OSU receives full accreditation from international association

CORVALLIS, Ore. – Oregon State University has been awarded full accreditation for the care and facilities of its animal research and teaching programs by the Association for Assessment and Accreditation of Laboratory Animal Care, International.

AAALAC accreditation is recognized internationally as the “gold standard” for animal care and use programs, OSU officials say.

“Our participation in the rigorous AAALAC accreditation process demonstrates our commitment to humane and responsible animal use in research, instruction and testing, as well as dedication to excellent science,” said Rick Spinrad, OSU’s vice president for research.

OSU becomes just the 20th land grant institution with complete institutional accreditation. The comprehensive overview and site evaluation by the association accreditation team included facilities and processes of the university’s College of Agricultural Sciences, Agricultural Experiment Station, College of Veterinary Medicine, Hatfield Marine Science Center, Oregon Hatchery Research Center, and the entire campus animal research endeavor.

There are 854 accredited institutions or units worldwide; of these, OSU is among the 60 largest.

Story By: 

Rick Spinrad, 541-737- 0664

Tai chi may help patients with Parkinson’s disease regain balance, reduce falls

CORVALLIS, Ore. – A newly published study has found that tai chai, an ancient Chinese martial art, may help Parkinson’s disease patients not only regain strength and balance, but also reduce potentially life-threatening falls.

The study, conducted by researchers in Corvallis, Salem, Eugene and Portland, Oregon, is in the current issue of The New England Journal of Medicine.

In the study, Parkinson’s patients were divided into three groups. One group participated in a resistance training program with weighted vests and weights, designed by Oregon State University researcher Gianni Maddalozzo. Another, which acted as the control group, did stretching classes. The third group took a modified tai chi class designed by Fuzhong Li, the lead author of the study. Li is with the Oregon Research Institute in Eugene and earned his doctorate in the exercise and sport science program at OSU.

Each group did a 60-minute class twice a week for 24 weeks. The patients in the tai chi group had significantly better balance, had better overall physical functioning and had a much lower incidence of falls. In fact, participants in the tai chi group had 67 percent fewer falls than those in the stretching group.

Maddalozzo, a coauthor on the study, said the reduced rate of falling is a significant finding.

“Falls can be detrimental, not only to those with Parkinson’s, but for many people including aging populations, diabetics, people with osteoporosis,” he said. “More than 30 percent of serious falls occur in the home, so what we tend to see is that people develop a serious fear of falling that leads to a more sedentary lifestyle, which is the opposite of what they should be doing.”

Parkinson’s is a disorder of the nervous system that affects motor control and movement. Patients affected by the disease have substantially impaired balance that can lead to serious if not deadly falls. Lead author Li practices tai chi, a martial art marked by slow, focused movements focused on meditation and relaxation.

 “Clinically, as an effective and safe exercise regimen, tai chi may be used as an add-on to existing physical therapy or rehabilitation programs as part of a balance training protocol or to address some of the key movement disorders in Parkinson’s,” Li said.

Maddalozzo said because tai chi has been shown to help Parkinson’s patients restore balance and regain strength, he believes it could be useful to a wide variety of people. Li agrees, saying that researchers have found positive results with older adults, including reducing falls by 47 to 55 percent.

“Tai chi has also shown to be beneficial in reducing pain in people with fibromyalgia and osteoarthritis, ameliorating sleep disturbances, and helping to decrease blood pressure,” he said. “Overall, accumulating evidence suggests that tai chi may be efficacious as a behavioral medicine approach for the prevention and rehabilitation of chronic diseases and dysfunctional mental and physical conditions commonly associated with advancing age.”

Researchers from the Oregon Medical Group, the PeaceHealth Medical Group–Oregon, Willamette University, BPM Physical Therapy Center, Oregon Health and Science University and Oregon Neurology Associates contributed to this study, which was funded by the National Institute of Neurological Disorders and Stroke.

Story By: 

Gianni Maddalozzo, 541-737-6802

OSU researcher part of Mars rover science team

CORVALLIS, Ore. – An Oregon State University researcher, who has spent much of his recent career exploring life in volcanic rocks, has been selected as a participating scientist for the new Mars expedition that may bring scientists closer to discovering life on another planet.

NASA launched the Mars Science Laboratory on Nov. 26 of last year and the mission includes a rover named “Curiosity” that will explore the Martian landscape after landing there this August.

Martin Fisk and 28 other researchers selected as participating scientists will join other science-team members and engineers in guiding Curiosity. The mission will investigate whether an area of Mars has ever been conducive to harboring life, but is not designed for detecting life, NASA officials say.

“One goal is to identify key samples of the rock and soil and identify those areas that might represent habitable environments,” Fisk said, “so that a future mission can select the right rocks to be returned to Earth.”

Fisk is a professor in the College of Earth, Ocean, and Atmospheric Sciences at Oregon State. He was part of a research team that in 1998 discovered evidence of rock-eating microbes living nearly a mile beneath the ocean floor. Trails and tracks in the glassy basalt contained microbial DNA. The rocks have the basic elements for life, he pointed out, include carbon, phosphorous and nitrogen – and needed only water to complete the formula. Groundwater seeping through the ocean floor could easily provide that.

“Under those conditions,” Fisk said at the time, “microbes could live beneath any rocky planet.”

The Mars Science Laboratory science payload will not have the capacity to detect tracks and trails of the type Fisk has studied; however it does have the capacity to detect environments similar to those where tracks and trails formed on Earth.

Five years ago, Fisk examined part of a meteorite that originated from Mars and found the same kinds of tracks and trails left by the subterranean microbes on Earth, but he was unable to locate DNA in the Martian sample. More than 30 such meteorites that have originated from Mars have been identified; they carry a unique chemical signature based on the gases trapped within. Scientists speculate that the rocks were “blasted” off the planet when Mars was struck by asteroids or comets, eventually entering the Earth’s orbit and crashing to the ground.

One such meteorite is called Nakhla, which landed in Egypt in 1911 and provided the source material for Fisk’s study. Scientists dated the igneous rock fragment from Nakhla, which weighs about 20 pounds, at 1.3 billion years in age. They believe it was exposed to water about 600 million years ago; however, if life was present then, evidence for it has not yet been found in the meteorite.

Fisk and his colleagues have also found bacteria in a 4,000-foot hole drilled into volcanic rock on the island of Hawaii near Hilo, fueling further speculation that life may exist below the surface of Mars. And late in 2011, he and his colleagues from OSU and Portland State University reported the discovery of rock-eating microbes in a lava tube near Oregon’s Newberry Crater. What made that discovery interesting was the microbes consumed organic material (sugar) in the laboratory, but when the scientists lowered the temperature and oxygen levels to near Mars-like conditions, the microbes began consuming olivine – a common material found in the Newberry volcanic rocks and on Mars.

Scientists believe Mars historically has had life-sustaining water, and may still have.

“Mars is thought to have gone through three major stages,” Fisk said. “Initially, the planet had water near the surface, and then it evaporated and the surface was covered by sulfate salts, which are still preserved today. Now it appears to be in an oxidative phase, where there is ice as well as a very real possibility that water exists below the surface.”

Fisk will spend a couple of weeks in March and June at the Jet Propulsion Laboratory in Pasadena, Calif., where he and other participating scientists will familiarize themselves with the operation of the Curiosity rover and its 10 instruments. For three months after the Mars Science Laboratory lands, he and the other members of the science team will provide daily instructions to Curiosity. Then for the duration of the two-year mission, the team will meet online to decide on daily operations and long-term plans.

Ideally, the scientists would like to identify organic matter in the shallow subsurface, Fisk said, but it would be a major step forward to document chemical differences in the rock and be able to visually identify them by color, texture or layering so they can more easily locate future sites for retrieval.

The rover will include a drill and scoop at the end of its robotic arm to gather soil and powdered samples of rock interiors, and instrumentation to analyze the samples inside the rover. It will also include a laser for vaporizing rock and checking its elemental composition from a distance.

“This is a huge project and the scientists and engineers have been developing the instrumentation for 6-8 years,” Fisk said. “There are 10 instruments on the rover and each instrument has a science team of 10 to 20 people, along with the community of (29) scientists invited to participate.

“It should make for a fascinating summer.”

The mission is scheduled to touch down in August and place the rover Curiosity near the foot of a mountain inside Gale Crater on Aug. 6. If all goes according to plan, the rover will then investigate the planet for nearly two years.

Story By: 

Martin Fisk, 541-737-1458

Multimedia Downloads

Fisk and microbe track Martin Fisk

New study: Climate sensitivity to CO2 more limited than extreme projections

CORVALLIS, Ore. – A new study suggests that the rate of global warming from doubling of atmospheric carbon dioxide may be less than the most dire estimates of some previous studies – and, in fact, may be less severe than projected by the Intergovernmental Panel on Climate Change report in 2007.

Authors of the study, which was funded by the National Science Foundation’s Paleoclimate Program and published online this week in the journal Science, say that global warming is real and that increases in atmospheric CO2 will have multiple serious impacts.

However, the most Draconian projections of temperature increases from the doubling of CO2 are unlikely.

“Many previous climate sensitivity studies have looked at the past only from 1850 through today, and not fully integrated paleoclimate date, especially on a global scale,” said Andreas Schmittner, an Oregon State University researcher and lead author on the Science article. “When you reconstruct sea and land surface temperatures from the peak of the last Ice Age 21,000 years ago – which is referred to as the Last Glacial Maximum – and compare it with climate model simulations of that period, you get a much different picture.

“If these paleoclimatic constraints apply to the future, as predicted by our model, the results imply less probability of extreme climatic change than previously thought,” Schmittner added.

Scientists have struggled for years trying to quantify “climate sensitivity” – which is how the Earth will respond to projected increases of atmospheric carbon dioxide. The 2007 IPCC report estimated that the air near the surface of the Earth would warm on average by 2 to 4.5 degrees (Celsius) with a doubling of atmospheric CO2 from pre-industrial standards. The mean, or “expected value” increase in the IPCC estimates was 3.0 degrees; most climate model studies use the doubling of CO2 as a basic index.

Some previous studies have claimed the impacts could be much more severe – as much as 10 degrees or higher with a doubling of CO2 – although these projections come with an acknowledged low probability. Studies based on data going back only to 1850 are affected by large uncertainties in the effects of dust and other small particles in the air that reflect sunlight and can influence clouds, known as “aerosol forcing,” or by the absorption of heat by the oceans, the researchers say.

To lower the degree of uncertainty, Schmittner and his colleagues used a climate model with more data and found that there are constraints that preclude very high levels of climate sensitivity.

The researchers compiled land and ocean surface temperature reconstructions from the Last Glacial Maximum and created a global map of those temperatures. During this time, atmospheric CO2 was about a third less than before the Industrial Revolution, and levels of methane and nitrous oxide were much lower. Because much of the northern latitudes were covered in ice and snow, sea levels were lower, the climate was drier (less precipitation), and there was more dust in the air.

All these factor, which contributed to cooling the Earth’s surface, were included in their climate model simulations.

The new data changed the assessment of climate models in many ways, said Schmittner, an associate professor in OSU’s College of Earth, Ocean, and Atmospheric Sciences. The researchers’ reconstruction of temperatures has greater spatial coverage and showed less cooling during the Ice Age than most previous studies.

High sensitivity climate models – more than 6 degrees – suggest that the low levels of atmospheric CO2 during the Last Glacial Maximum would result in a “runaway effect” that would have left the Earth completely ice-covered.

“Clearly, that didn’t happen,” Schmittner said. “Though the Earth then was covered by much more ice and snow than it is today, the ice sheets didn’t extend beyond latitudes of about 40 degrees, and the tropics and subtropics were largely ice-free – except at high altitudes. These high-sensitivity models overestimate cooling.”

On the other hand, models with low climate sensitivity – less than 1.3 degrees – underestimate the cooling almost everywhere at the Last Glacial Maximum, the researchers say. The closest match, with a much lower degree of uncertainty than most other studies, suggests climate sensitivity is about 2.4 degrees.

However, uncertainty levels may be underestimated because the model simulations did not take into account uncertainties arising from how cloud changes reflect sunlight, Schmittner said.

Reconstructing sea and land surface temperatures from 21,000 years ago is a complex task involving the examination of ices cores, bore holes, fossils of marine and terrestrial organisms, seafloor sediments and other factors. Sediment cores, for example, contain different biological assemblages found in different temperature regimes and can be used to infer past temperatures based on analogs in modern ocean conditions.

“When we first looked at the paleoclimatic data, I was struck by the small cooling of the ocean,” Schmittner said. “On average, the ocean was only about two degrees (Celsius) cooler than it is today, yet the planet was completely different – huge ice sheets over North America and northern Europe, more sea ice and snow, different vegetation, lower sea levels and more dust in the air.

“It shows that even very small changes in the ocean’s surface temperature can have an enormous impact elsewhere, particularly over land areas at mid- to high-latitudes,” he added.

Schmittner said continued unabated fossil fuel use could lead to similar warming of the sea surface as reconstruction shows happened between the Last Glacial Maximum and today.

“Hence, drastic changes over land can be expected,” he said. “However, our study implies that we still have time to prevent that from happening, if we make a concerted effort to change course soon.”

Other authors on the study include Peter Clark and Alan Mix of OSU; Nathan Urban, Princeton University; Jeremy Shakun, Harvard University; Natalie Mahowald, Cornell University; Patrick Bartlein, University of Oregon; and Antoni Rosell-Mele, University of Barcelona.

Story By: 

Andreas Schmittner, 541-737-9952

Unseen devastation from tsunamis can destroy coral reefs

CORVALLIS, Ore. – The large tsunami two years ago in American Samoa has given scientists a chance to examine an issue that often seems of little significance in the immediate aftermath of these massive disasters – the little-seen, rarely studied but often frightening damage done to offshore coral reefs.

A new study by scientists from Oregon and Michigan, done with a remotely operated undersea vehicle, or ROV, surveyed large areas of that area’s coral reefs, and revealed significant damage from sediment, debris, and the enormous forces of both the incoming and outgoing waves.

Corals are delicate living organisms that can only survive in shallow, nearshore areas where they get adequate sunlight. That’s also where the tsunami wave action is most violent, and they are especially vulnerable to its impacts – but often ignored in the understandable concern about terrestrial damage and loss of life.

“Very little until now has been known about the impact of tsunamis on coral reefs,” said Solomon Yim, a professor of structural and ocean engineering at Oregon State University and co-author of the study, which was supported by the National Science Foundation.

“These are huge forces and often these events have happened in remote locations of the world where we had little opportunity to study them,” Yim said. “American Samoa gave us the chance to use some very sophisticated equipment to gain a much better understanding of what damage is being done to coral reefs, and what might be done in the future to help reduce it.”

On Sept. 29, 2009, a magnitude 8.3 subduction zone earthquake near American Samoa sent waves crashing into many islands, destroying buildings and eroding coastlines with waves up to 20 feet high that came almost a mile inland and killed more than 180 people. It was the world’s largest earthquake that year.

The onshore devastation was heavy. Although not seen at the time, so was the underwater damage to coral reefs.

“We found tires, clothing, sheet metal roofs, and window frames littered on the reefs,” Yim said. “Much of the coral was broken or covered with sediments, and some of it died as a result. Both the run-up and run-down of the tsunami waves were very destructive. It will probably take years to decades for the reef to recover.”

The sediments and debris carried by the rapid drawdown back into the sea can be harmful to the delicate marine ecosystem, the researchers noted in their report. They introduce bacteria and toxic chemicals, erode the seafloor and destroy the reef.

Work with the ROV examined the reefs five weeks after the tsunami, when they were still deeply scarred. Some corals were ripped up and tossed onshore, others broken and sucked back into deep water. In either case they would not survive. Hours of video footage were made of the damage, and the research indicated the drawdown of the water was even more destructive than the incoming waves.

Most of the damage and debris was found in comparatively shallow ocean waters, about 30 to 70 feet deep.

Since so little is known about the damage to coral reefs by tsunamis, more studies are needed to examine the influence of water depth, three-dimensional effects, wave-wave interactions and coral strengths, the researchers said.

“In the aftermath of a destructive tsunami, there may be some things we could do to aid reef recovery after the more immediate needs onshore are tended to,” Yim said. “There’s probably not much we can do about the fine sediments that bury the coral, but we could perhaps clean up some of the larger debris and building materials like sheet metal roofing that cover up the coral. It’s a significant challenge.”

Collaborating on this research, which was published in Marine Geology, a professional journal, were Y.L. Young and D.L. Witt, scientists from the University of Michigan. The research was funded by the National Science Foundation and the video was produced by Paul Hillman of the National Oceanic and Atmospheric Administration.

Story By: 

Solomon Yim, 541-737-6894

OSU establishes center for Latino/Latina studies

CORVALLIS, Ore. – Oregon State University has established a new Center for Latino/Latina Studies and Engagement, and named a prominent faculty member as interim director.

Susana Rivera-Mills, a professor of Spanish and diversity advancement, will direct the new center, known as CL@SE (pronounced claw-SAY), which is designed to meet the research and outreach needs relating to Oregon’s growing Latino population. Rivera-Mills also is the associate dean of the College of Liberal Arts, and has been an active leader on the OSU campus in advancing diversity.

The new center emerged from discussions by leadership from OSU, the Oregon University System, and the State Board of Higher Education, according to Sabah Randhawa, OSU provost and executive vice president.

“Research and outreach on issues surrounding the Latino population are critical to enable success of this growing population segment in Oregon,” Randhawa said. “For OSU, the work will directly contribute to enhancing student retention and success of Latino students, and of all under-represented minorities.”

The new center will integrate studies of Latino communities in the United States with analyses of their histories, politics, cultures and societies, officials say. Among the research themes that will be explored are colonialism, race, gender, nationalism, globalism, immigration, economic development, language and identity.

“The center will promote engaged research and outreach devoted to advancing knowledge and understanding of Latino contributions and the issues surrounding this population in our state, region and beyond,” Rivera-Mills said. “I am enthusiastic about the opportunities. Our action-based agenda will promote economic, political, physical and educational well-being and development.”

Rivera-Mills has been on the OSU faculty since 2007, and has mentored Latino students and been involved with the university’s internationalization and transnational efforts, as well as been a leader in student engagement and global learning initiatives. She specializes in Spanish language maintenance and loss, sociolinguistics, and Spanish as a first and second language.

CL@SE will be affiliated with both the OSU Provost’s Office and the Research Office, officials say.

“Our recently developed research agenda emphasizes relevance, integration, collaboration and leadership,” said Richard Spinrad, OSU’s vice president for research. “Its principles support team-based research, student involvement, partnership with communities, and transdisciplinary research. CL@SE has at its core all of these principles and reflects the values of the OSU research community.”

Scott Reed, OSU’s vice provost for University Outreach and Engagement, said Rivera-Mills is ideally suited to direct the launch of the new center. “The advancement of social justice is among the important things that will be fostered with Susana’s able leadership,” Reed said.

CL@SE will collaborate with several units on campus, especially the colleges of liberal arts, science and education, and Outreach and Engagement.

Story By: 

Rick Spinrad, 541-737-0662

Multimedia Downloads

Susana Rivera-Mills
Susana Rivera-Mills

OSU Diversity Summit features poet Joaquín Zihuatanejo and TV's Nancy Giles

Acclaimed performers Joaquin Zihuatanejo and Nancy Giles, who use their talents to create thought-provoking dialogue on society and social justice, will give public performances at Oregon State University during the OSU Diversity Summit being held Nov. 2-3.

On Wednesday, Nov. 2, Zihuatanejo, a poet, spoken word artist and award-winning teacher, will perform his spoken word routine. Giles, best known for her work as a comedian, actress and CBS Morning contributor, will also speak at the event and answer questions from the audience.

The event is free and open to the public as part of the OSU Diversity Summit. Zihuatanejo’s performance begins at 6:30 p.m., followed by Giles at 7 p.m. Both segments will be in the Austin Auditorium of LaSells Stewart Center, 875 S.W. 26th St., Corvallis.

Zihuatanejo was born and raised in the barrio of East Dallas, Texas. He strives to capture the duality of the Chicano culture in his poems. His sometimes brutal but honest work depicts the essence of barrio life and the dreams of a boy who found refuge in stories and poems. In 2008, Zihuatanejo won the Individual World Poetry Slam Championship, besting 77 poets representing cities all over North America, France and Australia.

Giles has found acclaim from TV audiences with her social commentaries and from theater fans with her solo pieces. She has been called a funny, yet provocative observer of today’s world and has made her mark dismantling misconceptions about race, feminism and sexism. She has also offered her social and political perspectives to viewers of The Today Show and Hardball with Chris Matthews. In 2010, Giles performed in the off-Broadway production of “Love, Loss, and What I Wore,” written by Nora and Delia Ephron.

The OSU Diversity Summit is sponsored by the Division of Student Affairs. For more information on the public event or the OSU Diversity Summit, visit http://blogs.oregonstate.edu/care

Story By: 

Jennifer Viña, 541-737-8187

Debris from Japanese tsunami slowly making its way toward West Coast

CORVALLIS, Ore. – A massive trail of debris from the devastating tsunami that struck Japan in March of 2011 is slowly making its way across the Pacific Ocean en route to the West Coast of the United States, where scientists are predicting it will arrive in the next two to three years – right on schedule.

The mass of debris, weighing millions of tons and forming a trail a thousand miles long, will likely strike Oregon and Washington, according to models based on winds and currents.

But new accounts of where the trail has progressed suggest that at least some of that debris may peel off and enter the infamous “Garbage Patch,” a huge gyre in the Pacific where plastic and other debris has accumulated over the years, according to Jack Barth, an Oregon State University oceanographer and an expert on Pacific Ocean currents and winds.

“Recent reports of debris are from farther south than the axis of the main ocean currents sweeping across the north Pacific toward Oregon,” said Barth, a professor in OSU’s College of Oceanic and Atmospheric Sciences. “This means a fair amount of debris may enter the patch. We should still see some of the effects in Oregon and Washington, but between some of the materials sinking, and others joining the garbage patch, it might not be as bad as was originally thought.”

Barth said as time goes on, more of the materials will sink as they become waterlogged, or become heavy from barnacles and other organisms growing on them.

Conversely, he said, items of debris that are higher in the water and can be caught by the winds – such as small boats – may arrive more quickly than anticipated. The “westerlies,” as these winds are called, blow straight across the Pacific Ocean from Japan to the Pacific Northwest coast “and they can be pretty strong,” Barth pointed out.

Recent reports that the debris is ahead of schedule don’t match Barth’s calculations, which suggest that the bulk of the debris should arrive along the West Coast in 2013 to 2014. It appears to be moving about 10 miles a day, he said.

Fears of contamination from the debris are largely unfounded, Barth said. The OSU scientist just returned from a meeting of PICES - the North Pacific Marine Science Organization, where Japanese scientists reported that radiation levels in the waters off the Japanese coast were below a safe threshold.

“The dilution power of the Pacific Ocean is enormous,” Barth said.

Barth led a five-year study a decade ago looking at how water moves off the Oregon coast in the aftermath of the 1999 shipwreck of the New Carissa. Hundreds of gallons of oil leaked from the vessel and despite sophisticated ocean current models, the fuel appeared in places that surprised scientists.

Although the westerlies will bring some of the debris toward the Northwest coast, what happens as it arrives near the shore will depend on the time of year, Barth said.

“One thing we learned from the New Carissa, is that when things get dumped off the Oregon coast in winter, they go quickly northward,” Barth pointed out. “If the debris arrives in the winter, some of it may get pushed up to Vancouver Island. If it gets here in the summer, it is more likely to drift down to the south.”

Local winds can further confuse the issue, keep debris off-shore in the summer when the winds are from the north, and pushing it on-shore in the winter.

Story By: 

Jack Barth, 541-737-1607

International Film Festival to showcase variety of cultures Nov. 7-11

CORVALLIS, Ore. – The third International Film Festival, showcasing a diverse array of movies from international cultures, will be held Nov. 7-11 in Corvallis.

The International Film Festival started in 2009, organized by faculty teaching film courses in the foreign languages and literature areas at Oregon State University to showcase the variety of international cultures. Now the festival has moved to the Darkside Cinema to accommodate growing interest from the community.

Admission is free and open to the public. All screenings are held at 6 and 8 p.m. at the Darkside Cinema, 215 S.W. 4th St. in Corvallis.

Here is the schedule of film screenings:

Monday, Nov. 7: “Last Train Home,” China, 2009. Directed by Lixin Fan, this documentary focuses on a family that is part of the 130 million Chinese citizens who have left their provincial village to take jobs at factories in the city.

Tuesday, Nov. 8: “Andalucia,” France, 2007. This drama directed by French-Senegalese filmmaker Alain Gomis is an intimate study in identity loss, disenfranchisement, and the search for inner peace involving a Frenchman of Algerian origin who longs to find his place in modern France.

Wednesday, Nov. 9: “Toilet,” Japan, 2010. Director Naoko Ogigami brings his deadpan humor to the big screen with this tale of an emotionless engineer who finds his life turned upside-down by his quirky family.

Thursday, Nov. 10: “Schlafkrankheit,” Germany, 2011. Also known as “Sleeping Sickness,” this German film written and directed by Ulrich Köhler concerns the intertwined lives of two doctors and their work concerning the illness of the title. The film won the Silver Bear at the Berlin International Film Festival.

Friday, Nov. 11: “Un Novio para Yasmina,” Spain, 2008. This romantic comedy follows the exploits of Lola, who loves weddings but suspects that her fiancé Jorge has fallen in love with Yasmina. Yasmina is in a hurry to get married to Javi, a police officer who prefers to take his time.

Story By: 

Sebastian Heiduschke, 541-737-3957

Multimedia Downloads

LAST TRAIN HOME a film by Lixin Fan
Last Train Home
Un Novio para Yasmina Ebbo (Pierre Bokma) provoziert Alex (Jean-Christophe Folly) mit seinem Desinteresse an der Evaluierung.
Sleeping Sickness

International Forest Film Festival to begin in Corvallis

CORVALLIS, Ore. – The International Forest Film Festival will begin in Corvallis on Monday, Oct. 24, and continue through January, in celebration of the United Nation’s International Year of Forests 2011.

Films will be shown every other week, all of which are free and open to the public. The festival is sponsored by the OSU College of Forestry, International Forestry Students Association, Student Sustainability Initiative, Majestic Theatre and Corvallis Sustainability Coalition.

The 16 films are winners in six categories, selected from 160 films submitted from 30 countries. The festival is a collaboration of the United Nations Forum on Forests and the Jackson Hole Wildlife Film Festival.

Opening night will feature two films:  “Of Forests and Men,” commissioned by the United Nations to kick off Forests 2011; and “The Queen of Trees,” winner of the best in festival award. They will be shown on two occasions, Oct. 24 at 7 p.m. at the Majestic Theatre, and Oct. 26 at 7 p.m. in Richardson Hall Room 107 on the OSU campus.

“The International Forest Film Festival offers a unique opportunity to bring the issues and objectives of Forests 2011 to a global audience,” said Jan McAlpine, director of the United Nations Forum on Forests Secretariat. “The power of cinematic art is universal. It connects with people all over the world on a personal level.”

The films are part of a global effort to raise awareness of the importance of forests, their relationship with people and the planet. Organizers say they hope to inspire a sense of personal responsibility and stewardship for a green, more equitable and sustainable future.

More information, the complete screening schedule in Corvallis and descriptions of each film are available online at http://bit.ly/rbjZbp

Following the Corvallis screenings, the films will be available for OSU, K-12 or other public screenings.  Additional titles may be ordered from the International Forest Film Festival at http://bit.ly/pR6mbY

Story By: