marine science and the coast

Study outlines threat of ocean acidification to coastal communities in U.S.

CORVALLIS, Ore. – Coastal communities in 15 states that depend on the $1 billion shelled mollusk industry (primarily oysters and clams) are at long-term economic risk from the increasing threat of ocean acidification, a new report concludes.

This first nationwide vulnerability analysis, which was funded through the National Science Foundation’s National Socio-Environmental Synthesis Center, was published today in the journal Nature Climate Change.

The Pacific Northwest has been the most frequently cited region with vulnerable shellfish populations, the authors say, but the report notes that newly identified areas of risk from acidification range from Maine to the Chesapeake Bay, to the bayous of Louisiana.

“Ocean acidification has already cost the oyster industry in the Pacific Northwest nearly $110 million and jeopardized about 3,200 jobs,” said Julie Ekstrom, who was lead author on the study while with the Natural Resources Defense Council. She is now at the University of California at Davis.

George Waldbusser, an Oregon State University marine ecologist and biogeochemist, said the spreading impact of ocean acidification is due primarily to increases in greenhouse gases.

“This clearly illustrates the vulnerability of communities dependent on shellfish to ocean acidification,” said Waldbusser, a researcher in OSU’s College of Earth, Ocean, and Atmospheric Sciences and co-author on the paper. “We are still finding ways to increase the adaptive capacity of these communities and industries to cope, and refining our understanding of various species’ specific responses to acidification.

“Ultimately, however, without curbing carbon emissions, we will eventually run out of tools to address the short-term and we will be stuck with a much larger long-term problem,” Waldbusser added.

The analysis identified several “hot zones” facing a number of risk factors. These include:

  • The Pacific Northwest: Oregon and Washington coasts and estuaries have a “potent combination” of risk factors, including cold waters, upwelling currents that bring corrosive waters closer to the surface, corrosive rivers, and nutrient pollution from land runoff;
  • New England: The product ports of Maine and southern New Hampshire feature poorly buffered rivers running into cold New England waters, which are especially enriched with acidifying carbon dioxide;
  • Mid-Atlantic: East coast estuaries including Narragansett Bay, Chesapeake Bay, and Long Island Sound have an abundance of nitrogen pollution, which exacerbates ocean acidification in waters that are shellfish-rich;
  • Gulf of Mexico: Terrebonne and Plaquemines Parishes of Louisiana, and other communities in the region, have shellfish economies based almost solely on oysters, giving this region fewer options for alternative – and possibly more resilient – mollusk fisheries.

The project team has also developed an interactive map to explore the vulnerability factors regionally.

One concern, the authors say, is that many of the most economically dependent regions – including Massachusetts, New Jersey, Virginia and Louisiana – are least prepared to respond, with minimal research and monitoring assets for ocean acidification.

The Pacific Northwest, on the other hand, has a robust research effort led by Oregon State University researchers, who already have helped oyster hatcheries rebound from near-disastrous larval die-offs over the past decade. The university recently announced plans to launch a Marine Studies Initiative that would help address complex, multidisciplinary problems such as ocean acidification.

"The power of this project is the collaboration of natural and social scientists focused on a problem that has and will continue to impact industries dependent on the sea,” Waldbusser said.

Waldbusser recently led a study that documented how larval oysters are sensitive to a change in the “saturation state” of ocean water – which ultimately is triggered by an increase in carbon dioxide. The inability of ecosystems to provide enough alkalinity to buffer the increase in CO2 is what kills young oysters in the environment.

Media Contact: 

George Waldbusser, 541-737-8964; waldbuss@coas.oregonstate.edu

Multimedia Downloads


Northwest hatchery operation



Oysters threatened by acidification



A young oyster

Scientists find deep-ocean evidence for Atlantic overturning decline

CORVALLIS, Ore. – A new study has found evidence from the deep ocean that the Atlantic meridional overturning circulation – a system of currents that brings warm water from the tropics to the North Atlantic region and keeps its climate more moderate – declined at the end of the last ice age.

Some scientists have long suspected that was the case because the North Atlantic cooled at a time the rest of the planet was warming, but evidence to support the theory has been sparse or indirect. However, the new study, which utilized 25 deep ocean sediment cores and a corresponding computer model, determined that the AMOC not only declined – the process may have pumped more carbon dioxide into the atmosphere.

Results of the study have just been published in the open access journal Climate of the Past. It was supported by the National Science Foundation.

“There has long been a feeling that if the deep ocean was changing at the end of the last ice age, there should be evidence from the deep ocean to document it – and that has been lacking,” said Andreas Schmittner, a climate modeling scientist at Oregon State University and lead author on the study.

“The Atlantic meridional overturning circulation enhances the biological pump, and if it declined it should have had an impact on primary productivity as well as the overall climate for the region,” added Schmittner, an associate professor in Oregon State’s College of Earth, Ocean, and Atmospheric Sciences.

Schmittner and his colleague David Lund from the University of Connecticut used evidence from 25 sediment cores taken primarily from the Atlantic Ocean, but also from the Indian and Pacific Ocean, which showed a change in the carbon isotope ratio over a period of 3,000 to 4,000 years that began some 19,000 years ago.

The isotopes show up in the shells of tiny organisms called foraminifera that are found in deep ocean sediment cores. When they were alive, their carbonate shells accumulated two carbon isotopes – C-12, a lighter isotope, and C-13, which is heavier. Scientists can tell by the ratio of the two isotopes how ocean circulation and biological productivity were changing and how that affected atmospheric carbon dioxide levels.

When productivity lessened with the decline of the Atlantic meridional overturning circulation, there was more C-13 in the ocean compared to C-12 – except in the North Atlantic, where C-13 decreased strongly in comparison to C-12.  An abundance of C-12, on the other hand, indicates that the current system was strong and plankton blooms were plentiful.

To test the evidence, Schmittner ran a computer model combining equations for the physical processes and the chemical and biological processes and said they matched the sediment core data very closely.

“You can divide the oceans of the world into small boxes and look at the physical processes like water velocity, salinity and nutrients to predict plankton growth, sinking rates after death, and how the carbon cycle is affected,” he said.

“What we did next was to plug into the model the influx of fresh water into the North Atlantic that would have come from the melting of ice sheets and glaciers and see how that would have affected both the physics and the biology,” he added. “What we found in the ice cores was eerily similar to what the computer model predicted.”

Schmittner and Lund’s model matched ice core data from Antarctica that show increasing levels of carbon dioxide in the atmosphere right after the end of the last glacial maximum (19,000 years before present) for several thousand years. Schmittner’s model suggests that the Atlantic meridional overturning circulation decline pulled carbon dioxide from the deep ocean and gradually released it into the atmosphere.

“The current affects the biological pump and if you turn the current off, you reduce the pump and you have less productivity,” Schmittner said. “The system then pulls carbon dioxide from the deep ocean and it winds up in the atmosphere.”

The researchers note that future global warming may again slow down the circulation because as surface waters warm, they become more buoyant and are less likely to sink – a key process to maintaining the system of currents in the Atlantic. The addition of fresh water from melting ice sheets may compound the slowdown.

Media Contact: 

Andreas Schmittner, 541-737-9952, aschmittner@coas.oregonstate.edu

Study finds lamprey decline continues with loss of habitat in Oregon

CORVALLIS, Ore. – A new study aimed at understanding habitat needs for Pacific lamprey in western Oregon found this once-abundant fish that is both ecologically and culturally significant prefers side channels and other lower water velocity habitats in streams.

However, because of the legacy of historic land uses in the Northwest – including human settlement and activities – these habitats are much less common than they were in the past. And that may explain why populations of lamprey have declined over the past several decades – not only in western Oregon, but throughout the Pacific Northwest.

Results of the study were just published in the Ecology of Freshwater Fish.

“The lamprey decline has probably been going on for the past half century, but it wasn’t until the last 15-20 years that it has been recognized by many in the scientific community,” said Luke Schultz, a research assistant in Oregon State University’s Department of Fisheries and Wildlife and lead author on the study. “Today lamprey populations are at about 5 to 10 percent of the 1960s totals at Bonneville Dam, and the story is much the same elsewhere.

“The Willamette River basin is one of the few places that still appears to have decent numbers of lamprey because of its system of sloughs and side channels,” he added. “But they are facing new threats, such as introduced fish species that prey on them – especially bass – so we’ll likely be hearing more about this emerging threat in the next few years.”

Schultz is project leader Oregon Cooperative Fish Research Unit’s Pacific lamprey project – a joint effort between OSU and the U.S. Geological Survey that is seeking to learn more about the fish and restore its habitat. Although this latest article focuses on the Willamette Basin, Schultz and his colleagues at OSU, the USGS, Oregon Department of Fish and Wildlife and the U.S. Fish and Wildlife Service have looked at lamprey populations and habitat from the Columbia River in northeastern Oregon to southern Oregon’s Umpqua River.

The causes of Pacific lamprey decline are myriad, the researchers say. Restoring their numbers will require mitigation in the form of restoring habitat to include complex channels and deep pools, and the removal of barriers that block access to spawning grounds for adult lampreys, the authors note.

“Removal or mitigation will allow lampreys to recolonize those areas,” Schultz said.

Some factors affecting the lamprey decline may be out of the researchers’ control, Schultz said, specifically ocean conditions. They require an abundance of food; ocean conditions that are favorable to salmon are usually beneficial for lampreys, as well. Rather than swimming freely, they may attach themselves to large fishes, or even whales, sea lions or other marine animals – and the abundant ocean prey lets them grow large.

“Pacific lamprey may spend one or two years in the ocean,” Schultz noted. “They will weigh less than an ounce when they go out there as juveniles, and they may grow to 30 inches in length and up to two pounds before they return.”

Although Pacific lampreys are anadromous, another species, the brook lamprey, only grows to a length of 6-7 inches and stays in fresh water for its entire lifespan of 4-8 years.

It is the Pacific lamprey that researchers are focusing on because of their one-time abundance, larger size, and more prominent ecological role.

“These are really interesting animals that have historic importance in the Pacific Northwest,” Schultz noted. “They can live up to about 10 years or so – about three times longer than the coho salmon life cycle – and they are roughly six times as energy-dense as salmon, making them important prey.

“Because of that, I like to call them swimming sticks of butter.”

When lampreys are abundant, they reduce predation by a variety of species – especially sea lions, but also sturgeon, birds, bass and walleye – on juvenile salmon and steelhead. It may not be an accident that salmonid numbers have declined at the same time lamprey populations have diminished.

The research in the study has led to some habitat restoration work supported by the Columbia River Inter-Tribal Fish Commission. Helping lamprey populations recover has important social significance as well as ecological importance, Schultz said.

“Lampreys were an incredibly important resource for many Northwest tribes because they provided a source of protein in the summer months when salmon weren’t as readily available,” he noted. “Now the only place where there is even a limited tribal harvest is at Willamette Falls.”

More information on lampreys is available in this feature article in OSU’s Terra Magazine: http://bit.ly/1fhu8k4

Media Contact: 

Luke Schultz, 541-737-1961; luke.schultz@oregonstate.edu

Multimedia Downloads










Sampling at Willamette Falls







Juvenile lamprey


Measuring in the field

Oregon experienced second warmest year on record in 2014

CORVALLIS, Ore. – The year 2014 was the hottest on Earth in 134 years of record-keeping, the National Oceanic and Atmospheric Administration (NOAA) reported on Friday, continuing a pattern of global warming that is attributed primarily to rising levels of greenhouse gases.

Oregon was not exempt from the warming and logged the second hottest year since records were kept beginning in 1895, according to researchers with the Oregon Climate Change Research Institute at Oregon State University.

“We had a warm summer, and now a warm winter and that’s where we got our warm year,” said Kathie Dello, deputy director of the center. “We are looking at our future right now – warm winters and low snowpacks.”

The average statewide temperature in Oregon in 2014 was 49.5 degrees, which is 3.0 degrees above the average for the 20th century. The only hotter year on record was 1934 – when the United States suffered through the Dust Bowl. The average temperature in Oregon that year was 49.9.

Low snowpacks are of particular concern later in the year when less water is available, Dello pointed out.

“Drought continues to be a concern in southern and eastern Oregon, as well as in California,” she said. “The temperature outlook for the next three months is pointing toward continued warm temperatures for the western United States.”

According to NOAA, the average 2014 temperature across both land and ocean surfaces globally was 1.24 degrees above the 20th-century average. This was the highest among all years on record dating back to 1880, the agency noted.

Regions that were considered the warmest last year, according to NOAA, included eastern Russia, the western United States, portions of Australia, much of the northeastern Pacific Ocean, segments of the equatorial Pacific, large swaths of the Atlantic Ocean, most of the Norwegian Sea, and parts of the central to southern Indian Ocean.

Philip Mote, director of the Oregon Climate Change Research Institute, said the subtlety of rising temperatures on a global scale can be hard to comprehend, since people tend to view climate based on their personal experiences.

“Most of us relate to climate through what we remember and the week-long spell of near-record cold, snow and ice last February may seem more pertinent or convincing than global mean temperature,” Mote said. “But from a physics perspective, global mean temperature represents lots of interesting processes – rising greenhouse gases among them.

“Setting a record like this means those processes lined up this year,” Mote added. “On average, greenhouse gas increases make each year roughly .04 degrees warmer than the last – which may not sound like much, but really adds up over time.”

At that rate, the temperature would increase one degree every 25 years, and four degrees each century – an alarming rate of increase, scientists say. “And unless emissions of greenhouse gases are curbed,” Mote said, “the warming is likely to be faster than that in the future.”

Although globally the planet experienced its hottest year, it was only the 34th warmest year on record for the United States overall, Dello said. The western U.S. as a whole had its hottest year on record, as did the states of California, Nevada and Arizona, but the eastern part of the country experienced a severe winter.

Dello and Mote are both in OSU’s College of Earth, Ocean, and Atmospheric Sciences.

Media Contact: 

Phil Mote, 541-913-2274,  pmote@coas.oregonstate.edu;

Kathie Dello, 585-307-6492, kdello@coas.oregonstate.edu






Wallowa Lake in northeastern Oregon

Study finds tropical fish moving into temperate waters

CORVALLIS, Ore. – Tropical herbivorous fish are beginning to expand their range into temperate waters – likely as a result of climate change – and a new international study documents the dramatic impact of the intrusion in the Mediterranean Sea.

Temperate waters are typically dominated by algal “forests” and have naturally low levels and limited diversity of herbivores, the researchers say. But as tropical fish move into these waters, they are consuming much of the plant life and changing the habitat as well as the manner in which different species interact.

Results of the study, which was funded primarily by the Pew Foundation, have just been published in the Journal of Ecology. It builds on a previous study documenting the move of tropical fish species into temperate waters that recently was published in Proceedings of the Royal Society B.

“The introduction of tropical fish into more temperate regions is troubling and this new study gives a vivid example of what can happen when non-native species occupy a new ecosystem,” said Fiona Tomas Nash, a courtesy professor of fisheries and wildlife at Oregon State University and a co-author on both studies.

“We now know that the arrival of tropical fish into temperate areas is occurring on an increasing basis around the world,” she added. “This is the first attempt to characterize what impacts these fish are having – and the mechanisms driving these impacts.”

In this latest study, an international research team surveyed roughly 1,000 kilometers of coastline in the eastern Mediterranean to study two species of tropical fish called rabbitfish. They were introduced to the region through the Suez Canal and now have become a dominant component of the total fish biomass in the southernmost part of the eastern Mediterranean.

This part of the Mediterranean has two distinct areas – one with warmer regions that attract abundant numbers of rabbitfish, and colder regions where they are very rare or completely absent. Where abundant, their damage has been striking: a 65 percent reduction in canopy algae, a 60 percent reduction in overall benthic biomass (algae and invertebrates) and a 40 percent decrease in the total number of plant and animal species.

“The fear is that if the colder regions warm just a bit through climate change or some other mechanism, rabbitfish will begin moving into those areas as well,” Tomas Nash said.

To learn more about how the rabbitfish changed the ecosystem, the researchers videotaped fish feeding in the Mediterranean off Turkey in two areas – one dominated by tropical rabbitfish and the other dominated by native temperate fish. They were surprised by what they found. Native temperate herbivorous fish actually had higher consumption rates than the tropical rabbitfish. “We did not expect to see that,” Tomas Nash said.

But while native fish targeted only adult macroalgae, the two species of rabbitfish fed complementarily – one targeted the mature kelps while the other fed almost exclusively on emerging algal “recruits,” or juvenile plants.

“The result is that one species denudes the forest and the other prevents it from recovering,” said Tomas Nash, who also has a faculty appointment with the Mediterranean Institute for Advanced Studies in Spain.

A study off Japan by collaborators found that the introduction of tropical species there, including rabbitfish and parrotfish, resulted in the loss of kelp forests and the emergence of non-native corals in as little as 20 years.

In the first paper, the researchers outlined how tropical herbivorous fish primarily along west boundary currents are moving into temperate zones, including South Africa, Brazil, the Gulf of Mexico, Australia and Japan, as well as the Mediterranean. Other areas, including the Pacific Northwest of the United States, have not seen sustained spread of tropical species likely due to prevailing currents and because surface waters are too cold due to seasonal upwelling.

The researchers found algal forests in the waters off Greece had not been severely affected because only the rabbitfish that feeds on adult algae is present and in relatively low densities. They have just begun studies of rabbitfish and chub arrivals in Australia.

“The greatest damage that we documented was off Turkey, which may be serving as the proverbial canary in the coal mine,” Tomas Nash said. “The barrenness of the underwater habitat is unique and quite striking – it is spread over hundreds of kilometers.”

Media Contact: 

Fiona Tomas Nash, 541-737-4531; fiona.tomasnash@oregonstate.edu

Multimedia Downloads









Cystos Adrasan 1

Healthy ecosystem



denuded landscape

Effects of non-native fish

New study finds “saturation state” directly harmful to bivalve larvae

CORVALLIS, Ore. – The mortality of larval Pacific oysters in Northwest hatcheries has been linked to ocean acidification, yet the rate of increase in anthropogenic carbon dioxide in the atmosphere and the decrease of pH in near-shore waters have been questioned as being severe enough to cause the die-offs.

However, a new study of Pacific oyster and Mediterranean mussel larvae found that the earliest larval stages are directly sensitive to saturation state, not carbon dioxide (CO2) or pH. Saturation state is a measure of how corrosive seawater is to the calcium carbonate shells made by bivalve larvae, and how easy it is for larvae to produce their shells.

It is important to note that increasing CO2 lowers saturation state, the researchers say, and saturation state is very sensitive to CO2; the challenge interpreting previous studies is that saturation state and pH typically vary together with increasing CO2. The scientists utilized unique chemical manipulations of seawater to identify the direct sensitivity of larval bivalves to saturation state.

Results of the study, which was funded by the National Science Foundation, are being reported this week in the journal Nature Climate Change.

“Bivalves have been around for a long time and have survived different geologic periods of high carbon dioxide levels in marine environments,” said George Waldbusser, an Oregon State University marine ecologist and biogeochemist and lead author on the study, “The difference is that in the past, alkalinity levels buffered increases in CO2, which kept the saturation state higher relative to pH.”

“The difference in the present ocean is that the processes that contribute buffering to the ocean cannot keep pace with the rate of anthropogenic CO2 increase,” added Waldbusser, who is in Oregon State’s College of Earth, Ocean, and Atmospheric Sciences. “As long as the saturation state is high, the oysters and mussels we tested could tolerate CO2 concentrations almost 10 times what they are today.”

The idea that early bivalve development and growth is not as physiologically linked to CO2 or pH levels as previously thought initially seems positive. However, the reverse is actually true, Waldbusser noted. Larval oysters and mussels are so sensitive to the saturation state (which is lowered by increasing CO2) that the threshold for danger will be crossed “decades to centuries” ahead of when CO increases (and pH decreases) alone would pose a threat to these bivalve larvae.

“At the current rate of change, there is not much more room for the waters off the Oregon coast to absorb more CO2 without crossing the threshold we have identified with respect to saturation state,” he said. Results of the study help explain commercial hatchery failures and why improving water chemistry in those hatcheries has been successful.

What kept the system more balanced in the geologic past likely included a combination of factors, the researchers say. One factor in past increases of carbon dioxide was high levels of volcanic activity. However, greater volcanic activity also coincides with more tectonic plate activity and uplift, increasing the weathering of rock surfaces – and thus alkalinity in rivers, where it eventually flowed into the ocean to offset the CO2.

Computer models suggest that carbon dioxide is increasing through human activity some 100 to 1,000 times faster than the weathering processes that produce alkalinity can keep up, Waldbusser noted.

The Nature Climate Change study builds on previous research by Waldbusser and colleagues that outlined the mechanisms by which young bivalves create their shells after fertilization. In that study, the researchers found that young oysters and mussels had to build their shells within 48 hours to successfully begin feeding at a rate fast enough to survive, and that rate of shell-building would require a lot of energy. Thus in the presence of acidic water, they had to divert too much energy to shell-building and lacked the energy to swim and get food.

“The hatcheries call it the ‘lazy larvae syndrome’ because these tiny oysters just sink in the water and stop swimming,” Waldbusser said. “These organisms have really sensitive windows to ocean acidification – even more sensitive then we previously thought.”

In this latest study, the researchers used high-resolution images to analyze the development of oyster and mussel shells. They found that the organisms – which are about 1-100th the diameter of a human hair – actually build a complete calcium carbonate shell within six hours, about 12 hours after fertilization.

Throw off the ocean chemistry just a bit however, the researchers say, and a greater proportion of the shells do not develop normally. The ones that do are smaller, leading to potentially weaker organisms that will take longer to get to a size where they can settle into adult life.

“When the water is more saturated and has greater alkalinity it helps offset higher levels of carbon dioxide, ensuring that shell formation can proceed – and also making the shells bigger,” Waldbusser said. “This can have a significant impact on their survivability into the future.”

Shellfish hatcheries are altering their water chemistry based on the OSU research to create more favorable saturation state conditions for young bivalves; however this only helps organisms that can be cultured easily and increasing alkalinity in natural environments is a formidable challenge because of the amount required.

Other Oregon State researchers on the Nature Climate Change study included Burke Hales, Chris Langdon, Brian Haley, Paul Schrader, Elizabeth Brunner, Matthew Gray, Cale Miller and Iria Gimenez.

Media Contact: 

George Waldbusser, 541-737-8964; waldbuss@coas.oregonstate.edu

Multimedia Downloads










pacific oyster larvae

“Big Data” challenge seeks techie solution to science problem

NEWPORT, Ore. – Hatfield Marine Science Center researchers studying the marine food web have literally tens of millions of photographic images of small marine organisms called “plankton” to identify – a task that would take two lifetimes to finish manually.

Their hope is that the data science community can develop a computer algorithm that can do it automatically.

This week, Booz Allen Hamilton, a management and technology consultant firm, and Kaggle, the leading online data science competition community, announced the launch of the inaugural National Data Science Bowl to seek a solution to this “big data” challenge.

They are offering prize money totaling $175,000 to the creators of the top three algorithms – the largest such purse designated for a Kaggle competition benefitting social good. More information on the National Data Science Bowl is available at: http://www.datasciencebowl.com/

The 90-day competition will not only provide the data science community a chance to flex its creativity and brain power, it hopefully will solve a challenge facing marine science researchers who need to process massive amounts of data in hours, not decades. The winning algorithms will be donated to Oregon State University’s Hatfield Marine Science Center in Newport, Ore., for use by the scientific community.

“The National Data Science Bowl was born from the realization that, in order for the data science community to grow and thrive, it must be given opportunities to use its talents to benefit both business and society,” said Josh Sullivan, vice president of Booz Allen Hamilton’s Strategic Innovation Group. “We are extremely honored to partner with leaders such as Kaggle and the Hatfield Marine Science Center for this initiative.”

Robert Cowen, director of OSU’s Hatfield Marine Science Center, admits the task is daunting. In the summer of 2014, center researchers embarked on an 18-day expedition funded by the National Science Foundation to study interactions between larval fishes, their planktonic prey, and their predators in the Straits of Florida. With their specially designed imaging system, the In Situ Ichthyoplankton Imaging System (ISIIS), they collected 32 terabytes of images of plankton, fish and jellyfish.

That is an amount of data equivalent to 9 million MP3 songs, or enough music to listen to nonstop for 52 years.

Plankton are the fundamental biological building blocks of ocean ecosystems, yet scientists don’t know as much about them as they would like, including their diversity, interactions with other marine organisms, what triggers their blooms, and how they respond to climate change.

Advancing scientific knowledge about these tiny organisms begins with identifying and cataloguing them, Cowen pointed out.

“Many economically important animals – including fishes, crabs and other shellfish – are part of the plankton in their early life stages,” he said. “Much of what we study relates to understanding the relationship between larval fishes and their planktonic prey and predators.”

Ultimately, what scientists are interested in “is what drives variation in year-to-year population abundances of key fish species,” said Su Sponaugle, co-principle investigator on the project and a professor in the Department of Integrative Biology at OSU.

Jessica Luo, a doctoral student from the University of Miami’s Rosenstiel School of Marine and Atmospheric Sciences working with Cowen and Sponaugle at the Hatfield Center, said what the researchers need from the data science community is akin to “facial recognition” software for planktonic species.

“At a minimum, we’re aiming for an automatic classification system that can identify organisms to the class or order level, in general groups like fish or shrimps,” she said. “But with distinctly shaped or transparent organisms, we think it might be possible to get down to the genus or even species level. It will be difficult, because plankton are of all different sizes, shapes and orientations, and are moving in all different directions.”

Kelly Robinson, a post-doctoral researcher at the Hatfield Marine Science Center, said scientists would benefit greatly from an automated system that could provide near real-time data of plankton abundance and diversity while aboard ships.

“From a resource management perspective, it is less effective to analyze plankton abundance and diversity from four years earlier if the resource that depends on plankton responds rapidly to environmental change,” she said. “The current process of manually identifying organisms is time-consuming and laborious.  The ocean is changing rapidly and there is an urgency to learn as much as we can about plankton interrelationships to help ensure the health of our marine environments.”

For the competition, participants will be given access to nearly 100,000 underwater images and tasked with developing an algorithm that will identify and monitor them at a scale never before attempted. If successful, it will open up new doors to researchers and vastly improve the ability of resource managers to apply science to decision-making.

“The algorithms resulting from this competition will be applied to millions of images taken in a variety of marine environments, allowing cross-comparison and analysis at an unprecedented scale,” Cowen said.

Media Contact: 

Bob Cowen, 541-867-0211; Robert.Cowen@oregonstate.edu;

Jessica Luo, 650-387-5700; Jessica.luo@rsmas@miami.edu;

Kelly Robinson, 253-232-3899, Kelly.robinson@oregonstate.edu

Multimedia Downloads















No laughing matter: Nitrous oxide rose at end of last ice age

CORVALLIS, Ore. – Nitrous oxide (N2O) is an important greenhouse gas that doesn’t receive as much notoriety as carbon dioxide or methane, but a new study confirms that atmospheric levels of N2O rose significantly as the Earth came out of the last ice age and addresses the cause.

An international team of scientists analyzed air extracted from bubbles enclosed in ancient polar ice from Taylor Glacier in Antarctica, allowing for the reconstruction of the past atmospheric composition. The analysis documented a 30 percent increase in atmospheric nitrous oxide concentrations from 16,000 years ago to 10,000 years ago. This rise in N2O was caused by changes in environmental conditions in the ocean and on land, scientists say, and contributed to the warming at the end of the ice age and the melting of large ice sheets that then existed.

The findings add an important new element to studies of how Earth may respond to a warming climate in the future. Results of the study, which was funded by the U.S. National Science Foundation and the Swiss National Science Foundation, are being published this week in the journal Nature.

“We found that marine and terrestrial sources contributed about equally to the overall increase of nitrous oxide concentrations and generally evolved in parallel at the end of the last ice age,” said lead author Adrian Schilt, who did much of the work as a post-doctoral researcher at Oregon State University. Schilt then continued to work on the study at the Oeschger Centre for Climate Change Research at the University of Bern in Switzerland.

“The end of the last ice age represents a partial analog to modern warming and allows us to study the response of natural nitrous oxide emissions to changing environmental conditions,” Schilt added. “This will allow us to better understand what might happen in the future.”

Nitrous oxide is perhaps best known as laughing gas, but it is also produced by microbes on land and in the ocean in processes that occur naturally, but can be enhanced by human activity. Marine nitrous oxide production is linked closely to low oxygen conditions in the upper ocean and global warming is predicted to intensify the low-oxygen zones in many of the world’s ocean basins. N2O also destroys ozone in the stratosphere.

“Warming makes terrestrial microbes produce more nitrous oxide,” noted co-author Edward Brook, an Oregon State paleoclimatologist whose research team included Schilt. “Greenhouse gases go up and down over time, and we’d like to know more about why that happens and how it affects climate.”

Nitrous oxide is among the most difficult greenhouse gases to study in attempting to reconstruct the Earth’s climate history through ice core analysis. The specific technique that the Oregon State research team used requires large samples of pristine ice that date back to the desired time of study – in this case, between about 16,000 and 10,000 years ago.

The unusual way in which Taylor Glacier is configured allowed the scientists to extract ice samples from the surface of the glacier instead of drilling deep in the polar ice cap because older ice is transported upward near the glacier margins, said Brook, a professor in Oregon State’s College of Earth, Ocean, and Atmospheric Sciences.

The scientists were able to discern the contributions of marine and terrestrial nitrous oxide through analysis of isotopic ratios, which fingerprint the different sources of N2O in the atmosphere.

“The scientific community knew roughly what the N2O  concentration trends were prior to this study,” Brook said, “but these findings confirm that and provide more exact details about changes in sources. As nitrous oxide in the atmosphere continues to increase – along with carbon dioxide and methane – we now will be able to more accurately assess where those contributions are coming from and the rate of the increase.”

Atmospheric N2O was roughly 200 parts per billion at the peak of the ice age about 20,000 years ago then rose to 260 ppb by 10,000 years ago. As of 2014, atmospheric N2Owas measured at about 327 ppb, an increase attributed primarily to agricultural influences.

Although the N2O increase at the end of the last ice age was almost equally attributable to marine and terrestrial sources, the scientists say, there were some differences.

“Our data showed that terrestrial emissions changed faster than marine emissions, which was highlighted by a fast increase of emissions on land that preceded the increase in marine emissions,” Schilt pointed out. “It appears to be a direct response to a rapid temperature change between 15,000 and 14,000 years ago.”

That finding underscores the complexity of analyzing how Earth responds to changing conditions that have to account for marine and terrestrial influences; natural variability; the influence of different greenhouse gases; and a host of other factors, Brook said.

“Natural sources of N2O are predicted to increase in the future and this study will help up test predictions on how the Earth will respond,” Brook said.

Media Contact: 

Adrian Schilt, schilta@science.oregonstate.edu;

Ed Brook, 541-737-8197, brooke@geo.oregonstate.edu

Multimedia Downloads






Photo at left: Taylor Glacier in Antarctica

Scientists prepare for another wave of tsunami debris, possible invasives

NEWPORT, Ore. – Scientists monitoring incoming tsunami debris were taken aback last spring when some 30 fishing vessels from Japan washed ashore along the Pacific Northwest coast – many of them covered in living organisms indigenous to Asia.

Incidence of wayward skiffs and other tsunami debris subsequently declined sharply over the summer because of seasonal shifts in the winds. Now, those winds and currents have returned to their winter-spring pattern and scientists are expecting more items to wash ashore – even though it is nearing four years since a massive earthquake and tsunami shook Japan.

Blue mussels have been found on literally every boat that has washed ashore and some 200 different species overall have been documented on tsunami debris, according to John Chapman, an Oregon State University marine invasive species specialist at OSU’s Hatfield Marine Science Center.

“The crustaceans and bivalves are of particular concern because they could introduce new diseases, and compete with, displace or otherwise affect our oyster or mussel populations,” Chapman noted.

Just last week, a tote with numerous mussels washed up at Seal Rock – a sign that debris will still be arriving over the next few months. Of particular concern are boats and large objects that wash ashore carrying a variety of living organisms – including some new species that were not aboard the now-infamous dock that landed on Agate Beach near Newport, Ore., in June of 2012.

“We continue to find new organisms that we have never seen before,” Chapman said. “There isn’t as much diversity aboard the Japanese fishing vessels as there was on the dock, but each new species that we haven’t seen before is a cause for concern.

“No one can predict if these new species may gain a foothold in Northwest waters – and what impacts that may have,” he added.

Chapman and OSU colleague Jessica Miller have examined roughly a dozen boats that have washed ashore from the southern Oregon coast to the central Washington coast. Most of them were similar in style – long, narrow skiffs up to 30 feet in length, with no motors. As they drift from Asia to the West Coast of North America, they pick up a variety of organisms along the way.

“We’ve been surprised at the tenacity of some of these coastal Asian organisms that are arriving on the tsunami debris because the middle of the ocean isn’t the most biologically productive place for coastal species,” Miller said.

Among some of the species the Oregon State biologists have encountered over the past year are bat stars, which are sea stars that look like they have bat wings; striped knifejaw, fish that were found alive in at least one boat; and numerous small crustaceans.

Teams of scientists from around the North Pacific region, including Chapman and Miller, have identified more than 165 species that were aboard the original dock, and another 40-50 species that were found on other debris items, including boats. The rate of incoming debris should be slowing, the researchers say, but the arrival of so many boats last spring suggests that the threat is not over.

Invasive marine species are a problem on the West Coast, where they usually are introduced via ballast water from ships. OSU’s Chapman is well aware of the issue; for several years he has studied a parasitic isopod called Griffen’s isopod that was introduced from Asia. Griffen’s isopod infests mud shrimp in estuaries from California to Vancouver Island and is decimating their populations.

The OSU researchers are working with other scientists on the West Coast, who are attempting to genetically identify all of the species arriving on tsunami debris using genomic sampling – work led by Jon Geller of Moss Landing Marine Laboratory. Geller and his students also are collecting samples of marine life in Northwest coastal and estuary communities to look for evidence that non-native species may have established.

“We’re also doing a lot of old-fashioned looking,” Chapman said. “But new species can be difficult to identify if you aren’t searching for them directly in the first place. So we’ve identified three species that are particularly abundant in Asia, appear highly suited for invading the open coast, and would be readily apparent to searchers looking in the right place.”

These species include a hydroid, Eutima; a fly, Telmatogeton; and an amphipod crustacean, Caprella cristibrachium.

Media Contact: 

John Chapman, 541-867-0235;

Jessica Miller, 541-867-0381

Multimedia Downloads





OSU marine ecologist chosen as first U.S. Science Envoy for Oceans

WASHINGTON, D.C. – Building on a new commitment to improved marine protection and management, the U.S. Department of State has chosen Jane Lubchenco as the first Science Envoy for the Oceans.

Officials today named the fourth cohort of the U.S. Science Envoy Program, which was begun by President Obama in 2009. For the first time, one of the eminent scientists involved in the initiative has a specific focus on the world’s oceans.

Lubchenco is the University Distinguished Professor of Marine Biology at Oregon State University and former administrator of the National Oceanic and Atmospheric Administration. She is an international expert on marine ecology, environmental science and climate change.

“This new focus on the oceans is a strong statement by the Secretary of State and President Obama about the importance of our oceans to people around the world,” Lubchenco said. “They understand that science-based understanding, policy and management hold the key to a healthy, productive and resilient ocean, people and communities.”

Three other science envoys were also announced to focus on various nations and areas of expertise, including Geraldine Richmond, presidential chair and professor of chemistry at the University of Oregon.

In this program, these “envoys” travel internationally as private citizens, but will also advise and share their insights with the White House, U.S. Department of State and the U.S. science community about science-based collaboration, innovation and economic growth.

Lubchenco said her appointment builds on progress made earlier this year at the Our Ocean Conference led by Secretary of State John Kerry.

Noting that she was “deeply honored to be named to the position,” Lubchenco said she hopes to work with international colleagues to identify opportunities for science-based policies, building scientific capacity and exchanging findings.

“Around the world, the ocean is changing,” Lubchenco said. “Climate change, ocean acidification, overfishing, habitat destruction and pollution are all critical concerns. But we believe it’s possible to identify smart, science-based approaches that can help cope with many of these challenges.”

Science might help transform small-scale fisheries that are essential to the livelihoods and food security of millions of people into more sustainable and profitable fisheries, Lubchenco said. Marine protected areas could more effectively serve as “fish banks” to replenish fisheries, while also protecting habitats and biodiversity. And various steps could be taken to buffer against the forces of climate and other environmental changes.

“We haven’t yet decided on specific projects or regions,” Lubchenco said, “but we’re going to explore all the ways in which science can help create a healthy ocean, healthy people and a prosperous economy.

Lubchenco, who does research in the Department of Integrative Biology of the OSU College of Science, also said the new position will fit well with the Marine Studies Initiative at OSU, and provide opportunities for faculty and students to become more involved in new research and initiatives.

Media Contact: 

 Jane Lubchenco, Lubchenco@oregonstate.edu

Multimedia Downloads

Jane Lubchenco