burke Hales of OSU work with the oyster industry on acidification monitoring and mitigation. Photo link: https://flic.kr/p/xn83LK









George Waldbusser (left) and Burke Hales.



Industry leaders are concerned about the impact of ocean acidification on oysters.

OSU ranked third nationally in best places to study natural resources

CORVALLIS, Ore. – Oregon State University is ranked third by College Factual in its ranking of “Best Places to Study Natural Resources and Conservation.”

OSU is the only Northwest school on the list. Virginia Tech is ranked No. 1 nationally, followed by the University of Florida at No. 2. Fellow Pacific-12 Conference institution University of California is ranked seventh, while nearby University of California-Davis is eighth.

Oregon State has a national reputation for it natural resource programs. In recent years, it was ranked No. 1 in the nation in conservation biology by the journal, Conservation Biology. The Chronicle of Higher Education recently has ranked the university’s wildlife science program at tops in the nation, and its fisheries science program, second nationally.

The university also has been ranked ninth in the world by QS World University Rankings for its agriculture and forestry programs, which are a significant part of OSU’s natural resources curriculum.

College Factual is a ranking service begun in 2013 that uses outcomes-based data to help guide students in their college selection process. It uses data from the Department of Education and elsewhere to rank programs on overall excellence, affordability, graduation rates, and success of graduates finding jobs.

“Being ranked so highly at a national level is validation for the strong programs we have across the university that educate students and conduct research in the natural resources and conservation areas,” said Selina Heppell, interim head of OSU’s Department of Fisheries and Wildlife in the College of Agricultural Sciences.

“It’s important to recognize the numerous partners we have – on campus and at our Hatfield Marine Science Center in Newport,” she added. “Many of the scientists from state and federal agencies teach and mentor OSU students, providing invaluable experiential learning that really separates Oregon State from many other universities.”


Story By: 

Selina Heppell, 541-737-9039

Researchers studying Oregon’s “resident population” of gray whales

NEWPORT, Ore. – Every year, some 20,000 gray whales migrate between the breeding lagoons of Baja, Mexico, and the bountiful feeding grounds off British Columbia and Alaska, often passing close to shore along the Northwest coast – creating a popular tourist attraction.

For some reason, however, about 200 of these whales annually cut short their northern migration, opting instead to cavort along the coastline from northern California to Washington throughout much of the summer. Although they don’t live year-round off the Northwest coast, they are known informally as Oregon’s “resident” gray whales.

Scientists don’t know as much as they’d like about our ocean-dwelling neighbors, thus a team of researchers from Oregon State University, led by master’s student Florence van Tulder, aims to learn more. She is leading a project this summer to spot gray whales that like to frequent the Oregon coast, track their movements and behavior, and compare them with photo archives in an attempt to identify individual whales.

As part of the study, the OSU researchers will also monitor activities of commercial, charter and recreational fishing boats – as well as whale-watching vessels – to determine if they have an effect on the whales’ behavior.

“Our goal is not to curtail boat use in waters near whales, but to develop a list of best-practices that we can share with the fishing and whale-watching industries,” said van Tulder, who is a student in OSU’s Department of Fisheries and Wildlife in OSU’s College of Agricultural Sciences. “We’d like to learn more about these whales and better understand how and where they feed along the Oregon coast.”

For the next several weeks, van Tulder and her research team will set up viewing locations at two popular waysides – Port Orford and Boiler Bay State Park near Depoe Bay. There they will use a surveyor’s instrument called a theodolite to track and map the movement of individual whales at a fine scale as they forage. The data collected will tell them how the whales use different areas, how they search for food patches, and how they interact with vessels.

During the team’s first week at Boiler Bay, they spotted a whale with overlapping spots on its tail that they nicknamed ‘Mitosis.’ The whale did a quick “drive-by” and left the study area, but returned two days later and foraged for more than three hours in one small area of just a few hundred yards. The following day, Mitosis arrived again and didn’t stay as long, but covered a much broader area.

“We think the reason they’re attracted to these foraging hotspots along the Oregon coast is an abundance of mysid shrimp,” van Tulder said. “During summer months, the mysid can be really dense, from the seafloor to the surface, and really close to the shore. We want to know if this wealth of foraging is enough to get them to disrupt their migration north. Or is there some other mechanism at work that makes 200 whales act differently than the other 20,000? That’s what we hope to find out.

“There’s also the question of how they even locate the shrimp,” she added. “Gray whales don’t use echo-location, so how do these whales search for and find dense prey patches? It may be possible that this knowledge is passed along from mother to calf among this population subset.”

Gray whales are one of the few endangered species success stories, scientists say. The population of eastern gray whales has recovered from the exploitation of 20th-century whaling to become robust. Their near-shore migration has spawned a new industry of whale-watching along the Oregon coast that in 2009 was worth an estimated $29 million – a figure likely higher today.

Leigh Torres, an OSU whale specialist with the Marine Mammal Institute who is van Tulder’s mentor for the project, said the work done this summer by the student research team will help scientists learn more about how the whales use their habitat – and interact with humans.

“There is still a lot we don’t know about these whales, so the fine-scale tracking of their feeding behavior, with concurrent tracks of vessels, will be very enlightening,” Torres said. “We’d like to know more about how gray whale foraging strategies differ between the two study sites or when there is a dependent calf, or multiple whales are around.

“We’re also interested in how the whales behave when there are boats in the vicinity,” Torres added. “Are there behavior differences based on boat traffic and composition? Whales might react to some boats, but perhaps not others based on speed, approach, motor type, etc. We hope to give back to the whale and fishing industries what we’ve learned so they can establish their own guidelines about how close to get to whales so they can maintain a profitable business and the whales can continue to utilize the habitat.”

Federal law prohibits boats from approaching within 100 yards of whales.

The researchers also are interested in whether other gray whales may be joining the group of 200.

“It’s possible that other gray whales historically did what this population subset is doing now, but got away from it for some reason,” she said. “Or it may be that some whales are just opportunistic and want to stick around and chow down on the shrimp. With a long-term study, we hope to find out.”

van Tulder and her research team will alternate between Port Orford and Boiler Bay through mid-September and welcome interaction from the public.

Story By: 

Florence van Tulder, 206-491-1166, vantuldf@onid.oregonstate.edu;

Leigh Torres, 541-867-0895, leigh.torres@oregonstate.edu 

Multimedia Downloads





Photo link: https://flic.kr/p/wCuxYM










The OSU research team at Port Orford.

Northwest residents should channel fear of earthquake into pragmatic action

CORVALLIS, Ore. – A national news article suggesting that everything in Oregon west of Interstate-5 “would be toast” in a major Cascadia Subduction Zone earthquake certainly drew attention to the seismic reality facing the Pacific Northwest.

The concern, though, is that people are focusing on the most draconian or extreme scenarios, experts say, which can lead to a sense of fatalism. The reaction illustrates the state of earthquake and tsunami preparedness – or lack thereof – in the United States, said Patrick Corcoran, a Sea Grant education and outreach specialist at Oregon State University who works with coastal communities on disaster preparedness.

It’s a matter of feast or famine.

“The Cascadia Subduction Zone has shifted from a science project to a social studies project,” Corcoran said. “We need to find a sweet spot between fear and action. What I try to do is temper the tendency of people to toggle between the poles of ‘it won’t happen here’ and ‘it will be so bad that there’s no use worrying about it.’”

Oregon has been taking some of the first serious steps toward earthquake mitigation, said Scott Ashford, dean of OSU’s College of Engineering and chair of governor-appointed task force on preparation. Recent legislation has resulted in a large increase in funding for K-12 and emergency facility seismic retro-fitting, as well as the creation of a new position – the state’s first Chief Resilience Officer.

Oregon is also working on some of the first tsunami building codes, which likely will be implemented over the next few years.

Oregon State University scientists have been warning Pacific Northwest citizens for more than a quarter of a century about the potential of a major earthquake in the Cascadia Subduction Zone. The subduction of a tectonic plate beneath North America has the potential to trigger an earthquake ranging from  magnitude 8.0, as happened in Chile in 2010, to 9.0 (or greater), which took place in Japan in 2011.

Scientists believe that a magnitude 9.0-plus earthquake, which Corcoran calls “the largest of the large,” would likely trigger a tsunami that could devastate coastal communities, while the earthquake could destroy infrastructure throughout western Oregon and Washington, including roads, bridges, water and sewer lines, and the power grid.

However, he added, the more probable scenario is an earthquake on “the average side of large,” where the damage is less. The best response isn’t necessarily to flee the region, Corcoran said, but to become pro-active in preparing for a disaster.

As residents in Japan, Nepal, Chile and other countries have done, Northwesterners need to learn to live with the realistic threat of an earthquake and tsunami – not ignore the threat and hope they don’t happen.

The best approach, Corcoran says, is to prepare for the “most likely next event” – and that doesn’t necessarily mean the destruction of western Oregon as we know it.

“We don’t insist on the worst-case scenario with driving vehicles,” Corcoran said. “We don’t have a zero-tolerance for car fatalities. We try to do our best to identify and mitigate the risks, but we assume a great deal of risk. We don’t require that all cars be able to hit a brick wall at 100 miles per hour and have passengers unharmed. That’s impractical. We need to consider a similar approach with earthquakes.”

Chris Goldfinger, a professor in OSU’s College of Earth, Ocean, and Atmospheric Sciences and a leading expert on the Cascadia Subduction Zone, estimates that the chances of a major earthquake off the coast from northern California to just south of Astoria are about 24 percent in the next 50 years. “South of Cape Blanco, Ore., the chances increase to about 37 percent,” he added.

Goldfinger said the furor in news reports and on social media about western Oregon becoming “toast” have been misconstrued. The Federal Emergency Management Agency has to prepare for a worst-case scenario as the starting point for its planning, he said, but that doesn’t mean that experts think western Oregon will be destroyed.

So, how big will the next Northwest earthquake be? No one knows. Thus outreach specialists like Corcoran say the prudent thing to do is plan for a range of events. “Discussing the range and likelihood of the next event can bring some air into the room.”

Corcoran said preparation helped save 90 percent of the 200,000 people in the inundation zone during Japan’s 2011 earthquake and tsunami. The Northwest has a much smaller coastal population, he added. On the other hand, Japan was much more prepared for disaster.

“We have to prepare commensurate with the risk,” Corcoran said. “Our society tends to be dismissive of preparation, especially evacuation drills. They are silly, they are embarrassing and it’s usually raining. The only people who actually do drills are high schools and hospitals because they are required to. But drills save lives, as they learned in Japan.”

Communities and individuals can prepare for natural disasters by understanding that they eventually will happen. Once you accept that and actually expect it, Corcoran said, preparation becomes second nature. Strap down water heaters, learn where the shutoff valve for natural gas may be in your house, and have several days of food and water available, he added.

People on the coast living in inundation zones should identify areas of high ground near their homes, work and recreation areas. “Work locally to make them accessible,” Corcoran said, “then conduct practice drills on how to get to them.”

OSU engineering dean Ashford is spearheading an initiative called the Cascadia Lifeline Project that is organizing public utilities, transportation agencies, and others to begin work on how to prepare for life after a major earthquake. Communities need to think about restoring vital services after an earthquake, including power, water, sewer and others.

Ashford testified to Congress in May about the need for public agencies, private businesses and individuals to develop the resilience to withstand an earthquake. He urged Congress to support three federal initiatives:

  • Invest in more resilient transportation networks that will be critical to rescue, relief and recovery efforts following a natural disaster;
  • Partner with states to require seismic resilience of federally regulated utilities that transport liquid fuel through pipelines and supply the majority of a state’s population, such as in Oregon;
  • Invest in applied research to improve earthquake resilience.

“It will take 50 years for us to fully prepare for this impending earthquake,” Ashford said. “We can’t simply go out and replace all of our existing infrastructure. But we can start now, and we can begin to find ways to better retro-fit, replace or repair things after an earthquake.”

Corcoran said most people are not tuned into long-term threats like300-year earthquake cycles. Since people in the Pacific Northwest only recently learned about this major recurring natural disaster, it is natural for some to feel blindsided by the knowledge and not fully embrace it, he added.

Recent media attention has wakened some people to the idea of an earthquake, but it is critical to channel that awareness into positive action, he said.

“As good as our local emergency officials are, they will be overwhelmed by the sheer magnitude of the circumstances when a major earthquake takes place,” Corcoran said. “Preparation must begin with the individual, then focus on mutual aid among neighbors, and finally on public aid and assistance. Businesses, too, must support the safety of their employees and customers.”

Story By: 

Pat Corcoran, 503-325- 8573, Patrick.corcoran@oregonstate.edu;

Chris Goldfinger, 541-737-5214, gold@coas.oregonstate.edu;

Scott Ashford, 541-737-5232, scott.ashford@oregonstate.edu

Multimedia Downloads


Scott Ashford measures ground upheaval in Japan.


Toppled building in Concepcion

An earthquake-toppled building in Chile.



Patrick Corcoran works with coastal communities.



Researchers conclude popular rockfish is actually two distinct species

CORVALLIS, Ore. – A new analysis confirms that the Blue Rockfish (Sebastes mystinus), a popular and commercially significant rockfish sought by anglers primarily off the California and Oregon coasts, is actually two separate and distinct species.

Previous studies had discovered some genetic differences between two groups of Blue Rockfishes, but their status as distinct species had never been proven until researchers at Oregon State University, the Oregon Department of Fish and Wildlife, and the California State University, Los Angeles, demonstrated distinguishing differences in anatomy, coloration, geographic distribution and genetics.

Results of the study have been published in the Fishery Bulletin.

“Various researchers have written about the Blue Rockfish for years but it has never been morphologically described as two separate species,” said Ben Frable, an OSU graduate student in the Department of Fisheries and Wildlife and lead author on the study.  “There are physical, genetic, and apparent behavioral differences between the two species.”

Frable and his team named the newly described species Deacon Rockfish (Sebastes diaconus) – a tribute to the nickname given Blue Rockfish by Portuguese fishermen around San Francisco in the 19th century. They called it the “priest fish” because the white bands around its head resembled a clerical collar.

D. Wolfe Wagman, a marine biologist with ODFW and co-author on the study, said the discovery may in the future alter how resource managers approach rockfish harvest regulations, which have been partially restricted in 2015.

Under a federally established management system, Blue Rockfish are counted as a single species belonging to the “minor near-shore rockfish complex,” which saw significant reductions in allowable harvest in 2015. In addition to Blue Rockfish, this complex of 11 species includes China, Quillback and Copper rockfishes – all three of which cannot be legally harvested by recreational fishers in Oregon this year – thus concentrating angling efforts on Black and Blue rockfishes, Wagman said.

“Black Rockfish are the major target of the complex and have a separate quota, set at 440 metric tons,” Wagman said. “But the Blue Rockfish quota is much lower and ODFW is concerned that if fishing efforts exceed that quota, then all groundfish fishing would have to stop in Oregon because even incidental catch and release of Blue Rockfish would exceed the quota.”

However, the discovery of the new Blue Rockfish species throws a different wrinkle into the equation. The original species, Sebastes mystinus, is more prevalent in California, while the newly identified Deacon Rockfish is found from northern California all the way to the Salish Sea near Vancouver, B.C.

Both groups are found off the Oregon coast.

“This may eventually lead to separate quotas, but as of now – as long as they are still categorized in the ‘minor near-shore rockfish complex’ – they have to be managed as one group with China, Quillback, Copper and other rockfishes in the complex,” Wagman said.

Brian Sidlauskas, an OSU ichthyologist and the university’s Curator of Fishes, said there is no reason to believe that either species of Blue Rockfish is endangered, but that population surveys need to be done.

“The original Blue Rockfish (Sebastes mystinus) is considered exploited in parts of California, but the Deacon Rockfish seems fairly robust from Oregon northward,” Sidlauskas said. “In some areas, you find the two species together, yet we haven’t seen any evidence of hybridization.”

Wagman approached Sidlauskas in 2012 and asked him to formally study the taxonomy of the Blue Rockfish. Andres Aguilar, a fish scientist from California State University, Los Angeles, who had participated in some of the earlier genetic analysis, joined the team as did Frable, who was tasked with examining the historical record, including preserved specimens housed in ichthyological collections throughout the U.S. and Canada.

Those records date back to the 1800s and Frable examined 130 museum specimens collected from Vancouver Island to northern Baja Mexico to look for differences and similarities in fish caught over the past century. To formally “describe” the two species, Frable and colleagues measured their spines, scales, eye width, dorsal fin length, tip-to-tail length, and other characteristics; and quantified differences in body shape, proportion and growth. Some of the 35 measurements were clearly distinct between the species.

“There are also some possible differences that may require more research,” Frable said. “In talking with port samplers, it seems like Deacon Rockfish are caught in slightly deeper waters, while the original Blue Rockfish is more often found closer to shore. That could prove to be helpful from a management standpoint.”

Sidlauskas said the research underscores the importance of preserving historical collections of fishes and other species.

“Ben had access to a network of ichthyology collections that provide a wealth of data over time and space,” he pointed out. “Some of these fish were preserved 120 to 130 years ago, and that historical perspective is invaluable in providing context for what we see today.”

Story By: 

Ben Frable, 240-401-9858, bwfrable@gmail.com;

Brian Sidlauskas, 541-737-6789, brian.sidlauskas@oregonstate.edu;

Wolfe Wagman, 541-867-0300, ext. 289, david.w.wagman@state.or.us

Multimedia Downloads

Old species alive

Original species of Blue Rockfish



Newly identified Deacon Rockfish

OSU researchers discover the unicorn – seaweed that tastes like bacon!

NEWPORT, Ore. – Oregon State University researchers have patented a new strain of a succulent red marine algae called dulse that grows extraordinarily quickly, is packed full of protein and has an unusual trait when it is cooked.

This seaweed tastes like bacon.

Dulse (Palmaria sp.) grows in the wild along the Pacific and Atlantic coastlines. It is harvested and usually sold for up to $90 a pound in dried form as a cooking ingredient or nutritional supplement. But researcher Chris Langdon and colleagues at OSU’s Hatfield Marine Science Center have created and patented a new strain of dulse – one he has been growing for the past 15 years.

This strain, which looks like translucent red lettuce, is an excellent source of minerals, vitamins and antioxidants – and it contains up to 16 percent protein in dry weight, Langdon said.

“The original goal was to create a super-food for abalone, because high-quality abalone is treasured, especially in Asia,” Langdon pointed out. “We were able to grow dulse-fed abalone at rates that exceeded those previously reported in the literature. There always has been an interest in growing dulse for human consumption, but we originally focused on using dulse as a food for abalone.”

The technology of growing abalone and dulse has been successfully implemented on a commercial scale by the Big Island Abalone Corporation in Hawaii.

Langdon’s change in perspective about dulse was triggered by a visit by Chuck Toombs, a faculty member in OSU’s College of Business, who stopped by Langdon’s office because he was looking for potential projects for his business students. He saw the dulse growing in bubbling containers outside of Langdon’s office and the proverbial light went on.

“Dulse is a super-food, with twice the nutritional value of kale,” Toombs said. “And OSU had developed this variety that can be farmed, with the potential for a new industry for Oregon.”

Toombs began working with OSU’s Food Innovation Center in Portland, where a product development team created a smorgasbord of new foods with dulse as the main ingredient. Among the most promising were a dulse-based rice cracker and salad dressing.

The research team received a grant from the Oregon Department of Agriculture to explore dulse as a “specialty crop” – the first time a seaweed had made the list, according to Food Innovation Center director Michael Morrissey.

That allowed the team to bring Jason Ball onto the project. The research chef previously had worked with the University of Copenhagen’s Nordic Food Lab, helping chefs there better use local ingredients.

“The Food Innovation Center team was working on creating products from dulse, whereas Jason brings a ‘culinary research’ chef’s perspective,” said Gil Sylvia, director of the Coastal Oregon Marine Experiment Station at OSU’s Hatfield Marine Science Center in Newport. “The point that he and other chefs make is that fresh, high-quality seaweed is hard to get. ‘You bring us the seaweed,’ they say, ‘and we’ll do the creative stuff.’”

Several Portland-area chefs are now testing dulse as a fresh product and many believe it has significant potential in both its raw form and as a food ingredient.

Sylvia, who is a seafood economist, said that although dulse has great potential, no one has yet done a full analysis on whether a commercial operation would be economically feasible. “That fact that it grows rapidly, has high nutritional value, and can be used dried or fresh certainly makes it a strong candidate,” he said.

There are no commercial operations that grow dulse for human consumption in the United States, according to Langdon, who said it has been used as a food in northern Europe for centuries. The dulse sold in U.S. health food and nutrition stores is harvested, and is a different strain from the OSU-patented variety.

“In Europe, they add the powder to smoothies, or add flakes onto food,” Langdon said. “There hasn’t been a lot of interest in using it in a fresh form. But this stuff is pretty amazing. When you fry it, which I have done, it tastes like bacon, not seaweed. And it’s a pretty strong bacon flavor.”

The vegan market alone could comprise a niche.

Langdon, a professor in the Department of Fisheries and Wildlife at OSU and long-time leader of the Molluscan Broodstock Program, has two large tanks in which he can grow about 20-30 pounds of dulse a week. He has plans to up the production to 100 pounds a week. For now, they are using the dulse for research at the Food Innovation Center on dulse recipes and products.

However, Toombs’ MBA students are preparing a marketing plan for a new line of specialty foods and exploring the potential for a new aquaculture industry.

“The dulse grows using a water recirculation system,” Langdon said. “Theoretically, you could create an industry in eastern Oregon almost as easily as you could along the coast with a bit of supplementation. You just need a modest amount of seawater and some sunshine.”

The background of how Langdon and his colleagues developed dulse is outlined in the latest version of Oregon’s Agricultural Progress at : http://bit.ly/1fo9Doy

Story By: 

Chris Langdon, 541-867-0231, chris.langdon@oregonstate.edu;  Chuck Toombs, 541-737-4087, Charles.Toombs@oregonstate.edu;

Michael Morrisey, 503-872-6656, Michael.Morrissey@oregonstate.edu;  Gil Sylvia, 541-867-0284, gil.sylvia@oregonstate.edu

Multimedia Downloads


Dulse in its seaweed form


Dulse prepared in a dish


Chris Langdon near a vat of growing dulse

Study: Global sea levels have risen six meters or more with just slight global warming

CORVALLIS, Ore. – A new review analyzing three decades of research on the historic effects of melting polar ice sheets found that global sea levels have risen at least six meters, or about 20 feet, above present levels on multiple occasions over the past three million years.

What is most concerning, scientists say, is that amount of melting was caused by an increase of only 1-2 degrees (Celsius) in global mean temperatures.

Results of the study are being published this week in the journal Science.

“Studies have shown that both the Greenland and Antarctic ice sheets contributed significantly to this sea level rise above modern levels,” said Anders Carlson, an Oregon State University glacial geologist and paleoclimatologist, and co-author on the study. “Modern atmospheric carbon dioxide levels are today equivalent to those about three million years ago, when sea level was at least six meters higher because the ice sheets were greatly reduced.

“It takes time for the warming to whittle down the ice sheets,” added Carlson, who is in OSU’s College of Earth, Ocean and Atmospheric Sciences, “but it doesn’t take forever. There is evidence that we are likely seeing that transformation begin to take place now.”

Co-author Peter Clark, an OSU paleoclimatologist, said that because current carbon dioxide, or CO2, levels are as high as they were 3 million years ago, “we are already committed to a certain amount of sea level rise.”

“The ominous aspect to this is that CO2 levels are continuing to rise, so we are entering uncharted territory,” Clark said. “What is not as certain is the time frame, which is less well-constrained. We could be talking many centuries to a few millennia to see the full impact of melting ice sheets.”

The review, which was led by Andrea Dutton of the University of Florida, summarized more than 30 years of research on past changes in ice sheets and sea level. It shows that changes in Earth’s climate and sea level are closely linked, with only small amounts of warming needed to have a significant effect on seal levels. Those impacts can be significant.

Six meters (or about 20 feet) of sea level rise does not sound like a lot. However, coastal cities worldwide have experienced enormous growth in population and infrastructure over the past couple of centuries – and a global mean sea level rise of 10 to 20 feet could be catastrophic to the hundreds of millions of people living in these coastal zones.

Much of the state of Florida, for example, has an elevation of 50 feet or less, and the city of Miami has an average elevation of six feet. Parts of New Orleans and other areas of Louisiana were overcome by Hurricane Katrina – by a surging Gulf of Mexico that could be 10 to 20 feet higher in the future. Dhaka in Bangladesh is one of the world’s 10 most populous cities with 14.4 million inhabitants, all living in low-lying areas. Tokyo and Singapore also have been singled out as extremely vulnerable to sea level rise.

“The influence of rising oceans is even greater than the overall amount of sea level rise because of storm surge, erosion and inundation,” said Carlson, who studies the interaction of ice sheets, oceans and the climate system on centennial time scales. “The impact could be enormous.”

The Science review is part of the larger Past Global Changes, or PAGES, international science team. A working group known as PALSEA2 (Paleo constraints on sea level rise) used past records of local change in sea level and converted them to a global mean sea level by predicting how the surface of the Earth deforms due to changes in ice-ocean loading of the crust, along with changes in gravitational attraction on the ocean surface.

Independently, Greenland and Antarctic ice sheet volumes were estimated by observations from adjacent ocean sediment records and by ice sheet models.

“The two approaches are independent of one another, giving us high confidence in the estimates of past changes in sea level,” Carlson said.  The past climates that forced these changes in ice volume and sea level were reconstructed mainly from temperature-sensitive measurements in ocean cores from around the globe, and from ice cores.

The National Science Foundation supported the research.

Story By: 

Anders Carlson, 541-737-3625, acarlson@coas.oregonstate.edu;

Peter Clark, 541-737-1247, clarkp@geo.oregonstate.edu

OSU makes plans for expansion at Hatfield Marine Science Center

CORVALLIS, Ore. – The Oregon Legislature has approved $24.8 million in state bonding to help fund a new building at Oregon State University’s Hatfield Marine Science Center in Newport that will be a centerpiece for research and education on critical issues facing coastal communities.

The $50 million, 100,000-square-foot facility is an integral part of OSU’s ambitious Marine Studies Initiative, designed to educate students and conduct research on marine-related issues, from rising sea levels and ocean acidification to sustainable fisheries and economic stability.

Oregon State officials plan to begin construction on the new building in 2016/17 and open as early as 2018. The OSU Foundation will raise an additional $40 million in private funding for the Marine Studies Initiative – $25 million to match state funds for the new building and another $15 million to support related programs. Donors have pledged more than 75 percent of the total to date.

Oregon Gov. Kate Brown will need to sign the legislation before it becomes official.

“This is an investment that will benefit not only higher education, but the research needs and the economic vitality for the entire coast,” said OSU President Ed Ray. “The support and leadership of the coastal legislators has been invaluable.”

Coastal legislators include senators Betsy Johnson, Arnie Roblan, and Jeff Kruse; and representatives Wayne Krieger, Caddy McKeown, Deborah Boone and David Gomberg.

“This new building is essential to the university’s goals of expanding education and research on marine-related issues,” said Bob Cowen, director of the Hatfield Marine Science Center. “There are so many critical issues facing coastal communities today – from economic stress tied to variable fish stocks to concerns over tsunamis, ocean acidification, rising sea levels, erosion and others.”

“The expansion is long overdue,” added Cowen, who is co-leader of the Marine Studies Initiative. “Although we’ve added a couple of buildings earmarked for state or federal agencies, it’s been decades since Oregon State has added capacity at the Hatfield Marine Science Center campus.”

Cowen said one area of focus for expansion will the overarching theme of coastal resilience.

“Geology students may come here to study coastal erosion, oceanography students may explore sea level rise, engineers might look at options for coastal buildings that are resistant to tsunamis or tidal surge, and sociologists could lead the way on how communities respond to a disaster,” Cowen said.

The new facility will be located adjacent to the Guin Library on the HMSC campus, which is just east of the Highway 101 bridge over Yaquina Bay in Newport. The location places the facility in close proximity to critically important saltwater laboratories and other HMSC research facilities. It is within the tsunami inundation zone, OSU officials say, though careful consideration went into the siting.

“We are very much aware of the various geological hazards the Pacific Ocean presents and we choose to use the siting as an educational and design opportunity,” Cowen said. “Our focus is on life safety. We believe we can be a model for anticipating a seismic event, and for how to live safely and productively in a tsunami zone. We want to be a showcase for earthquake and tsunami preparedness.”

OSU’s Marine Studies Initiative has set a goal to teach 500 students at the Hatfield center by 2025, and expand research at the facility, which is run by Oregon State and shared by several agencies, including the National Oceanic and Atmospheric Administration, Oregon Department of Fish and Wildlife, the U.S. Fish and Wildlife Service, the U.S. Department of Agriculture, Environmental Protection Agency and the U.S. Geological Survey.

The multiple agencies, along with Hatfield’s saltwater research laboratories and ship operations, make it one of the most important marine science facilities in the country – and the combination provides unique opportunities for OSU students.

“One of the goals of the Marine Studies Initiative is to really broaden various disciplines across the university,” said Jack Barth, associate dean of the College of Earth, Ocean, and Atmospheric Sciences and co-leader of the Marine Studies Initiative. “We’ll still focus on fisheries, marine biology, ocean processes and other science-related issues, but we see some exciting areas into which we could expand including economics, social and public policies, ocean engineering and others.

“In fact, the new marine studies degree will be housed in the College of Liberal Arts,” Barth added.

Cowen said the new facility will enable OSU to expand its teaching and research capacity at Hatfield by 20-25 faculty members. On the research side, principal investigators will work with graduate students, post-doctoral researchers and technicians, further expanding the center’s capacity. “Right now, OSU has about 12-14 research faculty on-site,” Cowen said, “so we’re talking about a significant increase.”

The new building will have several large spaces that will accommodate scientific talks and community workshops focused on marine issues.

The Hatfield Marine Science Center celebrates its 50th anniversary in August. More information on the event is available at http://hmsc.oregonstate.edu/main/50th-anniversary-hmsc

Story By: 

Bob Cowen, 541-867-0211, robert.cowen@oregonstate.edu;

Jack Barth, 541-737-1607, barth@coas.oregonstate.edu

Multimedia Downloads






















OSU’s Hatfield Marine Science Center in Newport, Ore. (click to open)

OSU’s Abbott named president and director of Woods Hole Oceanographic Institution

CORVALLIS, Ore. – Mark Abbott, dean of the College of Earth, Ocean, and Atmospheric Sciences at Oregon State University, has been appointed president and director of the Woods Hole Oceanographic Institution effective Oct. 1.

Abbott, who has been dean of the OSU college since 2001, is a national leader in marine science research and education. He has been a member of the National Science Board, which oversees the National Science Foundation and advises Congress and the president on science issues; and he is past-president of The Oceanographic Society.

“Oregon State has developed into a highly regarded marine science institution with an international reputation in coastal processes, ocean mixing, paleoclimate, geohazards, and ocean biogeochemistry, among other fields,” Abbott said. “The faculty here are extraordinary and it will be difficult to leave.

“Woods Hole Oceanographic Institution is one of the top institutions in the world in ocean science and engineering, and I’m looking forward to this new challenge and opportunity.”

Abbott came to Oregon State in 1988 with a background in using satellites and remote sensing techniques to study biological processes in the oceans. With a 10-year, $10 million grant from NASA, he helped the college create one of the world’s most sophisticated supercomputer networks dedicated to marine science, capable of analyzing enormous amounts of data.

He was named dean of what was then the College of Oceanic and Atmospheric Sciences in 2001 and led significant growth in research funding, graduate education and overall impact. The college has developed a reputation for its work in understanding climate change, analyzing the near-shore oceans, paleoclimatology, and other fields.

“Mark Abbott has led the phenomenal growth of marine sciences at Oregon State and helped establish the university as one of the top such programs in the world,” said Sabah Randhawa, OSU provost and executive vice president. “His leadership will be greatly missed, but the foundation that he helped build will serve the university going forward.”

In 2009, the National Science Foundation announced that OSU would be one of the lead institutions on the $386.4 million Ocean Observatories Initiative that since has established a system of surface moorings, seafloor platforms and undersea gliders to monitor the ocean. One such array is off the coast of Oregon and Washington.

In 2013, the NSF selected Oregon State as the lead institution on a project to finalize the design and coordinate the construction of as many as three new coastal research vessels to bolster the marine science research capabilities of the United States – a project that could bring in as much as $290 million over 10 years if all three vessels are built.

Abbott was appointed in 2006 by President George W. Bush to a six-year term on the National Science Board; and appointed in 2008 by Oregon Gov. Ted Kulongoski as vice chair of the Oregon Global Warming Commission. He is a member of the Board of Trustees for the Consortium for Ocean Leadership as well past member of the Board of Trustees for the University Corporation for Atmospheric Research.

He also is a member of the Board of Trustees for NEON, Inc., which is constructing the National Ecological Observatory Network for the National Science Foundation.

In 2011, Microsoft Research awarded him the Jim Gray eScience Award, which recognizes innovators whose research on data-intensive science – sometimes known as “big data” – is revolutionizing scientific approaches to a wide range of issues.

Prior to joining the OSU faculty, Abbott spent six years as a member of the technical staff at the Jet Propulsion Laboratory in La Jolla, Calif., and was an adjunct faculty member at the Scripps Institution of Oceanography.

He is a 1974 graduate of the University of California-Berkeley, where he received a bachelor’s degree in conservation of natural resources. He also has a Ph.D. in ecology from University of California-Davis.

Randhawa said OSU will begin the process to identify an interim dean and launch a national search for Abbott’s successor in August.

Story By: 

Mark Abbott, 541-737-5195, mark.abbott@oregonstate.edu

Sabah Randhawa, 541-737-2111, Sabah.randhawa@oregonstate.edu;

WHOI Media Relations, 508-289-3340

Multimedia Downloads


Scientists recruit public to help study “The Blob”

CORVALLIS, Ore. – A huge mass of unusually warm water that scientists have dubbed “The Blob” has lurked off the West Coast for much of the past two years and speculation is growing that it may be connected in some way with the drought plaguing West Coast states.

So researchers are planning a new study to see what role The Blob – as well as human-induced climate change – may have played in creating the parched conditions in California, Oregon and Washington.

And they are looking for your help.

The research team plans to run hundreds of variations of computer models to disentangle these causes. The amount of data such a process creates is staggering and could require as many as three supercomputers to generate. Instead, the team will rely on thousands of citizen science volunteers that will let the researchers run simulations during idle times on their personal computers.

This study is part of an umbrella project, climateprediction.net, originally launched by Oxford University in 2003, and joined by researchers at Oregon State University in 2010 to use the combined power of thousands of individual computers to run climate modeling simulations. This latest project is supported by Climate Central, a non-profit climate research and journalism organization.

Anyone interested in participating in the project – or just following the analysis in real-time – can go to http://www.climateprediction.net/weatherathome/western-us-drought

 “It’s a great way for the general public to help the scientific community investigate some of the climate variations we’re seeing,” said Philip Mote, director of the Oregon Climate Change Research Institute at Oregon State University. “It takes about a week to run a year-long unit of climate data and the program is set up to automatically feed the results back to the scientists.”

Scientists don’t yet know “what the answer will be at this point,” said Friederike Otto, who leads the study at Oxford University. “But anyone can go online and watch as the causes of the drought emerge.”

The West Coast drought has ranged from pesky to severe. In California, it has lasted four years and this is the most severe dry spell during the instrumental record, dating back to the late 1800s. Much of the state has suffered a double-whammy of near-record high temperatures and extremely low precipitation. Gov. Jerry Brown declared a drought state of emergency in January.

Oregon is in its second year of drought, and in both years, the issue has been very low snowpack because of warm, mild winters. Almost every county in the state has had a governor-declared drought at some time during the two years.

“It’s been a one-two-three punch here,” Mote said. “We’re getting warm winters, followed by a dry February through April period, and fairly warm but unusually dry summers. In the past, when we’ve had droughts, things look bad initially from a snowpack standpoint, but cool, wet March and April months bailed us out. We’re haven’t gotten those the past two years.”

Washington is in its first year of drought – a result almost exclusively tied to warmer winter temperatures. Just last month, Washington Gov. Jay Inslee declared a statewide drought.

This past period of December 2014 through February 2015 was the warmest on record in western Oregon and Washington. Mountain snowpack was at record low levels throughout much of the past six months in all three states.

“Scientists sometimes call this a ‘wet drought’ because the extremely low snowpack in the Northwest has been caused by unusually high temperatures, not abnormally low precipitation,” said Heidi Cullen, chief scientist with Climate Central and a former climate expert with the Weather Channel. “Winter rain has replaced snow during much of the past two winters.”

Is “The Blob” the culprit in the West Coast drought? No one seems to know for sure whether this warm-water mass, which is hundreds of miles long, is to blame. The Blob, which is about 4 degrees (F) warmer than normal, has appeared during the last two late winters/early springs and lingered for months.

“Four degrees may not sound like much, but that kind of anomaly in the ocean is huge,” said Mote, who is a professor in OSU’s College of Earth, Ocean, and Atmospheric Sciences. “It has many implications, from physical processes in the ocean to biological impacts.”

In mid-June, for example, thousands of red crabs washed ashore in southern California – a phenomenon attributed to The Blob. Oregon and Washington are in the throes of a shutdown on shellfish harvesting, due to domoic acid accumulation. Caused by toxic algal blooms, the spike in domoic acid is thought to be caused by some kind of physical stress to the plankton, though it is uncertain if it is related to The Blob.

To test the connection between climate change, The Blob, and the drought, the research team will compare computer simulations of possible weather from an 18-month stretch (Dec. 1, 2013 to May 31, 2015) – including observed sea surface temperatures – with other 18-month stretches from 1981 to 2010. By running hundreds of computer models with slight variations, they hope to be able to determine what impacts The Blob and its swath of warm water have had on West Coast climate.

“Since we began involving citizen science volunteers, we’ve been able to address a wide range of climate-related issues throughout the world,” noted Myles Allen of Oxford University. “The public has a great opportunity to help researchers find out if there is a connection between The Blob and the West Coast drought, to what extent climate change may have contributed, and whether other factors are behind it.”

Story By: 

Phil Mote, 541-737-5694, (cell 541-913-2274)  pmote@coas.oregonstate.edu