OREGON STATE UNIVERSITY

hatfield marine science center

OSU Board of Trustees endorses future tuition levels, funding requests

CORVALLIS, Ore. – The Oregon State University Board of Trustees on Thursday unanimously endorsed a plan to continue phasing out the university’s tuition plateau, which gives undergraduate students who take from 12-15 credit hours a break on tuition.

The board vote on the tuition plateau Thursday was part of a broader approval by the OSU Board of Trustees to recommend to the Oregon State Board of Higher Education tuition rates and fees for the 2014-15 academic year. While OSU now has its own board, the Board of Higher Education, by law, must authorize any changes in tuition and fees through June 30.

OSU is the last public university in the state to offer the plateau, which has allowed students taking 13-16 hours a term to pay the same tuition as those students taking just 12 hours.

“What the plateau effectively has done is provided a higher tuition rate for students taking class loads above or below the plateau, and a lower rate for students taking 13-15 hours,” said Steve Clark, OSU’s vice president for University Relations and Marketing. “This is not equitable.”

Last year, the university’s budget committee, which included student representation, recommended a three-year phasing out of the tuition plateau and in fall 2013, the plateau was reduced from 13-16 credits hours to 13-15 credits. According to the plan endorsed by the OSU board, students next school year will pay reduced tuition for any courses between 13 and 15 credit hours, and then will pay full tuition for all credit hours in the 2015-16 academic year.

Meanwhile, the legislatively mandated tuition freeze will keep Oregon State’s resident undergraduate tuition rate at $189 per credit hour for 2014-15. There will be no increase in “differential tuition surcharges” for high-demand programs such as engineering.

What this means for students taking an average of 15 credit hours per term in 2014-15 is an annual tuition charge of $7,650.

“While this represents an increase from the 2013-14 tuition rate ($6,876 for the year), it is well below the median tuition for Oregon State’s peer institutions, and less than the tuition rate charged by the University of Oregon,” Clark said. The median tuition for OSU’s peer land grant institutions is $9,510; the University of Oregon’s rate in 2013 was $8,280.

The OSU board also voted to increase the tuition rate for most graduate students by 2.1 percent for in-state students, and 3.9 percent for out-of-state students. Tuition for students in pharmacy and veterinary medicine will increase by 3.0 percent, while differential tuition will remain at the same level.

The board also on Thursday unanimously voted to forward a capital projects funding request of $278 million for the 2015-17 biennium to the Higher Education Coordinating Commission, which must review the plan and incorporate some or all of the recommendations to its budget request to the Oregon Legislature.

The request includes $171.5 million in state-paid bonds, $7.5 million in bonds that would be paid by OSU, and $99 million in projected grants and gifts. State-funded bond projects include campus accessibility improvements, technology infrastructure upgrades, building and program renewals, and renovation of Fairbanks and Magruder halls.

New building projects that would be funded in part by grants and gifts include a new center for advanced wood materials, a new engineering building, further development of the OSU-Cascades campus, and a new building in Newport that would launch the first phase of the marine studies campus initiative at OSU’s Hatfield Marine Science Center.

In other action:

  • The board adopted its own policies related to: the roles and responsibilities of board members and officers, board committees, the board’s code of ethics, conflict of interest requirements, associated board travel expenses, attendance at university events, and the board calendar;
  • The board voted to ratify the university’s existing mission statement.
Media Contact: 
Source: 

Steve Clark, 503-502-8217; steve.clark@oregonstate.edu

Volcanoes, including Mt. Hood, can go from dormant to active quickly

CORVALLIS, Ore. – A new study suggests that the magma sitting 4-5 kilometers beneath the surface of Oregon’s Mount Hood has been stored in near-solid conditions for thousands of years, but that the time it takes to liquefy and potentially erupt is surprisingly short – perhaps as little as a couple of months.

The key, scientists say, is to elevate the temperature of the rock to more than 750 degrees Celsius, which can happen when hot magma from deep within the Earth’s crust rises to the surface. It is the mixing of the two types of magma that triggered Mount Hood’s last two eruptions – about 220 and 1,500 years ago, said Adam Kent, an Oregon State University geologist and co-author of the study.

Results of the research, which was funded by the National Science Foundation, were published this week in the journal Nature.

“If the temperature of the rock is too cold, the magma is like peanut butter in a refrigerator,” Kent said. “It just isn’t very mobile. For Mount Hood, the threshold seems to be about 750 degrees (C) – if it warms up just 50 to 75 degrees above that, it greatly decreases the viscosity of the magma and makes it easier to mobilize.”

Thus the scientists are interested in the temperature at which magma resides in the crust, they say, since it is likely to have important influence over the timing and types of eruptions that could occur. The hotter magma from down deep warms the cooler magma stored at 4-5 kilometers, making it possible for both magmas to mix and to be transported to the surface to eventually produce an eruption.

The good news, Kent said, is that Mount Hood’s eruptions are not particularly violent. Instead of exploding, the magma tends to ooze out the top of the peak. A previous study by Kent and OSU postdoctoral researcher Alison Koleszar found that the mixing of the two magma sources – which have different compositions – is both a trigger to an eruption and a constraining factor on how violent it can be.

“What happens when they mix is what happens when you squeeze a tube of toothpaste in the middle,” said Kent, a professor in OSU’s College of Earth, Ocean, and Atmospheric Sciences. “A big glob kind of plops out the top, but in the case of Mount Hood – it doesn’t blow the mountain to pieces.”

The collaborative study between Oregon State and the University of California, Davis is important because little was known about the physical conditions of magma storage and what it takes to mobilize the magma. Kent and UC-Davis colleague Kari Cooper, also a co-author on the Nature article, set out to find if they could determine how long Mount Hood’s magma chamber has been there, and in what condition.

When Mount Hood’s magma first rose up through the crust into its present-day chamber, it cooled and formed crystals. The researchers were able to document the age of the crystals by the rate of decay of naturally occurring radioactive elements. However, the growth of the crystals is also dictated by temperature – if the rock is too cold, they don’t grow as fast.

Thus the combination of the crystals’ age and apparent growth rate provides a geologic fingerprint for determining the approximate threshold for making the near-solid rock viscous enough to cause an eruption. The diffusion rate of the element strontium, which is also sensitive to temperature, helped validate the findings.

“What we found was that the magma has been stored beneath Mount Hood for at least 20,000 years – and probably more like 100,000 years,” Kent said. “And during the time it’s been there, it’s been in cold storage – like the peanut butter in the fridge – a minimum of 88 percent of the time, and likely more than 99 percent of the time.”

In other words – even though hot magma from below can quickly mobilize the magma chamber at 4-5 kilometers below the surface, most of the time magma is held under conditions that make it difficult for it to erupt.

“What is encouraging from another standpoint is that modern technology should be able to detect when magma is beginning to liquefy, or mobilize,” Kent said, “and that may give us warning of a potential eruption. Monitoring gases, utilizing seismic waves and studying ground deformation through GPS are a few of the techniques that could tell us that things are warming.”

The researchers hope to apply these techniques to other, larger volcanoes to see if they can determine their potential for shifting from cold storage to potential eruption, a development that might bring scientists a step closer to being able to forecast volcanic activity.

Media Contact: 
Source: 

Adam Kent, 541-737-1205

Multimedia Downloads
Multimedia: 

Tyler and Alison
OSU researchers
examine rocks in
front of Mt. Hood.

 Adam Kent
OSU's Adam Kent

Study confirms link between salmon migration and magnetic field

CORVALLIS, Ore. – A team of scientists last year presented evidence of a correlation between the migration patterns of ocean salmon and the Earth’s magnetic field, suggesting it may help explain how the fish can navigate across thousands of miles of water to find their river of origin.

This week, scientists confirmed the connection between salmon and the magnetic field following a series of experiments at the Oregon Hatchery Research Center in the Alsea River basin. Researchers exposed hundreds of juvenile Chinook salmon to different magnetic fields that exist at the latitudinal extremes of their oceanic range. Fish responded to these “simulated magnetic displacements” by swimming in the direction that would bring that toward the center of their marine feeding grounds.

The study, which was funded by Oregon Sea Grant and the Oregon Department of Fish and Wildlife, will be published this month in the forthcoming issue of Current Biology.

“What is particularly exciting about these experiments is that the fish we tested had never left the hatchery and thus we know that their responses were not learned or based on experience, but rather they were inherited,” said Nathan Putman, a postdoctoral researcher in Oregon State University’s Department of Fisheries and Wildlife and lead author on the study.

“These fish are programmed to know what to do before they ever reach the ocean,” he added.

To test the hypothesis, the researchers constructed a large platform with copper wires running horizontally and vertically around the perimeter. By running electrical current through the wires, the scientists could create a magnetic field and control both the intensity and inclination angle of the field. They then placed 2-inch juvenile salmon called “parr” in 5-gallon buckets and, after an acclimation period, monitored and photographed the direction in which they were swimming.

Fish presented with a magnetic field characteristic of the northern limits of the oceanic range of Chinook salmon were more likely to swim in a southerly direction, while fish encountering a far southern field tended to swim north. In essence, fish possess a “map sense” determining where they are and which way to swim based on the magnetic fields they encounter.

“The evidence is irrefutable,” said co-author David Noakes of OSU, senior scientist at the Oregon Hatchery Research Center and the 2012 recipient of the American Fisheries Society’s Award of Excellence. “I tell people: The fish can detect and respond to the Earth’s magnetic field. There can be no doubt of that.”

Not all of the more than 1,000 fish swam in the same direction, Putman said. But there was a clear preference by the fish for swimming in the direction away from the magnetic field that was “wrong” for them. Fish that remained in the magnetic field of the testing site – near Alsea, Ore. – were randomly oriented, indicating that orientation of fish subjected to magnetic displacements could only be attributable to change in the magnetic field.

“What is really surprising is that these fish were only exposed to the magnetic field we created for about eight minutes,” Putman pointed out. “And the field was not even strong enough to deflect a compass needle.”

Putman said that salmon must be particularly sensitive because the Earth’s magnetic field is relatively weak. Because of that, it may not take much to interfere with their navigational abilities. Many structures contain electrical wires or reinforcing iron that could potentially affect the orientation of fish early in their life cycle, the researchers say.

“Fish are raised in hatcheries where there are electrical and magnetic influences,” Noakes said, “and some will encounter electrical fields while passing through power dams. When they reach the ocean, they may swim by structures or cables that could interfere with navigation. Do these have an impact? We don’t yet know.”

Putman said natural disruptions could include chunks of iron in the Earth’s crust, though “salmon have been dealing with that for thousands of years.”

“Juvenile salmon face their highest mortality during the period when the first enter the ocean,” Putman said, “because they have to adapt to a saltwater environment, find food, avoid predation, and begin their journey. Anything that makes them navigate less efficiently is a concern because if they take a wrong turn and end up in a barren part of the ocean, they are going to starve.”

The magnetic field is likely not the only tool salmon use to navigate, however, Putman noted.

“They likely have a whole suite of navigational aids that help them get where they are going, perhaps including orientation to the sun, sense of smell and others,” Putman said.

The Oregon Hatchery Research Center is funded by the Oregon Department of Fish and Wildlife and jointly run by ODFW and Oregon State University.

Media Contact: 
Source: 

Nathan Putman, 205-218-5276; Nathan.putman@oregonstate.edu

David Noakes, 541-737-1953; david.noakes@oregonstate.edu

Multimedia Downloads
Multimedia: 

Putman_Graphical_Abstract

Orientation of

salmon to field

Amber fossil reveals ancient reproduction in flowering plants

CORVALLIS, Ore. – A 100-million-year old piece of amber has been discovered which reveals the oldest evidence of sexual reproduction in a flowering plant – a cluster of 18 tiny flowers from the Cretaceous Period – with one of them in the process of making some new seeds for the next generation.

The perfectly-preserved scene, in a plant now extinct, is part of a portrait created in the mid-Cretaceous when flowering plants were changing the face of the Earth forever, adding beauty, biodiversity and food. It appears identical to the reproduction process that “angiosperms,” or flowering plants still use today.

Researchers from Oregon State University and Germany published their findings on the fossils in the Journal of the Botanical Institute of Texas.

The flowers themselves are in remarkable condition, as are many such plants and insects preserved for all time in amber. The flowing tree sap covered the specimens and then began the long process of turning into a fossilized, semi-precious gem. The flower cluster is one of the most complete ever found in amber and appeared at a time when many of the flowering plants were still quite small.

Even more remarkable is the microscopic image of pollen tubes growing out of two grains of pollen and penetrating the flower’s stigma, the receptive part of the female reproductive system. This sets the stage for fertilization of the egg and would begin the process of seed formation – had the reproductive act been completed.

“In Cretaceous flowers we’ve never before seen a fossil that shows the pollen tube actually entering the stigma,” said George Poinar, Jr., a professor emeritus in the Department of Integrative Biology at the OSU College of Science. “This is the beauty of amber fossils. They are preserved so rapidly after entering the resin that structures such as pollen grains and tubes can be detected with a microscope.”

The pollen of these flowers appeared to be sticky, Poinar said, suggesting it was carried by a pollinating insect, and adding further insights into the biodiversity and biology of life in this distant era. At that time much of the plant life was composed of conifers, ferns, mosses, and cycads.  During the Cretaceous, new lineages of mammals and birds were beginning to appear, along with the flowering plants. But dinosaurs still dominated the Earth.

“The evolution of flowering plants caused an enormous change in the biodiversity of life on Earth, especially in the tropics and subtropics,” Poinar said.

“New associations between these small flowering plants and various types of insects and other animal life resulted in the successful distribution and evolution of these plants through most of the world today,” he said. “It’s interesting that the mechanisms for reproduction that are still with us today had already been established some 100 million years ago.”

The fossils were discovered from amber mines in the Hukawng Valley of Myanmar, previously known as Burma. The newly-described genus and species of flower was named Micropetasos burmensis.

Media Contact: 
Source: 

George Poinar, 541-752-0917

Multimedia Downloads
Multimedia: 

Ancient flowers

Ancient flower


Pollen tubes

Pollen tubes

2013 Weather Roundup: Wettest September doesn’t offset dry year

CORVALLIS, Ore. – The weather couldn’t seem to make up its mind what it had in store for Oregon in 2013. The state saw drought and the wettest September on record, as well as withering heat and sub-zero temperatures in the Willamette Valley.

An early December storm dropped several inches of snow on Corvallis, yet snowpack levels in the nearby Cascades are well below normal.

The United States drought monitor listed 100 percent of the state as at least abnormally dry in 2013, according to Kathie Dello, deputy director of the Oregon Climate Service at Oregon State University.

“All of Oregon is listed as dry, but southern Oregon has been historically dry in 2013,” said Dello, “and Medford and the southern coast have a chance to have their driest year on record.” As of mid-December, the Medford Airport had received just 8.97 inches of precipitation; the record dry year was set 1959 with 10.42 inches. The North Bend Airport was nearly five inches short of its driest year on record.

Despite abnormally dry conditions throughout Oregon for most of the year, it was soggy September. The month began with an enormous thunder and lightning storm that covered much of the state, triggering hundreds of fires and contributing to what Dello called a “bad wildfire year in Oregon.” The storm also dumped nearly three inches of rain on the southern Willamette Valley.

Near the end of the month, the remnants of a typhoon named Pabuk swept into the state and hammered western Oregon. Some precipitation monitors near Coos Bay recorded as much as 5.77 inches of rain on Sept. 29.

“Unfortunately, the September precipitation was not enough to offset dry conditions the rest of the year,” Dello said. “When it’s dry, that’s not how you want to receive you rainfall – in two major events. Rivers get only temporary relief and the torrential downpours can cause damage to agricultural crops.

“It’s better to have smaller, sustained rainfall events than a couple of major outbursts,” she added.

Oregon experienced a comparatively warm summer with more days than usual when temperatures exceeded 90 degrees, including the end of June and in September between the two rain events. On the other end of the spectrum, temperatures in early December plummeted to near-record lows as an Arctic front moved in.

Eugene, for example, recorded its second coldest day on record when the mercury hit minus-10 degrees on Dec. 8. Interestingly, it was not the coldest Dec. 8 on record as the all-time record low for Eugene of minus-12 degrees also occurred on Dec. 8 in 1972.

The December Arctic front hit the Corvallis area the hardest, though the weather station north of town at Hyslop Farm officially recorded just 4.5 inches of snow. Much of the area received 9-10 inches of powdery snow, forcing weeklong shutdowns of many schools and activities.

Dello said the lack of official weather recording stations in Oregon is one reason volunteers are needed for a statewide network that uses Oregon citizens to collect local data on rain, snow and even hail. The program is part of the national Community Collaborative Rain, Hail & Snow Network, or CoCoRaHS.

The Oregon Climate Service, which is part of OSU’s College of Earth, Ocean, and Atmospheric Sciences, coordinates the Oregon network. Persons interested in volunteering should go to the CoCoRaHS website at http://www.cocorahs.org/ to sign up.

“Data collected by volunteers throughout the state help provide us with much more accurate data, which leads to better precipitation maps and over the long haul, more accurate forecasting,” Dello said.

Among other highlights of Oregon’s 2013 weather year:

  • As of mid-December, the Eugene Airport had recorded 21.04 inches of precipitation; the record low was set in 1944 with 23.26 inches. Records there date back to 1911.
  • The Salem Airport had logged 23.41 inches through mid-December. The driest on record, dating back to 1940, is 23.77 inches.
  • The North Bend Airport is well ahead of the record dry year, set in 1976 with 33.52 inches. Through mid-December, the station had only recorded 28.67 inches. Records date to 1928.

Dello frequently provides weather facts and historical data via Twitter at: www.twitter.com/orclimatesvc.

Media Contact: 
Source: 
Multimedia Downloads
Multimedia: 

weatherfordsnow

Weatherford Hall in the snow

Coastal survey: Oregon beaches see more short-term erosion

CORVALLIS, Ore. – A new assessment of shoreline change along the Pacific Northwest coast from the late 1800s to present found that while the majority of beaches are stable or slightly accreting (adding sand), many Oregon beaches have experienced an increase in erosion hazards in recent decades.

Since the 1960s, 13 of the 17 beach “littoral cells” – stretches of beach between rocky headlands and major inlets – in Oregon have shifted, either from a pattern of accretion to one of erosion, or to an increased amount of erosion, or they have built up less than in the past. Some of the hardest hit areas along the coast include the Neskowin littoral cell between Cascade Head and Pacific City, and the Beverly Beach littoral cell between Yaquina Head and Otter Rock, where shoreline change rates have averaged more than one meter of erosion a year since the 1960s.

The assessment is part of a series led by the U.S. Geological Survey to study shoreline change in the nation’s coastal regions to more comprehensively monitor coastal erosion and land loss.

Peter Ruggiero, an Oregon State University coastal hazards specialist and lead author on the report, said the findings provide baseline data to analyze future impacts of climate change, sea level rise and storms on the Northwest’s shorelines, he added.

“In a general sense, Oregon has faced much more erosion in the short term than has southwest Washington, which has seen more accretion as a result of sediments from the Columbia River and jetties at the mouth of the Columbia and at Gray’s Harbor,” said Ruggiero, an associate professor in OSU’s College of Earth, Ocean, and Atmospheric Sciences.

“The Columbia has less of an influence on Oregon, and many of the state’s beaches have a relatively limited sediment supply,” Ruggiero added. “The buildup and loss of sand on our beaches is a natural process, but one that can be heavily influenced by human behavior and changes in climate.”

On a short-term basis, the study found that on average Northwest shorelines are “progradational” or growing at a rate of 0.9 meters a year. However, about 44 percent of the more than 9,000 transects the researchers studied were eroding.

Rob Thieler, a USGS scientist and leader of the agency’s coastal assessment effort, said these findings illustrate the variability of the Northwest shoreline and the factors that shape it.

“These new results help place coastal erosion in the Northwest into a local as well as national context that helps us understand how different coastlines function and which are the most vulnerable,” he said.

The lack of new sand has become a recent pattern among many beaches in Oregon, especially south of Tillamook Head because rivers are not delivering significant amounts of sand – and many estuaries trap the sediment before it reaches the ocean.

The Tillamook County area of Oregon is identified as one of the worst areas for erosion. The risk of land loss is significant from higher waves and rising sea levels, Ruggiero noted. Farther south, the impacts from these phenomena are partially countered by plate tectonics, he said.

“Over the long term, much of the shoreline is lifting because of plate tectonics,” said Ruggiero. “Along Oregon’s central coast, the uplift is only about a millimeter a year, while sea level rise has been about 2-3 mm per year. South of Coos Bay, however, the land is rising faster than the sea level is rising.”

Jonathan Allan, a researcher with the Oregon Department of Geology and Mineral Industries and a co-author on the report, said the Northwest coast has some “hot spots” where erosion has been significant and bluffs have failed, threatening houses.

“The beaches at Gleneden Beach and Neskowin, for example, contain coarse sand, which contrasts with the finer-grained beaches along much of the Oregon coast,” Allan said. “These beaches tend to be steeper and reflective of breaking wave energy, which makes them more dynamic. When coupled with the development of rip current embayments, it often results in hotspot erosion, which leads to the development of hazards when homes are placed too close to the beach.

“The issue is further complicated because at Neskowin, they have lost very large volumes of sand over the past 15 years, bringing the hazard even closer to the homes,” he added.

Ruggiero has been working with Tillamook County leaders and the Neskowin Coastal Hazards Committee on a response plan to erosion and climate change impacts. He and his colleagues are working to create new models predicting local impacts of sea level rise, and also incorporating socio-economic variables.

“It is important to look not only at the physical processes of sea level rise and inundation,” Ruggiero said, “but also to realistically look at the human dimension, including the cost of adaptation. Tillamook County has been actively addressing these issues.”

The USGS assessment focused on open-ocean sandy shores and did not look at Washington beaches along stretches of the Olympic Peninsula, Puget Sound or in Hood Canal because little data are available in those regions. But Ruggiero noted that many of the beaches in central and southern Washington were stable or adding sand, instead of eroding.

The study, “National Assessment of Shoreline Change: Historical Shoreline Change Along the Pacific Northwest Coast,” is available online at: http://pubs.usgs.gov/of/2012/1007/. Authors include Peter Ruggiero, OSU; Meredith G. Kratzmann, Emily A. Himmelstoss, and David Reid, USGS; Jonathan Allan, DOGAMI; and George Kaminsky, Washington Department of Ecology.

Media Contact: 
Source: 

Peter Ruggiero, 541-737-1239 (cell phone: 415-722-6722); ruggierp@science.oregonstate.edu

Multimedia Downloads
Multimedia: 

Sea Clff Erosion
Sea cliff erosion near

Gleneden Beach, Ore.

 

 

Oregon littoral cells

New study identifies five distinct humpback populations in North Pacific

NEWPORT, Ore. – The first comprehensive genetic study of humpback whale populations in the North Pacific Ocean has identified five distinct populations – at the same time a proposal to designate North Pacific humpbacks as a single “distinct population segment” is being considered under the Endangered Species Act.

Results of the study are being published this week in the journal Marine Ecology – Progress Series. It was supported by the National Fisheries and Wildlife Foundation, the Office of Naval Research, and the Marine Mammal Endowment at Oregon State University.

The scientists examined nearly 2,200 tissue biopsy samples collected from humpback whales in 10 feeding regions and eight winter breeding regions during a three-year international study, known as SPLASH (Structure of Populations, Levels of Abundance and Status of Humpbacks).  They used sequences of maternally inherited mitochondrial DNA and “microsatellite genotypes,” or DNA profiles, to both describe the genetic differences and outline migratory connections between both breeding and feeding grounds.

“Though humpback whales are found in all oceans of the world, the North Pacific humpback whales should probably be considered a sub-species at an ocean-basin level – based on genetic isolation of these populations on an evolutionary time scale,” said Scott Baker, associate director of the Marine Mammal Institute at Oregon State University’s Hatfield Marine Science Center and lead author on the paper.

“Within this North Pacific sub-species, however, our results support the recognition of multiple distinct populations,” Baker added. “They differ based on geographic distribution and with genetic differentiations as well, and they have strong fidelity to their own breeding and feeding areas.”

Humpback whales are listed as endangered in the United States under the Endangered Species Act, but had recently been downlisted by the International Union for the Conservation of Nature (IUCN) on a global level. However, two population segments recently were added as endangered by the IUCN – one in the Sea of Arabia, the other in Oceania – and it is likely that one or more of the newly identified populations in the North Pacific may be considered endangered, Baker said.

How management authorities respond to the study identifying the distinct North Pacific humpback populations remains to be seen, Baker said, but the situation “underscores the complexity of studying and managing marine mammals on a global scale.”

The five populations identified in the study are:  Okinawa and the Philippines; a second West Pacific population with unknown breeding grounds; Hawaii, Mexico and Central America.

“Even within these five populations there are nuances,” noted Baker, who frequently serves as a member of the scientific committee of the International Whaling Commission. “The Mexico population, for example, has ‘discrete’ sub-populations off the mainland and near the Revillagigedo Islands, but because their genetic differentiation is not that strong, these are not considered ‘distinct’ populations.”

The SPLASH program has used photo identification records to estimate humpback whale populations. The researchers estimate that there are approximately 22,000 humpbacks throughout the North Pacific – about the same as before whaling reduced their numbers. Although recovery strategies have been successful on a broad scale, recovery is variable among different populations.

“Each of the five distinct populations has its own history of exploitation and recovery that would need to be part of an assessment of its status,” said Baker, who is a professor of fisheries and wildlife at OSU. “Unlike most terrestrial species, populations of whales within oceans are not isolated by geographic barriers. Instead, migration routes, feeding grounds and breeding areas are thought to be passed down from mother to calf, persisting throughout a lifetime and from one generation to the next.

“We think this fidelity to migratory destinations is cultural, not genetic,” he added. “It is this culture that isolates whales, leading to genetic differentiation – and ultimately, the five distinct populations identified in the North Pacific.”

Media Contact: 
Source: 

Scott Baker, 541-867-0255 (cell phone: 541-272-0560), scott.baker@oregonstate.edu

Multimedia Downloads
Multimedia: 

humpbacks

Science Policy Forum: Researchers advocate for climate adaptation science

CORVALLIS, Ore. – An international team of researchers says in a new paper that climate science needs to advance to a new realm – more practical applications for dealing with the myriad impacts of climate variability.

The scientific capability already exists as does much of the organizational structure, they say, to begin responding to emerging climate-related issues ranging from declining snowpack, to severe storms, to sea level rise. What is missing is better engagement between the scientific community and the stakeholders they are seeking to inform.

Their paper is being published on Friday in the Policy Forum section of the journal Science.

“Adaptation is required in virtually all sectors of the economy and regions of the globe,” they wrote. “However, without the appropriate science delivered in a decision-relevant context, it will become increasingly difficult – if not impossible – to prepare adequately.”

Philip Mote, an Oregon State University climate scientist and co-author on the paper, said climate adaptation science involves trans-disciplinary research to understand the challenges and opportunities of climate change – and how best to respond to them.

“What we need is more visibility to gain more inclusiveness – to bring into play the private sector, resource managers, universities and a host of decision-makers and other stakeholders,” said Mote, who directs the Oregon Climate Change Research Institute at Oregon State. “The stakeholders need to know our scientific capabilities, and we need to better understand their priorities and decision-making processes.”

Oregon State is among the national leaders in climate adaptation science. In addition to the Oregon Climate Change Research Institute, the university has two regional climate centers – one established by the National Oceanic and Atmospheric Administration to work with municipalities, utilities, emergency management organizations and state and federal agencies; the other by the Department of the Interior to work primarily with federal and state agencies, and non-governmental organizations.

Mote, who is involved with all three centers, said work with stakeholders is gaining traction, but the gap that exists between scientists and decision-makers is still too large.

“The centers here and elsewhere around the country are driven by stakeholder demands, but that needs to reach deeper into the research enterprise,” Mote said. “We’re working with some water districts, forest managers and community leaders on a variety of issues, but that’s just the tip of the iceberg.”

Richard Moss, a senior scientist with the U.S. Department of Energy’s Pacific Northwest National Laboratory, said the Science article grew out of a NASA-funded workshop held in 2012 at the Aspen Global Change Institute in Colorado, which focused on how to improve support for decision-making in the face of a changing climate.

“Traditionally, we think that what society needs is better predictions,” said Moss, who was lead author on the Science article. “But at this workshop, all of us – climate and social scientists alike – recognized the need to consider how decisions get implemented and that climate is only one of many factors that will determine how people will adapt.”

OSU’s Mote said examples abound of issues that need the marriage of stakeholders and climate scientists. Changing snowmelt runoff is creating concerns for late-season urban water supplies, irrigation for agriculture, and migration of fish. An increasing number of plant and animal species are becoming stressed by climate change, including the white bark pine and the sage grouse. Rising sea levels and more intense storms threaten the infrastructure of coastal communities, which need to examine water and sewer systems, as well as placement of hospitals, schools and nursing homes.

Mote, Moss and their colleagues outline a comprehensive approach to research in the social, physical, environmental, engineering and other sciences. Among their recommendations for improvement:

  • Understand decision processes and knowledge requirements;
  • Identify vulnerabilities to climate change;
  • Improve foresight about exposure to climate hazards and other stressors;
  • Broaden the range of adaptation options and promote learning;
  • Provide examples of adaptation science in application;
  • Develop measures to establish adaptation science.

One such measure could be the development of a national institution of climate preparedness in the United States comprised of centers for adaptation science aimed at priority sectors.

“More broadly,” the authors wrote in Science, “support for sustained, use-inspired, fundamental research on adaptation needs to be increased at research agencies. A particular challenge is to develop effective approaches to learn from adaptation practice as well as published research. Universities could provide support for sustained, trans-disciplinary interactions. Progress will require making a virtue of demonstrating tangible benefits for society by connecting research and applications.”

Media Contact: 
Source: 

Philip Mote, 541-737-5694; pmote@coas.oregonstate.edu; Richard Moss, 301-314-6711; rhm@pnnl.gov

Climate report: Wildfires, snowmelt, coastal issues top Northwest risks

CORVALLIS, Ore. – The Northwest is facing increased risks from the decline of forest health, earlier snowmelt leading to low summer stream flows, and an array of issues facing the coastal region, according to a new climate assessment report.

Written by a team of scientists coordinated by the Oregon Climate Change Research Institute (OCCRI) at Oregon State University, the report is the first regional climate assessment released since 1999. Both the 1999 report and the 2013 version were produced as part of the U.S. National Climate Assessment; both Washington and Oregon produced state-level reports in 2009 and 2010.

OSU’s Philip Mote, director of the institute and one of three editors of the 270-page report (as well as the 1999 report), said the document incorporates a lot of new science as well as some additional dimensions – including the impact of climate change on human health and tribal issues. A summary of the report is available online at: http://occri.net/reports

Amy Snover, director of the Climate Impacts Group at the University of Washington, said there are a number of issues facing the Northwest as a result of climate change.

“As we looked across both economic and ecological dimensions, the three that stood out were less snow, more wildfires and challenges to the coastal environment and infrastructure,” said Snover, who is one of the editors on the report.

The report outlines how these three issues are affected by climate change.

“Studies are showing that snowmelt is occurring earlier and earlier and that is leading to a decline in stream flows in summer,” Mote said. “Northwest forests are facing a huge increase in wildfires, disease and other disturbances that are both direct and indirect results of climate change. And coastal issues are mounting and varied, from sea level rise and inundation, to ocean acidification. Increased wave heights in recent decades also threaten coastal dwellings, roads and other infrastructure.”

OCCRI’s Meghan Dalton, lead editor on the report, notes that 2,800 miles of coastal roads are in the 100-year floodplain and some highways may face inundation with just two feet of sea level rise. Sea levels are expected to rise as much as 56 inches, or nearly five feet, by the year 2100.

Earlier snowmelt is a significant concern in the Northwest, where reservoir systems are utilized to maximize water storage. But, Dalton said, the Columbia River basin has a storage capacity that is smaller than its annual flow volume and is “ill-equipped to handle the projected shift to earlier snowmelt…and will likely be forced to pass much of these earlier flows out of the system.”

The earlier peak stream flow may significantly reduce summer hydroelectric power production, and slightly increase winter power production.

The report was funded by the National Oceanic and Atmospheric Administration, through the Oregon Legislature’s support of the Oregon Climate Change Research Institute at OSU, and by in-kind contributions from the authors’ institutions.

Mote said new research has led to improved climate models, which suggest that the Northwest will warm by a range of three to 14 degrees (Fahrenheit) by the year 2100. “The lower range will only be possible if greenhouse gas emissions are significantly reduced.” In contrast, the Northwest warmed by 1.3 degrees from the period of 1895 to 2011.

Future precipitation is harder to project, the report notes, with models forecasting a range from a 10 percent decrease to an 18 percent increase by 2100. Most models do suggest that more precipitation will fall as rain and earlier snowmelt will change river flow patterns.

That could be an issue for agriculture in the future as the “Northwest’s diverse crops depend on adequate water supplies and temperature ranges, which are projected to change during the 21st century,” the report notes. Pinpointing the impacts on agriculture will be difficult, said Sanford Eigenbrode of the University of Idaho, another co-author.

“As carbon dioxide levels rise, yields will increase for some plants, and more rainfall in winter could mean wetter soils in the spring, benefitting some crops,” Eigenbrode pointed out. “Those same conditions could adversely affect other crops. It is very difficult to say how changing climate will affect agriculture overall in the Northwest, but we can say that the availability of summer water will be a concern.”

Mote said there may be additional variables affecting agriculture, such what impacts the changing climate has on pests, diseases and invasive species.

“However, the agricultural sector is resilient and can respond more quickly to new conditions than some other sectors like forestry, where it takes 40 years or longer for trees to reach a harvestable age,” noted Mote, who is a professor in OSU’s College of Earth, Ocean, and Atmospheric Sciences.

The Northwest has not to date been vulnerable to many climate-related health risks, the report notes, but impacts of climate change in the future are more likely to be negative than positive. Concerns include increased morbidity and mortality from heat-related illness, air pollution and allergenic disease, and the emergence of infectious diseases.

“In Oregon, one study showed that each 10-degree (F) increase in daily maximum temperature was associated with a nearly three-fold increase of heat-related illness,” said Jeff Bethel, an assistant professor in the College of Public Health and Human Sciences at OSU and one of the co-authors of the report. “The threshold for triggering heat-related illness – especially among the elderly – isn’t much.”

Northwest tribes may face a greater impact from climate change because of their reliance on natural resources. Fish, shellfish, game and plant species could be adversely affected by a warming climate, resulting in a multitude of impacts.

“When tribes ceded their lands and were restricted to small areas, it resulted in a loss of access to many species that lived there,” said Kathy Lynn, coordinator of the Tribal Climate Change Project at the University of Oregon and a co-author of the report. “Climate change may further reduce the abundance of resources. That carries a profound cultural significance far beyond what we can document from an economic standpoint.”

Snover said that the climate changes projected for the coming decades mean that many of the assumptions “inherent in decisions, infrastructure and policies – where to build, what to grow where, and how to manage variable water sources to meet multiple needs – will become increasingly incorrect.

“Whether the ultimate consequences of the climate impacts outlined in this report are severe or mild depends in part on how well we prepare our communities, economies and natural systems for the changes we know are coming,” Snover said.

Other lead co-authors on the report are Rick Raymondi, Idaho Department of Water Resources; W. Spencer Reeder, Cascadia Consulting Group; Patty Glick, National Wildlife Federation; Susan Capalbo, OSU; and Jeremy Littell, U.S. Geological Survey.

Media Contact: 
Source: 

Philip Mote, 541-737-5694; pmote@coas.oregonstate.edu; Amy Snover, 206-221-0222; aksnover@uw.edu

Multimedia Downloads
Multimedia: 

Major storm Coastal issues

Melting glacier Snowmelt

Trail Creek FireWildfires

OSU faculty members key contributors to IPCC report

CORVALLIS, Ore. – The Intergovernmental Panel on Climate Change, a United Nations-sponsored group of scientists, issued its latest report on the state of scientific understanding on climate change. Two Oregon State University faculty members played key roles in the landmark report.

Peter Clark, a professor in OSU’s College of Earth, Ocean, and Atmospheric Sciences, was one of two coordinating lead authors on a chapter outlining sea level change. He and fellow coordinating lead author John Church of Australia oversaw the efforts of 12 lead authors and several dozen contributing scientists on the science of sea level change.

Philip Mote, director of the Oregon Climate Change Research Institute at OSU, was one of 12 lead authors on a chapter looking at the cryosphere, which is comprised of snow, river and lake ice, sea ice, glaciers, ice sheets, and frozen ground. The cryosphere plays a key role in the physical, biological and social environment on much of the Earth’s surface.

“Since the last IPCC report, there has been increased scientific understanding of the physical processes leading to sea level change, and that has helped improve our understanding of what will happen in the future,” Clark said.

“One of the things our group concluded with virtual certainty is that the rate of global mean sea level rise has accelerated over the past two centuries – primarily through the thermal expansion of the oceans and melting of glaciers,” Clark added. “Sea level rise will continue to accelerate through the 21st century, and global sea levels could rise by 0.5 meters to at least one meter by the year 2100.”

The rate of that rise will depend on future greenhouse gas emissions.

Among other findings, the sea level chapter also concluded that it is virtually certain that global mean sea level will continue to rise beyond the year 2100, and that substantially higher sea level rise could take place with the collapse of the Antarctic ice sheet.

Mote, who also is a professor in the College of Earth, Ocean, and Atmospheric Sciences, said analyzing the cryosphere is complex and nuanced, though overall the amount of snow and ice on Earth is declining.

The report notes: “Over the last two decades, the Greenland and Antarctic ice sheets have been losing mass, glaciers have continued to shrink almost worldwide, and Arctic sea ice and Northern Hemisphere spring snow cover have continued to decrease in extent.” Other cryosphere changes include:

  • Greenland and Antarctica are not only losing ice, but the rate of decline is accelerating;
  • The amount of sea ice in September has reached new lows;
  • The June snow cover also has reached new lows and has decreased by an average of 11.7 percent per decade – or 53 percent overall – from 1967 to 2012;
  • The reduction in snow cover can formally be attributed to human influence – work done by Mote and David Rupp of OSU.

 Rick Spinrad, OSU’s vice president for research, praised the efforts of the two OSU faculty members for their contributions to the report.

 "OSU is a global leader in environmental research as reflected by the leadership roles of Dr. Clark and Dr. Mote in this seminal assessment,” Spinrad said. “The impact of the IPCC report will be felt by scientists and policy makers for many years to come."

The IPCC report is comprised of 14 chapters, supported by a mass of supplementary material. A total of 209 lead authors and 50 review editors from 39 countries helped lead the effort, and an additional 600 contributing authors from 32 countries participated in the report. Authors responded to more than 54,000 review comments.

The report is available online at the IPCC site: http://www.ipcc.ch/

Media Contact: 
Multimedia Downloads
Multimedia: 

Melting glacier
A shrinking glacier

Coastal waves
Rising sea levels