marine science and the coast

Public invited to view dissection of great white shark at OSU’s Hatfield Marine Science Center

NEWPORT, Ore. – A 12-foot white shark – popularly known as a great white shark – that died in August after becoming entangled in the ropes of a crab pot, will become the focus of scientists this week during its dissection at Oregon State University’s Hatfield Marine Science Center.

The public is invited to view the necropsy, which will be performed over two days.

“It is a shame that the shark became entangled in the ropes and died, but the specimen still has a great deal of scientific and educational value,” said William Hanshumaker, the OSU center’s marine education specialist, who is coordinating the necropsy.

Hanshumaker, who also is a faculty member for Extension Sea Grant at OSU, will remove the shark from the freezer this Thursday, Oct. 1, and put it on public display in a roped-off section of the HMSC’s Visitor’s Center beginning at 10 a.m. Visitors may observe the shark via video camera in the Hennings Auditorium – including necropsy activities, which begin late Thursday afternoon.

At 4:30 p.m. on Thursday, Dr. Brion Benninger, of the Neurological Sciences Institute at Oregon Health & Science University, will remove the shark’s spinal accessory nerve, where it will be used in OHSU neurological studies.

On Friday, Oct. 2, a series of procedures is planned. Wade Smith, a doctoral student at OSU specializing in shark studies, will conduct measurements of the shark beginning at 11 a.m., and discuss his findings with a fishery biology class taught by OSU professor Scott Heppell. At 1 p.m., OSU students from two classes will examine the shark and hear experts present information on shark diversity, the white shark’s biology and movements, its unique features and conservation issues.

At 2 p.m., Tim Miller-Morgan of OSU will examine the shark for external parasites and at 2:30 p.m., Hanshumaker will measure the animal’s teeth and bite impression. At 3 p.m., Smith will conclude the dissection by collecting biological materials, the vertebra, muscle tissue, the dorsal fin and teeth – all of which have scientific value.

“There are researchers from throughout the country who are interested in what we’re doing here and have requested sample materials,” Hanshumaker said. “This also is an opportunity for the public to observe first-hand this unique creature and how scientists conduct research and share information.”

Samples from the white shark will be sent to:

  • Stanford’s Hopkins Marine Station
  • Alaska Department of Fish and Game
  • University of California-Santa Cruz
  • California State University-Long Beach
  • Monterey Bay Aquarium
  • Nova Southeastern University.

The samples will provide data for studies ranging from genetics to toxicology, to age and growth data.

Story By: 

Bill Hanshumaker, 541-867-0167


CORVALLIS - An Oregon State University-led research team is conducting a major project off the Oregon coast this summer to learn more about the complex, even mysterious forces that move ocean waters, life forms and debris between the shoreline and deeper waters.

The findings will be critical, with implications for fisheries management, pollution control, coastal tourism, shipping, invasive species, and other issues.

The researchers are working under a five-year, $9 million grant from the National Science Foundation.

"A great deal is known about the currents off the Pacific Coast that transport water and sand in northerly and southerly directions," said Jack Barth, a professor of oceanic and atmospheric sciences at OSU and one of the study's principal investigators. "Much less is known about the transport of waters across the continental shelf.

"How do things move in an east-west, or a west-east direction?" he added. "Obviously, wind is a key factor, but so are the topography of the ocean floor, temperature and weather."

The importance of a better understanding of these processes was illustrated during the aftermath of the sinking of the New Carissa off Coos Bay, said Mark Abbott, dean of OSU's College of Oceanic and Atmospheric Sciences. Hundreds of gallons of oil leaked from the vessel and, despite a number of sophisticated models on currents and wind, the oil showed up on beaches and in estuaries in places that surprised people.

"There were a lot of uncertain predictions surrounding the New Carissa," Abbott said. "We need more baseline data and a better understanding of the off-shore processes."

That's where the OSU study comes in. Called "COAST," or the Coastal Ocean Advances in Shelf Transport, the interdisciplinary research project will join ocean chemists, biologists, physicists and others in a complete--- and very visible --- study of the waters off the Oregon coast. During the next few weeks, scientists aboard the research ships Wecoma, Thomas G. Thompson, and Elakha will measure water temperatures, salinity, turbulence, zooplankton fields, wind velocity, and rate of upwelling.

The researchers also will fly a SENECA III aircraft over coastal waters, dropping in temperature probes that will give them an instant profile of temperature variations, and collect data that will help them profile the atmosphere and its boundary with the ocean below.

In mid-August, they will conduct an experiment using dyes to watch how extensively and rapidly ocean waters move at different depths. "There is an assumption that if you take something out to the deep ocean and dump it, it will stay out to sea," Barth said. "Ships, for example, have to be a hundred miles out of port to dump ballast water to keep invasive species and pollutants out of our bays. But do we know how far in toward shore those waters can go?

"You might be surprised," he added. "I've tracked water that's moved 150 miles."

The COAST project also will focus on the movement and health of phytoplankton blooms that are critical to the ocean food chain - and help absorb carbon dioxide from the air. The Pacific Northwest is beginning what appears to be one of the best salmon seasons in recent memory and the health of these phytoplankton masses is one of the keys to that success.

Yet scientists are still unclear as to what factors influence the upwelling that provides the nutrients that keep the whole system vibrant. One of the newest theories in the scientific community is that iron stimulates phytoplankton growth, and there have been suggestions that injecting iron into phytoplankton fields would boost productivity and help absorb more carbon dioxide.

"Most of the iron comes from river runoff and it varies along the coastline," said Patricia Wheeler, an OSU professor of oceanic and atmospheric sciences, who also is a principal investigator in the study. "Knowing more about how river water moves out into the ocean will give us a better picture on how phytoplankton might be affected."

There are other considerations, Abbott points out.

"A lot of the iron is a product of industrial runoff, and the idea that companies may be able to discharge their effluent --- and possibly get a credit or tradeoff, a la the Kyoto Accord --- has some of these folks kind of excited," Abbott said. "The whole thing is a bit premature."

The OSU researchers are working with colleagues from the University of North Carolina and the Lamont-Doherty Earth Observatory on the COAST study. Much of the major fieldwork will be done this summer and in 2003 in cooperation with the national Coastal Ocean Processes "CoOP" program.

Story By: 

Jack Barth, 541-737-1607


NEWPORT, Ore. - Information from an undersea monitor engulfed in lava during a deep ocean volcanic blowout is giving scientists their first-ever detailed view of an undersea eruption.

Researchers from Oregon State University and the National Oceanic and Atmospheric Administration are publishing results obtained from the volcanic system monitor data on Thursday in the journal Nature. The team is based at OSU's Mark O. Hatfield Marine Science Center in Newport.

The paper, "Direct Observation of a Submarine Volcanic Eruption from a Sea-floor Instrument Caught in a Lava Flow," was written by Christopher G. Fox, an OSU associate professor of oceanic and atmospheric sciences and part of NOAA's Pacific Marine Environmental Laboratory, volcanologist William W. Chadwick Jr. of OSU's Cooperative Institute for Marine Resources Studies, and Robert W. Embley, a marine geologist from the NOAA Vents Program and a professor of oceanic and atmospheric sciences. Fox is principal investigator for the study.

The paper describes in detail the results obtained from the NOAA device during an active eruption in 1998. The site of the eruption was Axial volcano, along the Juan de Fuca Ridge seafloor spreading center, located about 300 miles offshore from Cannon Beach, Ore. This volcano has been the focus of a long-term NOAA research effort, called the Vents Program, that seeks to understand the mechanisms by which the earth's interior exchanges heat and chemicals with the earth's surface through seafloor spreading centers.

The site was selected for study because geological evidence indicated Axial volcano to be potentially one of the most active in the deep sea and is also located near enough to the West Coast to be accessible by oceanographic vessels.

"We began monitoring Axial in 1987, using simple bottom pressure recorders to measure the long-term vertical movements of the seafloor associated with magma transport within the volcano," Fox said. "We never expected to get this close a look at the eruptive process."

Previously, vertical motions were detected by Fox's instruments and interpreted to represent magma movements, but not until 1998 did an actual eruption occur to confirm this hypothesis.

NOAA scientists acoustically detected the 1998 eruption through their access to the Navy's SOund SUrveillance System of underwater hydrophones - or SOSUS.

The seafloor sensor that was trapped in the lava flow is formally known as a volcanic system monitor but is often referred to as a "rumbleometer" because of sensors that record volcanic shaking. The sensor was installed on Axial's summit in October 1997 to continue the decade-long effort begun in 1987.

The precise location of the sensor was based on geological and geophysical measurements and was interpreted to overlie the magma center, Fox said. Following the eruption, NOAA vessels visited the site and attempted to recover the instrument.

Although the monitor responded to signals from the vessels, it would not release to the surface. Later investigations using a remotely operated vehicle revealed that the monitor was trapped in the lava flow up to the level of the anchor and was unable to release to the surface. Scientists formulated a plan to recover the instrument in 1999 using the remotely operated vehicle and a powerful ship's winch, and the whole package was recovered with very little visible damage, Fox said.

More surprisingly, "much of the data were intact, in particular the pressure data (which indicates height of the instrument) and the temperature data." Fox said.

The recovered data give a detailed view of the dynamics of a deep ocean volcanic eruption.

Initially, the very thin lava ran beneath the instrument platform and surrounded three legs that stand only 18 inches high. As the edges of the flow cooled and solidified, the lava flow "inflated" and lifted the instrument nearly 10 feet above its initial position in slightly more than one hour. Then the lava supply decreased and "drainback" of the lava began, gently lowering the instrument back to the seafloor in less than two hours, leaving the instrument a little more than three feet above its original position.

Although the instrument was in direct contact with the lava, the temperature probe located within the instrument only rose a maximum of 45.5 degrees during the eruption, perhaps explaining how the onboard data survived, scientists said.

Later field observations of the extent and thickness of the lava flow confirm the details of this scenario, but "without the survival of the rumbleometer, we would never know the time scale of the activity," Fox said.

In addition to the information on the flow itself, the long-term pressure record, in conjunction with other instruments deployed around the volcano by NOAA's Vents Program, provided a picture of what was happening to the magma in the subsurface, making the 1998 Axial event the first deep submarine eruption ever recorded.

"It is doubtful that we will ever be clever enough to intentionally place an instrument in an active submarine lava flow, so this serendipitous recording becomes a benchmark in our understanding of submarine volcanism," Fox said.

NOAA and OSU are expanding monitoring efforts on Axial volcano through the New Millennium Observatory Project. More information on the project can be found on the Web, with a fly-through animation of the "rumbleometer" site.


Christopher Fox, 541-867-0276


CORVALLIS, Ore. - The record return of coho and chinook salmon to the Oregon coast has been credited to superb ocean conditions as returning salmon encounter a virtual smorgasbord of herring, anchovies, zooplankton and even sardines, which had virtually disappeared from West Coast waters.

Now an interdisciplinary, inter-agency group of scientists believe they may have an answer for why the ocean conditions are so bountiful. They call it a "climate regime shift."

From 1977 to 1998, the low pressure system that sits off Alaska's Kodiak Island every winter - known as the Aleutian Low - was larger and more intense than it had been since the mid-1940s, according to William T. Peterson, an oceanographer with the National Oceanic and Atmospheric Administration at Oregon State University's Hatfield Marine Science Center in Newport.

This 1,000-mile wide low pressure system was characterized by strong, circling winds that pushed nutrient-rich waters north into Alaska and delayed the upwelling off Oregon and Washington which helps feed the nutrient cycle in spring and summer. The effect created good ocean conditions for salmon in Alaskan waters, while less-than-ideal conditions off Oregon and Washington.

The Aleutian Low became even larger and more intense in the fall and winter of 1997-98, during a strong El Nino episode.

Then in the winter of 1999, the pressure system suddenly shifted west to Kamchatka, a Russian peninsula. And the ocean conditions - and biology - changed almost overnight. Different zooplankton appeared off the Pacific Northwest coast, and in much greater numbers, the scientists say.

"During much of this intense Aleutian low period, the waters off the Oregon coast were dominated by 'southern' copepods that are more common off central California," said Peterson, who also is a professor in the OSU College of Oceanic and Atmospheric Sciences. "These species are typical of weak currents, weak upwelling warm water and low productivity. Then, in 1999, bang. Overnight the southern copepods disappeared and were replaced by boreal, or northern copepods.

"The actual biomass of the copepods has doubled in the last couple of years," Peterson added. "And suddenly, the anchovies begin to spawn again, herring are everywhere, and sardines have flourished."

This intersection between ocean conditions and biology is of particular interests to scientists involved with the Global Ocean Ecosystem Dynamics, or GLOBEC program. Funded by the National Science Foundation and NOAA, GLOBEC is a national program that has West Coast components in Alaska and the Pacific Northwest.

Richard Brodeur, a NOAA fisheries biologist who also has a courtesy faculty appointment at OSU, studies salmon survival and feeding habits in the ocean. During the 1980s and most of the 1990s, the poor ocean conditions led to a low survival rate, he said. During the El Nino year of 1998, things hit rock bottom.

"When we looked inside the stomachs of juvenile salmon that had entered the ocean in 1998, they were pretty empty," Brodeur said. "They had some small prey - a few juvenile rockfish - but mostly small copepods and jellyfish. It wasn't their usual diet."

What salmon usually eat, Brodeur said, are juvenile rockfish, smelt, anchovies, sardines, crab larvae and krill. Starting in 1999, those prey reappeared in the stomachs of fish the scientists examined.

"Having an abundance of baitfish actually does two things," Brodeur said. "They obviously are an important food source for the juvenile salmon. Salmon need to grow fast early on to avoid becoming prey of other fish and birds.

"Baitfish have another useful purpose," Brodeur added. "When they are abundant, they become an alternate prey for birds and groundfish like rockfish and hake that may eat them instead of juvenile salmon."

The biological chain of events boosting salmon runs seems fairly clear. The abundant reappearance of northern copepods off the Northwest coast has led to huge numbers of "baitfish," including herring, anchovies and sardines. The presence of these baitfish appears to significantly boost salmon survival in the ocean.

The climatic and oceanic mechanisms behind this phenomenon are not as clear, the scientists say.

"These 'regime shifts' are part of a cycle, but we don't have enough data to know much about them historically," Peterson said. "We know there were Aleutian low pressure cycles from approximately 1923-47, and from 1977-98, but we don't know their history prior to the 1920s. And we think they typically last about 20 to 25 years, but what triggers these shifts - both in and out of the cycles - is still a mystery."

One way physical oceanographers track changes in the ocean is through an index called the Pacific Decadal Oscillation, which monitors several conditions, including sea surface temperatures. From the period of 1977-1998, every year was warmer than normal except one, Peterson pointed out. For the past three years - including 2001 - the waters off Oregon have been colder than normal.

"When things shifted in 1999, the California Current became stronger," Peterson said. "There was more upwelling, more nutrients and greater productivity and - equally important - an infusion of northern copepods from the Gulf of Alaska.

"Not coincidentally, ocean conditions for salmon in Alaska began to decline at the same time."

Ted Strub, a professor of oceanic and atmospheric sciences at OSU, has monitored changes in the Pacific in another way - the height of the ocean - measured by the TOPEX/POSEIDON altimeter. It is the same satellite that first detected the El Nino signal in the western equatorial Pacific in early 1997.

"There is no question that ocean conditions are different from what they were for most of 1977-98," Strub said. "Our satellite data shows that since 1998, the coastal ocean off the U.S. west coast is a few centimeters lower than it was from 1993-98, the beginning of the TOPEX data. That's because water becomes denser as it gets colder, occupying less space."

Strub says studying ocean conditions is like listening to music. There are different frequencies and layers that - examined separately - don't fully represent the big picture.

"If you look at the climatic effect, for example, you have to look at 20- to 25-year cycles, then overlay the influence of El Nino and La Nina events, which have a three- to seven-year time scale, and then look at seasonal variations, which are enormous," Strub said. "Satellite data only go back 10-20 years, so we're just now beginning to get the baseline data that we need.

"A hundred years from now, we may understand how all this works."

Story By: 

Bill Peterson, 541-867-0201


CORVALLIS - From tiny, tenacious mollusks, to foreign grasses that choke lakes and streams, to voracious, exotic crabs, biological invaders are infiltrating waterways the world around.

A new video from Oregon Sea Grant at Oregon State University aims to help halt the invasion by teaching people the importance of early detection and response.

A 23-minute video called "You Ought to Tell Somebody!" presents an overview of the problem of invasive aquatic plants and animals and provides identification and information about one significant West Coast threat, the Chinese mitten crab.

Species evolve by adapting to their local habitats. New species, often introduced by human activity, can wreak havoc by disrupting ecological balance, crowding out native species and interfering with the food chain. "Invader" species can displace native plants and animals, dramatically change natural habitats and have profound impacts on the economy.

The Sea Grant video uses the story - and dramatic footage - of the Chinese mitten crab to illustrate how quickly new species can take hold in an area, and how difficult they can be to eradicate once that happens.

The video is aimed at those involved in water-quality monitoring, field educators, aquaculture operators and others who spend time in lakes, rivers and estuaries.

"You Ought to Tell Somebody!" catalog number ORESU-V-01-002, is available from Oregon Sea Grant for $18.95 plus shipping and handling; bulk discounts are available. For ordering information contact Oregon Sea Grant 541-737-2716 or (within Oregon and Washington) toll-free at 1-800-375-9360. The video may also be ordered through the Oregon Sea Grant Web site.

Oregon Sea Grant is an OSU-based ocean and coastal research and outreach program, part of a national network of Sea Grant College Programs organized under the National Oceanic and Atmospheric Administration.

Story By: 

Paul Heimowitz, 503-722-6718


CORVALLIS - A new database intended to highlight the work of ocean and coastal researchers in Oregon goes on line this month at the Oregon Sea Grant web site.

Called "Making a Difference," the system allows visitors to explore Sea Grant-sponsored research, outreach, and educational projects in words, pictures and multimedia clips. The system can be accessed at http://seagrant.orst.edu/makingadifference.

The new Sea Grant system is similar to "Oregon Invests!," a database developed in the 1990s by the College of Agricultural Sciences to demonstrate the value of Oregon State University's agricultural research and extension efforts.

Like that system, "Making a Difference" captures information about Sea Grant-funded research and outreach projects and makes it accessible via a graphical, web-based interface that allows visitors to search for projects by a variety of keywords and fields. It also gives researchers password-protected access to provide project updates and reports.

The database contains:

  • Detailed summaries of Sea Grant-funded research, education and outreach projects, searchable by topic, investigator, institution and keyword. 
  • Links to on-line publications, Web resources and other project-related information.
  • Photos and multimedia material to help illustrate key stories.

"We view this as an important step toward providing accountability for projects we sponsor," said Jan Auyong, Sea Grant's assistant director for programs, who has been working on "Making a Difference" since 1998. The system includes information about projects funded over the past decade and eventually will include historical details about research results going back to Sea Grant's establishment in 1968.

Oregon Sea Grant disseminates more than $1 million a year in competitive research grants to scientists at OSU and other Oregon institutions of higher education, and sponsors a number of graduate student fellowships and internships. In addition, Sea Grant helps support OSU Extension faculty in marine-related specialties on campus and in each of Oregon's coastal counties, and its communications arm functions as a small press, producing books, brochures, videos and multimedia projects on ocean and coastal topics.

Story By: 

Jan Auyong, 541-737-5130


CORVALLIS - A new $2.6 million grant, just announced by the National Science Foundation, will help students unlock the mysteries of life beneath the surface of the Earth.

The five-year award will enable an international team of scientists to construct a graduate student training program that could lead to innovations in safer drinking water, handling of toxic wastes, improved soil and crops and in countless other fields, said Martin Fisk, an Oregon State University professor of oceanic and atmospheric sciences and principal investigator for the project.

OSU and Portland State University are the project's sponsors. Participants in the effort come from research institutions throughout the world, including the U.S. Department of Energy, Norway's University of Bergen, the United Kingdom's University of Bristol and Sweden's University of Gothenburg.

Fifteen doctoral students a year will be trained by internationally recognized engineers, microbiologists, geologists, oceanographers, geochemists, soil scientists and hydrologists, said Anna-Louise Reysenbach, co-principal investigator and assistant professor of environmental biology at PSU. The idea is to prepare doctoral students for the next generation of research by bridging the gap between traditional disciplines, Reysenbach said. Student preparation will be broadened with a new subsurface biosphere integrated major with five related components.

Components include group training and courses that link microbial with physical and chemical processes and international internships and field programs.

"Science is in an increasing trend to be more interdisciplinary," she said. "We are excited about increasing our research capacity with some good integrated collaborative efforts between OSU and Portland State and other institutions."

The NSF's Integrative Graduate Education and Research Training grant will help fund research into an area that is right under our feet but has been virtually ignored for decades, Fisk said.

"We're trying to understand the entire subsurface biosphere in our project, 'Earth's Subsurface Biosphere: Coupling of Microbial, Geophysical and Geochemical Processes,'" he said. "It turns out there is a huge amount of biomass beneath the surface and 10 years ago, people weren't even looking for it."

Researchers have found that there are about a billion microbes per quarter teaspoon at the ocean floor, Fisk said, but even a mile below the seafloor there are still about one million bacteria in the same-sized sample.

Fisk said expanding the program outside the confines of OSU faculty and facilities was a natural progression.

The idea for a subsurface biosphere grant came from a discussion with Stephen Giovannoni, an OSU professor of microbiology, and Lewis Semprini, OSU professor of civil, construction and environmental engineering. Both men are co-principal investigators for the project.

"We knew three faculty members at PSU and many more at OSU who had worked in these areas," Fisk said.

As part of their training, three students will enroll at Portland, while the remaining 12 will enroll at Oregon State, Fisk said. However, scientists and students at both institutions will keep in close contact and will collaborate throughout the program. Students will be encouraged to use video conferencing technology to enhance communication, Fisk said.

In addition to the NSF graduate training grant, the OSU graduate school has contributed matching funds for tuition waivers for students, Fisk said. The OSU Office of Research and the OSU Colleges of Oceanic and Atmospheric Sciences, Science, Engineering and Agriculture, as well as Portland State have also contributed funds to support the program.

In addition to Fisk, Reysenbach, Giovannoni and Semprini, Peter Bottomley, an OSU professor of microbiology is also a co-principal investigator on the project. Ten additional faculty members at OSU, three at PSU and three at European universities will also participate in the program.

The OSU College of Oceanic and Atmospheric Sciences has been ranked fifth in the U.S. by the National Research Council. The college presently has 67 faculty, 90 graduate students, and receives about $25 million in annual research funding. A number of undergraduate students pursue minors in the college. The university's Colleges of Agriculture, Engineering and Science are also nationally ranked.

Portland State is the lead graduate and undergraduate institution in the Portland area and has one of the nation's fastest rates of growth in securing competitive research grants and contracts. The university recently established the Center for Life in Extreme Environments, whose mission is to foster interdisciplinary research in extreme environments. All PSU co-principal investigators in the sub-surface project are members of the center.


Martin Fisk, 541-737-5208

Coastal hazards, geology focus of HMSC series

NEWPORT - Winter visitors to the Oregon coast can learn how the coast was formed - and how it is still being formed - in a series of exhibits, lectures and special events at Oregon State University's Hatfield Marine Science Visitor Center in Newport.

"Coastal Hazards" is the focus of displays, exhibits, special events and lectures taking place at the center through March. The HMSC Visitor Center is open to the public from 10 a.m. to 4 p.m. Thursdays through Mondays all winter. Admission is free, although donations are suggested.

The Coastal Hazards activities kick off Saturday, Jan. 29, with a pair of talks by Eugene fossil expert Dr. William Orr, along with an opportunity for visitors to bring in their own fossils and beach finds for identification.

Orr is a University of Oregon professor of oceanography, geology and paleontology, and director of the Thomas Condon State Museum of Fossils in Eugene. He has written 80 articles and collaborated with his wife, Elizabeth, on six books, mainly on the geology of the Northwest.

Beginning at 1 p.m., Orr will talk about how scientists believe Oregon's Coast Range was created, and how that history ties to monster earthquakes still possible today. The lecture, "Oregon's Coast Range Rising to the Occasion," will focus on the geologic forces at work in the Coast Range.

At 7 p.m. on Saturday, Orr will discuss "Oregon Fossils and Volcanics: Yin and Yang," a talk about how the high quality and diversity of fossils found in the region may be the result of the volcanic activity over the last 400 million years.

Visitors are invited to bring in fossils and other items they've found on the beach for identification by HMSC marine educators that Saturday from 10 a.m. to 4 p.m. Local fossil and rock enthusiasts will also have their collections on display.

Through March, the Visitor Center will feature exhibits and hands-on science activities focused on coastal geology. Displays include photographs of ancient stumps and snags from uplifted trees uncovered during extreme coastal erosion, samples of local rocks and fossils, tsunami hazards maps of the Yaquina and Siletz Bays, and earthquake hazard maps. Films on tsunamis, undersea volcanoes and fossils will be shown regularly in the HMSC auditorium.

For more information call 541-867-0271.


Hatfield Marine Science Center, 541-867-0271

OSU's Lubchenco to deliver May 9 Byrne Lecture

CORVALLIS - Jane Lubchenco, a world-renowned environmental scientist, will discuss "Uncharted Seas: Navigating the Future of the Oceans" on Tuesday, May 9, at the Construction and Engineering Auditorium in Oregon State University's LaSells Stewart Center.

The lecture, which starts at 7:30 p.m., is free and open to the public. It is the latest in a series of John V. Byrne lectures on ocean science and public policy sponsored by Oregon Sea Grant and the OSU College of Oceanic and Atmospheric Sciences.

Lubchenco, an OSU Distinguished Professor of Zoology and Wayne & Gladys Valley Professor of Marine Biology, is internationally known for her efforts to increase understanding of the natural dynamics of Earth's ecosystems. She is involved in global efforts to find new approaches to improving human health, prosperity and well-being without disrupting the function of ecological systems upon which life depends.

Her research has focused on the evolutionary ecology of individuals, populations and communities; biodiversity, conservation biology, and global change, and related subjects.

Among her many activities, Lubchenco chairs the Aldo Leopold Leadership Program, an advanced leadership and communications training program for environmental scientists. She is co-chair of a National Center for Ecological Analysis and Synthesis working group on "Developing the Theory of Marine Reserves," a member of the National Science Board and chair of its Task Force on the Environment, and a member of the National Academy of Sciences.

Lubchenco is the fourth lecturer in the Byrne series, named after John Byrne, OSU president from 1984-95. A marine geologist, Byrne was the first head of OSU's Oceanography Department (1972) and subsequently served as dean of research, acting dean of the Graduate School, and vice president for research and graduate studies.

Oregon Sea Grant and COAS established the lecture series to increase public awareness and discussion of current scientific and public policy issues concerning the ocean and atmosphere and related subjects.

Story By: 

Jane Lubchenco, 541-737-5337

Testing continues at OSU fish lab; fact sheet now available

CORVALLIS - A multi-agency task force looking for the cause of an unusually high rate of cancer in trout at an Oregon State University research laboratory this spring is continuing to investigate the problem.

A fact sheet has been published to help area residents better understand the situation and what steps the task force is taking to address it.

The fact sheet is available by calling John McEvoy, Linn County Health Department, 541-967-3821; Robert Wilson, Benton County Health Department, 541-766-6841; or Duncan Gilroy, Oregon Health Division, 503-731-4015.

The Department of Environmental Quality recently tested the lab's well water and found no contaminants. Testing of tissues from the affected fish revealed no clues either, said Larry Curtis, chair of the Department of Environmental and Molecular Toxicology at OSU and chair of the task force.

"It is very possible that what has triggered the two episodes that we know about is intermittent - and conceivably related to seasonally high water," Curtis said. "We may have a better shot at identifying the contaminant if we get a period of unusually wet weather."

In December of 1998, a contaminant killed thousands of rainbow trout in the OSU research lab, located one mile east of Corvallis off Highway 34. This spring, researchers at the lab discovered a number of symptoms in the fish, including high mortality, altered growth, anemia and other physical deformities. After conducting autopsies, they discovered cancerous tumors at a rate 100 times higher than normal.

The university immediately notified the Department of Environmental Quality, the Oregon Health Division, and the Linn and Benton county health departments. A task force comprised of representatives of those agencies and OSU was formed.

"It may be quite a while before we have the information we need to fully evaluate the potential health risks," said Grant Higginson, health officer with the Oregon Health Division in Portland. "Until more facts are known, we are encouraging people with private wells in the area to consider using bottled water for drinking and cooking, as a precaution."

The task force is continuing to investigate the water source and fish tissues. Scientists also are studying the shallow aquifer that provides well water to the area.

Gilroy, state toxicologist for the OHD, coordinated the publication of the fact sheet.

Story By: 

Duncan Gilroy, 503-731-4015