OREGON STATE UNIVERSITY

hatfield marine science center

Science Policy Forum: Researchers advocate for climate adaptation science

CORVALLIS, Ore. – An international team of researchers says in a new paper that climate science needs to advance to a new realm – more practical applications for dealing with the myriad impacts of climate variability.

The scientific capability already exists as does much of the organizational structure, they say, to begin responding to emerging climate-related issues ranging from declining snowpack, to severe storms, to sea level rise. What is missing is better engagement between the scientific community and the stakeholders they are seeking to inform.

Their paper is being published on Friday in the Policy Forum section of the journal Science.

“Adaptation is required in virtually all sectors of the economy and regions of the globe,” they wrote. “However, without the appropriate science delivered in a decision-relevant context, it will become increasingly difficult – if not impossible – to prepare adequately.”

Philip Mote, an Oregon State University climate scientist and co-author on the paper, said climate adaptation science involves trans-disciplinary research to understand the challenges and opportunities of climate change – and how best to respond to them.

“What we need is more visibility to gain more inclusiveness – to bring into play the private sector, resource managers, universities and a host of decision-makers and other stakeholders,” said Mote, who directs the Oregon Climate Change Research Institute at Oregon State. “The stakeholders need to know our scientific capabilities, and we need to better understand their priorities and decision-making processes.”

Oregon State is among the national leaders in climate adaptation science. In addition to the Oregon Climate Change Research Institute, the university has two regional climate centers – one established by the National Oceanic and Atmospheric Administration to work with municipalities, utilities, emergency management organizations and state and federal agencies; the other by the Department of the Interior to work primarily with federal and state agencies, and non-governmental organizations.

Mote, who is involved with all three centers, said work with stakeholders is gaining traction, but the gap that exists between scientists and decision-makers is still too large.

“The centers here and elsewhere around the country are driven by stakeholder demands, but that needs to reach deeper into the research enterprise,” Mote said. “We’re working with some water districts, forest managers and community leaders on a variety of issues, but that’s just the tip of the iceberg.”

Richard Moss, a senior scientist with the U.S. Department of Energy’s Pacific Northwest National Laboratory, said the Science article grew out of a NASA-funded workshop held in 2012 at the Aspen Global Change Institute in Colorado, which focused on how to improve support for decision-making in the face of a changing climate.

“Traditionally, we think that what society needs is better predictions,” said Moss, who was lead author on the Science article. “But at this workshop, all of us – climate and social scientists alike – recognized the need to consider how decisions get implemented and that climate is only one of many factors that will determine how people will adapt.”

OSU’s Mote said examples abound of issues that need the marriage of stakeholders and climate scientists. Changing snowmelt runoff is creating concerns for late-season urban water supplies, irrigation for agriculture, and migration of fish. An increasing number of plant and animal species are becoming stressed by climate change, including the white bark pine and the sage grouse. Rising sea levels and more intense storms threaten the infrastructure of coastal communities, which need to examine water and sewer systems, as well as placement of hospitals, schools and nursing homes.

Mote, Moss and their colleagues outline a comprehensive approach to research in the social, physical, environmental, engineering and other sciences. Among their recommendations for improvement:

  • Understand decision processes and knowledge requirements;
  • Identify vulnerabilities to climate change;
  • Improve foresight about exposure to climate hazards and other stressors;
  • Broaden the range of adaptation options and promote learning;
  • Provide examples of adaptation science in application;
  • Develop measures to establish adaptation science.

One such measure could be the development of a national institution of climate preparedness in the United States comprised of centers for adaptation science aimed at priority sectors.

“More broadly,” the authors wrote in Science, “support for sustained, use-inspired, fundamental research on adaptation needs to be increased at research agencies. A particular challenge is to develop effective approaches to learn from adaptation practice as well as published research. Universities could provide support for sustained, trans-disciplinary interactions. Progress will require making a virtue of demonstrating tangible benefits for society by connecting research and applications.”

Media Contact: 
Source: 

Philip Mote, 541-737-5694; pmote@coas.oregonstate.edu; Richard Moss, 301-314-6711; rhm@pnnl.gov

Climate report: Wildfires, snowmelt, coastal issues top Northwest risks

CORVALLIS, Ore. – The Northwest is facing increased risks from the decline of forest health, earlier snowmelt leading to low summer stream flows, and an array of issues facing the coastal region, according to a new climate assessment report.

Written by a team of scientists coordinated by the Oregon Climate Change Research Institute (OCCRI) at Oregon State University, the report is the first regional climate assessment released since 1999. Both the 1999 report and the 2013 version were produced as part of the U.S. National Climate Assessment; both Washington and Oregon produced state-level reports in 2009 and 2010.

OSU’s Philip Mote, director of the institute and one of three editors of the 270-page report (as well as the 1999 report), said the document incorporates a lot of new science as well as some additional dimensions – including the impact of climate change on human health and tribal issues. A summary of the report is available online at: http://occri.net/reports

Amy Snover, director of the Climate Impacts Group at the University of Washington, said there are a number of issues facing the Northwest as a result of climate change.

“As we looked across both economic and ecological dimensions, the three that stood out were less snow, more wildfires and challenges to the coastal environment and infrastructure,” said Snover, who is one of the editors on the report.

The report outlines how these three issues are affected by climate change.

“Studies are showing that snowmelt is occurring earlier and earlier and that is leading to a decline in stream flows in summer,” Mote said. “Northwest forests are facing a huge increase in wildfires, disease and other disturbances that are both direct and indirect results of climate change. And coastal issues are mounting and varied, from sea level rise and inundation, to ocean acidification. Increased wave heights in recent decades also threaten coastal dwellings, roads and other infrastructure.”

OCCRI’s Meghan Dalton, lead editor on the report, notes that 2,800 miles of coastal roads are in the 100-year floodplain and some highways may face inundation with just two feet of sea level rise. Sea levels are expected to rise as much as 56 inches, or nearly five feet, by the year 2100.

Earlier snowmelt is a significant concern in the Northwest, where reservoir systems are utilized to maximize water storage. But, Dalton said, the Columbia River basin has a storage capacity that is smaller than its annual flow volume and is “ill-equipped to handle the projected shift to earlier snowmelt…and will likely be forced to pass much of these earlier flows out of the system.”

The earlier peak stream flow may significantly reduce summer hydroelectric power production, and slightly increase winter power production.

The report was funded by the National Oceanic and Atmospheric Administration, through the Oregon Legislature’s support of the Oregon Climate Change Research Institute at OSU, and by in-kind contributions from the authors’ institutions.

Mote said new research has led to improved climate models, which suggest that the Northwest will warm by a range of three to 14 degrees (Fahrenheit) by the year 2100. “The lower range will only be possible if greenhouse gas emissions are significantly reduced.” In contrast, the Northwest warmed by 1.3 degrees from the period of 1895 to 2011.

Future precipitation is harder to project, the report notes, with models forecasting a range from a 10 percent decrease to an 18 percent increase by 2100. Most models do suggest that more precipitation will fall as rain and earlier snowmelt will change river flow patterns.

That could be an issue for agriculture in the future as the “Northwest’s diverse crops depend on adequate water supplies and temperature ranges, which are projected to change during the 21st century,” the report notes. Pinpointing the impacts on agriculture will be difficult, said Sanford Eigenbrode of the University of Idaho, another co-author.

“As carbon dioxide levels rise, yields will increase for some plants, and more rainfall in winter could mean wetter soils in the spring, benefitting some crops,” Eigenbrode pointed out. “Those same conditions could adversely affect other crops. It is very difficult to say how changing climate will affect agriculture overall in the Northwest, but we can say that the availability of summer water will be a concern.”

Mote said there may be additional variables affecting agriculture, such what impacts the changing climate has on pests, diseases and invasive species.

“However, the agricultural sector is resilient and can respond more quickly to new conditions than some other sectors like forestry, where it takes 40 years or longer for trees to reach a harvestable age,” noted Mote, who is a professor in OSU’s College of Earth, Ocean, and Atmospheric Sciences.

The Northwest has not to date been vulnerable to many climate-related health risks, the report notes, but impacts of climate change in the future are more likely to be negative than positive. Concerns include increased morbidity and mortality from heat-related illness, air pollution and allergenic disease, and the emergence of infectious diseases.

“In Oregon, one study showed that each 10-degree (F) increase in daily maximum temperature was associated with a nearly three-fold increase of heat-related illness,” said Jeff Bethel, an assistant professor in the College of Public Health and Human Sciences at OSU and one of the co-authors of the report. “The threshold for triggering heat-related illness – especially among the elderly – isn’t much.”

Northwest tribes may face a greater impact from climate change because of their reliance on natural resources. Fish, shellfish, game and plant species could be adversely affected by a warming climate, resulting in a multitude of impacts.

“When tribes ceded their lands and were restricted to small areas, it resulted in a loss of access to many species that lived there,” said Kathy Lynn, coordinator of the Tribal Climate Change Project at the University of Oregon and a co-author of the report. “Climate change may further reduce the abundance of resources. That carries a profound cultural significance far beyond what we can document from an economic standpoint.”

Snover said that the climate changes projected for the coming decades mean that many of the assumptions “inherent in decisions, infrastructure and policies – where to build, what to grow where, and how to manage variable water sources to meet multiple needs – will become increasingly incorrect.

“Whether the ultimate consequences of the climate impacts outlined in this report are severe or mild depends in part on how well we prepare our communities, economies and natural systems for the changes we know are coming,” Snover said.

Other lead co-authors on the report are Rick Raymondi, Idaho Department of Water Resources; W. Spencer Reeder, Cascadia Consulting Group; Patty Glick, National Wildlife Federation; Susan Capalbo, OSU; and Jeremy Littell, U.S. Geological Survey.

Media Contact: 
Source: 

Philip Mote, 541-737-5694; pmote@coas.oregonstate.edu; Amy Snover, 206-221-0222; aksnover@uw.edu

Multimedia Downloads
Multimedia: 

Major storm Coastal issues

Melting glacier Snowmelt

Trail Creek FireWildfires

OSU faculty members key contributors to IPCC report

CORVALLIS, Ore. – The Intergovernmental Panel on Climate Change, a United Nations-sponsored group of scientists, issued its latest report on the state of scientific understanding on climate change. Two Oregon State University faculty members played key roles in the landmark report.

Peter Clark, a professor in OSU’s College of Earth, Ocean, and Atmospheric Sciences, was one of two coordinating lead authors on a chapter outlining sea level change. He and fellow coordinating lead author John Church of Australia oversaw the efforts of 12 lead authors and several dozen contributing scientists on the science of sea level change.

Philip Mote, director of the Oregon Climate Change Research Institute at OSU, was one of 12 lead authors on a chapter looking at the cryosphere, which is comprised of snow, river and lake ice, sea ice, glaciers, ice sheets, and frozen ground. The cryosphere plays a key role in the physical, biological and social environment on much of the Earth’s surface.

“Since the last IPCC report, there has been increased scientific understanding of the physical processes leading to sea level change, and that has helped improve our understanding of what will happen in the future,” Clark said.

“One of the things our group concluded with virtual certainty is that the rate of global mean sea level rise has accelerated over the past two centuries – primarily through the thermal expansion of the oceans and melting of glaciers,” Clark added. “Sea level rise will continue to accelerate through the 21st century, and global sea levels could rise by 0.5 meters to at least one meter by the year 2100.”

The rate of that rise will depend on future greenhouse gas emissions.

Among other findings, the sea level chapter also concluded that it is virtually certain that global mean sea level will continue to rise beyond the year 2100, and that substantially higher sea level rise could take place with the collapse of the Antarctic ice sheet.

Mote, who also is a professor in the College of Earth, Ocean, and Atmospheric Sciences, said analyzing the cryosphere is complex and nuanced, though overall the amount of snow and ice on Earth is declining.

The report notes: “Over the last two decades, the Greenland and Antarctic ice sheets have been losing mass, glaciers have continued to shrink almost worldwide, and Arctic sea ice and Northern Hemisphere spring snow cover have continued to decrease in extent.” Other cryosphere changes include:

  • Greenland and Antarctica are not only losing ice, but the rate of decline is accelerating;
  • The amount of sea ice in September has reached new lows;
  • The June snow cover also has reached new lows and has decreased by an average of 11.7 percent per decade – or 53 percent overall – from 1967 to 2012;
  • The reduction in snow cover can formally be attributed to human influence – work done by Mote and David Rupp of OSU.

 Rick Spinrad, OSU’s vice president for research, praised the efforts of the two OSU faculty members for their contributions to the report.

 "OSU is a global leader in environmental research as reflected by the leadership roles of Dr. Clark and Dr. Mote in this seminal assessment,” Spinrad said. “The impact of the IPCC report will be felt by scientists and policy makers for many years to come."

The IPCC report is comprised of 14 chapters, supported by a mass of supplementary material. A total of 209 lead authors and 50 review editors from 39 countries helped lead the effort, and an additional 600 contributing authors from 32 countries participated in the report. Authors responded to more than 54,000 review comments.

The report is available online at the IPCC site: http://www.ipcc.ch/

Media Contact: 
Multimedia Downloads
Multimedia: 

Melting glacier
A shrinking glacier

Coastal waves
Rising sea levels

Researchers going public on quest to identify plankton species

NEWPORT, Ore. – Researchers using an innovative underwater imaging system have taken millions of photos of plankton ranging from tiny zooplankton to small jellyfish – and now they are seeking help from the public to identify the species.

The “Plankton Portal” project is a partnership between the University of Miami, Oregon State University and Zooniverse.org to engage volunteers in an online citizen science effort.

“One of the goals of the project is discovery,” said Robert Cowen, new director of OSU’s Hatfield Marine Science Center in Newport, Ore., who led the project to capture the images while at Miami’s Rosenstiel School of Marine and Atmospheric Sciences. “Computers can take pictures and even analyze images, but it takes humans to identify relationships to other organisms and recognize their behavior.

“Computers don’t really care about context – whether something is up or down in the water column and what else might be in the neighborhood,” he added. “People can do that. And we hope to have thousands of them look at the images.”

Interested persons may sign up for the project at www.planktonportal.org, which goes online this week (the official launch is Sept. 17).

Zooniverse.org is a popular citizen science website that engages millions of participants to study everything from far-away stars, to whale sounds, to cancer cells – and aid scientists with their observations. It works by training volunteers and validating their credibility by how often their observations are accurate.

“It is an increasingly popular pursuit for people interested in science and nature – from high school students to senior citizens,” said Jessica Luo, a University of Miami doctoral student working with Cowen.

“Each image is looked at by multiple users and identification is done by a weighting system,” said Luo, who is now working at OSU’s Hatfield center. “The system not only looks for consensus, but rapidity of conclusion. It works amazingly well and the data from this project will help us better begin to explore the thousands of species in the planktonic world.”

With funding from the National Science Foundation’s Directorate for Geosciences and the National Oceanic and Atmospheric Administration, Cowen developed the “In Situ Ichthyoplankton Imaging System,” or ISIIS, while at Miami – along with Cedric Guigand of UM and Charles Cousin of Bellamare, LLC.

ISIIS combines shadowgraph imaging with a high-resolution line-scan camera to record plankton at 17 images per second. Cowen and his colleagues have used the system to study larval fish, crustaceans and jellyfish in diverse marine systems, including the Gulf of Mexico, the mid-Atlantic Ocean, the California coast, and the Mediterranean Sea.

At the same time ISIIS is capturing images, he says, other instruments are recording oceanographic conditions, including temperature, salinity, dissolved oxygen and other measurements. These data, coupled with the images, are available to the public via Zooniverse.org.

“In three days, we can collect data that would take us more than three years to analyze,” Cowen said, “which is why we need the help of the public. With the volume ISIIS generates, it is impossible for a handful of scientists to classify every image by hand, which is why we are exploring different options for image analysis – from automatic image recognition software to crowd-sourcing to citizen scientists.”

Luo said the researchers hope to secure future funding to study plankton – which includes a variety of crustaceans and jellyfish in the water column – off the Pacific Northwest coast.

“Most images of plankton are taken in a laboratory, or collected from nets on a ship,” said Cowen, who is a professor in OSU’s College of Earth, Ocean, and Atmospheric Sciences. “ISIIS gives us the rare ability to see them in their natural environment, which is a unique perspective that will enable us to learn more about them and the critical role they play in the marine food web.”

Other researchers on the project include graduate student Adam Greer, and undergraduate students Dorothy Tang, Ben Grassian and Jenna Binstein – all at the University of Miami.

Media Contact: 
Source: 

Jessica Luo, 650-387-5700; Jessica.luo@rsmas@miami.edu;

 

Bob Cowen, 541-867-0211; Robert.Cowen@oregonstate.edu

Multimedia Downloads
Multimedia: 

Plankton Portlal

plankton_crew

Plankton Portal

Marine Science Day: An opportunity to explore behind-the-scenes

NEWPORT, Ore. – Oregon State University’s Hatfield Marine Science Center will host its popular Marine Science Day on Saturday, April 12, offering the public an opportunity to meet many of the scientists working at the research facility, as well as take tours and explore the exhibits.

The center also will commemorate the 25th anniversary of the Coastal Oregon Marine Experiment Station (COMES), which is the nation’s first Experiment Station dedicated to marine sciences.

The activities are free and open to the public, running from 10 a.m. to 4 p.m. at the Hatfield Center, located at 2030 S.E. Marine Science Drive in Newport, just south of the Highway 101 bridge over Yaquina Bay. An online schedule of events is available at: hmsc.oregonstate.edu/marinescienceday

The event will feature scientists and educators from OSU, federal and state agencies, Oregon Coast Aquarium, and the NOAA Marine Operations Center-Pacific. It is a chance for the public to explore one of the nation’s leading marine science and education centers.

Visitors can tour the research facilities of the Hatfield Marine Science Center, and see genetics laboratories, animal husbandry areas, and get a close-up view of ongoing research projects. Interactive research exhibits will feature larval fish ecology, bioacoustics of whales, volcanoes and deep ocean vents, and oceanographic tools such as a glider to study low-oxygen on the West Coast. Activities for children include a Bird Beak Buffet from the U.S. Fish and Wildlife Service, and the Mystery Fossil Dig by Oregon Sea Grant. Scheduled events include:

  • 10 a.m. – The open house begins, lasting until 4 p.m.
  • 11 a.m. – “Pumped up for Pinnipeds: Seals and Sea Lions of the Oregon Coast,” a presentation by Oregon Coast Aquarium staff, Hennings Auditorium (repeated at 2 p.m.);
  • 1:30 p.m. – Octopus feeding in the Visitor’s Center;
  • 3 p.m. – “A Food Chain of Fisheries Research: The Amazing Story of Oregon’s Marine Experiment Station,” a presentation by Gil Sylvia, director of COMES; Terry Thompson, a commercial fisherman, county commissioner and COMES board member; and Michael Morrissey, director of the Food Innovation Center in Portland. State Sen. Arnie Roblan will introduce the speakers.

The Coastal Oregon Marine Experiment Station is located in both Newport and Astoria. Researchers in Newport focus on fishery policy and management, marketing, fish stock assessment, aquaculture, ecology, genetics and marine mammal conservation. Astoria researchers at the OSU Seafood Laboratory work on seafood science, processing, safety and innovation.

Media Contact: 
Source: 

Maryann Bozza, 541-867-0234; maryann.bozza@oregonstate.edu

NOAA planning leader to direct Oregon Sea Grant program

CORVALLIS, Ore. – Shelby Walker, a marine scientist and administrative leader with the National Oceanic and Atmospheric Administration, has been named director of the Oregon Sea Grant College Program.

She will assume leadership of Oregon Sea Grant, the Oregon State University-based marine research, outreach, education and communication program, on July 7.

Walker has been the strategic planning team leader for the Office of Policy, Planning and Evaluation in NOAA’s Office of Oceanic and Atmospheric Research since August 2009. In that role, she has been responsible for the agency’s research and development planning efforts.

She also has been associate director for the NOAA RESTORE Act Science Program, an initiative funded through civil penalties resulting from the Deepwater Horizon oil spill that aims to increase scientific understanding of the Gulf of Mexico ecosystem and improve the region’s sustainability.

“Oregon Sea Grant deals with a range of marine issues that impacts the lives and livelihoods of Oregonians,” said Rick Spinrad, vice president for research at Oregon State. “Shelby Walker is an experienced leader and a superb collaborator who will be able to develop partnerships in research, education, communications and outreach to address these issues, which include natural hazards, climate change and managing our marine resources in a responsible and sustainable manner.”

Prior to joining NOAA, Walker was associate program director in the National Science Foundation’s Ocean Sciences Division, where she worked in the Ocean Technology and Interdisciplinary Coordination Program. She served as program officer for the Ocean Observatories Initiative, one of the largest oceanographic infrastructure investments in history. The OOI is a $386 million project to monitor the world’s oceans for environmental changes and their effects on biodiversity, coastal ecosystems and climate, led by several universities including OSU.

Walker also has been project manager for the Joint Subcommittee on Ocean Science and Technology, a group of 25 federal agencies with responsibilities for ocean research and technology development.

Her research has focused on organic contaminants in coastal systems, including highly industrialized urban estuaries. Walker received her Ph.D. in marine science from the College of William and Mary, and worked as a post-doctoral researcher at the Naval Research Laboratory.

Media Contact: 
Source: 

Rick Spinrad, 541-737-0664; rick.spinrad@oregonstate.edu

Multimedia Downloads
Multimedia: 

Shelby Walker
Shelby Walker

OSU’s Hatfield Center to host regional STEM hub

NEWPORT, Ore. – One of six regional “STEM” hubs funded by the Oregon Department of Education and serving the Oregon coast from Astoria to Coos Bay will be headquartered at Oregon State University’s Hatfield Marine Science Center in Newport.

A series of meetings will begin next month along the coast to help launch the initiative.

The Science, Technology, Engineering, and Math, or STEM hubs are designed to boost the proficiency of K-14 students in these areas.

The Lincoln County School District was awarded a grant of $664,000 to coordinate the effort, partnering with OSU, Oregon Sea Grant, the Tillamook School District, and the Oregon Coast Aquarium. The new regional STEM hub will expand an existing program called the Oregon Coast Regional STEM Center, according to Tracy Crews, project manager for the newly formed coastal hub.

“Lincoln and Tillamook counties, along with 23 other partners, have been offering STEM support under a grant from the U.S. Department of Education,” Crews said. “What this new grant will do is allow us to expand the program up and down the coast, and enlist new partners and offer more resources for STEM-related instruction.”

In the first phase of the project, Crews and other hub coordinators will host a series of meetings along the coast to conduct a needs assessment and engage new partners. These meeting are scheduled as follows:

  • Newport: April 17, at Oregon Coast Community College;
  • Astoria: May 1 at Clatsop Community College;
  • Tillamook: May 7 at Tillamook Bay Community College;
  • Coos Bay: May 15, at Southwestern Oregon Community College.

Times and location will be set later, with information available by contact Tracy Crews at 541-867-0329, or tracy.crews@oregonstate.edu. A website is being be developed for the coast STEM hub.

“We hope to engage not only the K-12 schools and community colleges, but industry, local government, scientific agencies, community leaders and parents,” Crews said. “Once we determine some of the needs, we can begin connecting people with the appropriate resources.”

Media Contact: 
Source: 

 Tracy Crews, 541-867-0329; tracy.crews@oregonstate.edu

National survey reveals coastal concerns over climate change

CORVALLIS, Ore. – The American public may be divided over whether climate is changing, but coastal managers and elected officials in nine states say they see the change happening – and believe their communities will need to adapt.

That's one finding from a NOAA Sea Grant research project, led by Oregon Sea Grant at Oregon State University. The projected involved multiple other Sea Grant programs, which surveyed coastal leaders in selected parts of the nation's Atlantic, Pacific, Gulf and Great Lakes coasts, as well as Hawaii. 

Three-quarters of coastal professionals surveyed – and 70 percent of all participants – said they believe that the climate in their area is changing.

While national polls dating back more than a decade, including several by Gallup, have revealed some public skepticism and polarization about climate change, the Sea Grant findings are in line with a number of recent surveys – including several by the Yale Project on Climate Change and Communication – suggesting a growing majority of  Americans believes the earth's  climate is changing. However, many express uncertainty that anything can be done about it.

The Sea Grant survey was developed to understand what coastal and resource professionals and elected officials think about climate change, where their communities stand in planning for climate adaptation and what kinds of information they need, said project leader Joe Cone, assistant director of Oregon Sea Grant.

Sea Grant programs in Connecticut, Hawaii, Illinois-Indiana, Louisiana, Maryland, Minnesota, Oregon, and Washington – states that represent most of NOAA's coastal regions – took part, administering the survey between January 2012 and November 2013.

Among 30 questions, survey participants were asked how informed they felt about climate change in their area and whether they thought that the climate in their area is changing.  Participants identified where their agencies and communities stood in planning to adapt to climate change, and hurdles they have encountered and overcome. They also identified climate-related topics important to their work and how much information they had about those topics.

Overall, three-quarters of the 355 coastal/resource professionals who responded felt that the climate in their area is changing.  Most (68 percent) felt that they were moderately- to very well-informed about the local effects of climate change. A common hurdle respondents encountered was a lack of agreement over the importance of those effects. Shoreline change and flooding concerns were among the topics respondents considered important to their own work.

A newly published report by Oregon Sea Grant  presents the combined results for all survey respondents, as well as the responses from each participating state.  

Cone said this national survey, funded in part by Sea Grant's national focus team on hazard resilient coastal communities, represents an initial attempt to understand the opinions and information needs of coastal/resource professionals regarding climate change adaptation and planning.  Participating Sea Grant programs are already using the survey results to assist communities develop local adaptation strategies. In addition, Cone said he hoped that this survey may stimulate additional survey research by Sea Grant, NOAA, and other coastal interests on this vital topic.

The survey report is available as a free download from Oregon Sea Grant at: http://seagrant.oregonstate.edu/sgpubs/s14001-national-climate-survey-report

Media Contact: 
Source: 

Noted oceanographer to speak Nov. 12 at Hatfield

NEWPORT, Ore. – Don Walsh, a pioneering oceanographer famous for his 1960 dive to the deepest part of the ocean, will visit Newport on Tuesday, Nov. 12.

Walsh will give a free public lecture at Oregon State University’s Hatfield Marine Science Center. His presentation, “Lunch on Board the Titanic: Two Miles Deep in the Atlantic,” begins at 6:30 p.m. In his talk, Walsh will share his experience diving in a submersible down to the Titanic and other adventures from his career of more than 40 years.

A retired captain from the U.S. Navy, Walsh went on to enjoy a lengthy career as an oceanographer and ocean engineer who explored the deep oceans and polar regions. He has commanded submarines as a naval officer and deep-sea submersibles as a researcher.

In 1960, Walsh and Swiss oceanographer Jacques Piccard boarded the bathyscaphe Trieste and descended to the floor of the Mariana Trench in the northern Pacific Ocean – a depth of more than 35,000 feet, or nearly seven miles. It took five hours to reach the seafloor, and at 30,000 feet they heard a loud crack. Upon reaching the bottom, they discovered cracks in the window, and quickly began ascending.

The historic dive received worldwide attention. It also remained a world record dive for 52 years until James Cameron piloted his Deepsea Challenger to the same place in 2012.

Walsh, who has a courtesy appointment in OSU’s College of Earth, Ocean, and Atmospheric Sciences, will also visit schools in Newport during the week and give a seminar at the Hatfield Marine Science Center. That talk, intended for a research audience, is titled “Going the Last Seven Miles – Looking Backwards at the Future.” It begins at 3:30 p.m. on Nov. 12 in the Hennings Auditorium.

Media Contact: 
Source: 

Maryann Bozza, 541-867-0234; maryann.bozza@oregonstate.edu

Multimedia Downloads
Multimedia: 

don_walsh
Don Walsh

Ocean sound: The Oregon Coast rules when it comes to ambient noise

NEWPORT, Ore. – For more than a year, scientists at Oregon State University’s Hatfield Marine Science Center deployed a hydrophone in 50 meters of water just off the coast of Newport, Ore., so they could listen to the natural and human-induced sounds emanating from the Pacific Ocean environment.

Their recently published analysis has a simple conclusion: It’s really noisy out there.

There are ships, including container shipping traffic, commercial fishers and recreationalists. There are environmental sounds, from waves pounding the beach, to sounds generating by heavy winds. And there are biological sounds, especially the vocalizations of blue whales and fin whales. And not only is Oregon’s ocean sound budget varied, it is quite robust.

“We recorded noise generated from local vessels during 66 percent of all hours during the course of a year,” said Joe Haxel, an OSU doctoral student who is affiliated with both the Cooperative Institute for Marine Resources Studies (CIMRS) and NOAA’s Pacific Marine Environmental Laboratory acoustics program at the Hatfield center. “In fact, there is an acoustic spike during the opening of the commercial crabbing season related to the high number of boats working the shallow coastal waters at the same time.

“But, at times, the biggest contributor to the low-frequency sound budget is from the surf breaking on the beach a few kilometers away,” he added. “That’s where Oregon trumps most other places. There haven’t been a lot of studies targeting surf-generated sound and its effect on ambient noise levels in the coastal ocean, but the few that are out there show a lot less noise than we have. Our waves are off the charts.”

The year-long study of noise, which was published in the Journal of the Acoustical Society of America, was supported by the Department of Energy, the Oregon Wave Energy Trust, NOAA and OSU.

The study is about more than scientific curiosity, researchers say. The research was carried out in support of OSU’s Northwest National Marine Renewable Energy Center and will play an important role in determining whether testing of wave energy devices off the Oregon coast may have environmental impacts.

Scientists must know what naturally occurring sounds exist, and at what levels, so when new sounds are introduced, there is some context for evaluating their intensity and impact.

Documenting marine noises for an entire year isn’t easy, the researchers pointed out. First, the equipment must withstand the rugged Pacific Ocean, so the OSU researchers deployed the hydrophone near the seafloor in about 50 meters of water so violent winter storms wouldn’t destroy the instrumentation. They focused on low-frequency sounds, where the majority of noise emitted by wave energy converters is expected to occur.

After combing through an entire year of data, they determined that Oregon’s low-frequency noise budget is often dominated by the constant sounds of breaking surf. These weren’t necessarily the loudest noises, though.

“The strongest signal we got during the course of the year came from a boat that drove right over our mooring,” said Haxel, who is pursuing his doctorate through OSU’s College of Earth, Ocean, and Atmospheric Sciences. “The second loudest sound came from the vocalizations of a blue whale, which can be incredibly loud. We were told by colleagues at the Marine Mammal Institute that blue whales have been sighted close to shore in recent years and it was probably within several kilometers of the hydrophone.”

Haxel said the OSU researchers also recorded numerous vocalizations of fin whales and humpback whales, but a startling omission was that of gray whales, one of the most common West Coast whales.

“We didn’t document a single gray whale sound during the entire year, which was really surprising,” Haxel said. “Even during times when gray whales were visually sighted from shore within close proximity of the hydrophone, we never recorded any vocalizations. One theory is that they are trying to keep as quiet as possible so they don’t give away their location to orcas, which target their calves.”

Another unusual source of noise was the wind. Even at 50 meters below the surface, the hydrophone picked up sound from the wind – but not in the way one might think. It wasn’t the howling of the wind that was noticeable, Haxel said, but the ensuing waves, known as “whitecaps” or “wind chop,” and the clouds of bubbles that were injected into the water column.

Haxel compared his data on Oregon sounds to a handful of studies in the literature associated with high-energy environmental conditions to see how the region fared. All of the other studies were limited: a Monterey Bay, Calif., survey focused only on surf noises. A study off the Florida coast examined wind-generated sounds. And a study of the Scotia Shelf in Canada looked at wind and surf.

Oregon noise levels were similar to other regions for frequencies above 100 Hz, Haxel said, but rose sharply for frequencies affected by surf-generated noise – generally below 100 Hz.

“The bottom line is that the Pacific Ocean in the Northwest can be a remarkably loud environment and our wave climate in particular is amazing,” Haxel said. “That’s why wave energy is being targeted for this region in the first place. The study will provide some valuable information as the wave energy industry goes forward.

“We will be able to measure noise levels from the testing, or even the loading and unloading of equipment from the vessels, and compare those measurements with the range of background ambient sound levels already occurring in the area,” he added.

“It is a balancing act as some noise from the testing sites may serve as a warning signal for whales and other animals to avoid the area, helping to reduce the risk for collision or entanglement,” Haxel said. “But adding too much noise can be harmful, disrupting their communication or navigation.”

Media Contact: 
Source: 

Joe Haxel, 541-867-0282; joe.haxel@oregonstate.edu

Multimedia Downloads
Multimedia: 

Tail of the whale
Blue whale vocalizations
are second loudest


 Coastal waves
Breaking surf tops
the charts for noise

 

Sound file of breaking surf:

http://oregonstate.edu/dept/ncs/media/wave-breaking.wav

 

Sound file of boat motors:

http://oregonstate.edu/dept/ncs/media/boat-noise.wav