environment and natural resources

Abrupt global warming could shift monsoon patterns, cut agricultural output

CORVALLIS, Ore. – At times in the distant past, an abrupt change in climate has been associated with a shift of seasonal monsoons to the south, a new study concludes, causing more rain to fall over the oceans than in the Earth’s tropical regions, and leading to a dramatic drop in global vegetation growth.

If similar changes were to happen to the Earth’s climate today as a result of global warming – as scientists believe is possible – this might lead to drier tropics, more wildfires and declines in agricultural production in some of the world’s most heavily populated regions.

The findings were based on oxygen isotopes in air from ice cores, and supported by previously published data from ancient stalagmites found in caves. They will be published Friday in the journal Science by researchers from Oregon State University, the Scripps Institution of Oceanography and the Desert Research Institute in Nevada. The research was supported by the National Science Foundation.

The data confirming these effects were unusually compelling, researchers said.

“Changes of this type have been theorized in climate models, but we’ve never before had detailed and precise data showing such a widespread impact of abrupt climate change,” said Ed Brook, an OSU professor of geosciences. “We didn’t really expect to find such large, fast environmental changes recorded by the whole atmosphere. The data are pretty hard to ignore.”

The researchers used oxygen measurements, as recorded in air bubbles in ice cores from Antarctica and Greenland, to gauge the changes taking place in vegetation during the past 100,000 years. Increases or decreases in vegetation growth can be determined by measuring the ratio of two different oxygen isotopes in air – the composition of which is essentially the same around the world at any one point in time.

They were also able to verify and confirm these measurements with data from studies of ancient stalagmites on the floors of caves in China, which can reveal rainfall levels over hundreds of thousands of years.

“Both the ice core data and the stalagmites in the caves gave us the same signal, of very dry conditions over broad areas at the same time,” Brook said. “We believe the mechanism causing this was a shift in monsoon patterns, more rain falling over the ocean instead of the land. That resulted in much lower vegetation growth in the regions affected by these monsoons, in what is now India, Southeast Asia and parts of North Africa.”

Previous research has determined that the climate can shift quite rapidly in some cases, in periods as short as decades or less. This study provides a barometer of how those climate changes can affect the Earth’s capacity to grow vegetation.

“Oxygen levels and their isotopic composition in the atmosphere are pretty stable; it takes a major terrestrial change to affect it very much,” Brook said. “These changes were huge. The drop in vegetation growth must have been dramatic.”

Observations of past climatic behavior are important, Brook said, but not a perfect predictor of the impact of future climatic shifts. For one thing, at times in the past when some of these changes took place, larger parts of the northern hemisphere were covered by ice. Ocean circulation patterns also can heavily influence climate, and shift in ways that are not completely understood.

However, the study still points to monsoon behavior being closely linked to climate change.

“These findings highlight the sensitivity of low-latitude rainfall patterns to abrupt climate change in the high–latitude north,” the researchers wrote in their report, “with possible relevance for future rainfall and agriculture in heavily-populated monsoon regions.”


Story By: 

Ed Brook, 541-737-8197

Studies Confirm Greenhouse Mechanisms Even Further Into Past

CORVALLIS, Ore. – The newest analysis of trace gases trapped in Antarctic ice cores now provide a reasonable view of greenhouse gas concentrations as much as 800,000 years into the past, and are further confirming the link between greenhouse gas levels and global warming, scientists reported today in the journal Nature.

They also show that during that entire period of time, there have never been concentrations of carbon dioxide and methane as high as the current levels, said Edward Brook, an associate professor of geosciences at Oregon State University, and author of a Nature commentary on the new studies.

“The fundamental conclusion that today’s concentrations of these greenhouse gases have no past analogue in the ice-core record remains firm,” Brook said in the report. “The remarkably strong correlations of methane and carbon dioxide with temperature reconstructions also stand.”

The latest research, done by members of the European Project for Ice Coring in Antarctica, extend the data on trace gases back another 150,000 years beyond any studies done prior to this, Brook said. Ultimately, researchers would like to achieve data going back as much as 1.5 million years.

The tiny bubbles of ancient air trapped in polar ice cores have been used to provide records of trace gases in the atmosphere at distant points in the past, and better understand the natural fluctuations that have occurred, largely as a result of cyclical changes in Earth’s orbit around the sun.

“These natural cycles that occur on the order of tens or hundreds of thousands of years can help us understand both the forces that have controlled and influenced Earth’s climate in the past, and the implications of current changes on future climate,” said Brook, who is co-chair of an international group that organizes global studies in this field.

According to the data, the current levels of primary greenhouse gases – those that are expected to cause global warming – are off the charts.

The concentration of carbon dioxide is now a bit more than 380 parts per million, compared to a range of about 200-300 parts per million during the past 800,000 years. The current concentration of methane is 1,800 parts per billion, compared to a range of about 400-700 parts per billion during that time.

In every case during that extended period, warm periods coincide with high levels of greenhouse gases. Of some interest, the latest studies are showing that the temperature increases have been even more pronounced during the most recent 450,000 years, compared to several hundred thousand years prior to that.

“It appears there may even be very long-term natural cycles that have operated on much longer periods of 400,000 years or more,” Brook said. “We still have quite a bit to learn about these past cycles and all the forces that control them.”

Most of the time during the past 800,000 years, the Earth has experienced long, cooler periods about 80,000 to 90,000 years long, which eventually lead to ice ages. Those have been regularly interrupted by “interglacial” periods about 10,000 to 20,000 years long that are considerably warmer – this is the stage the Earth is in right now. Abrupt climate changes on much shorter time scales are also possible, researchers believe, possibly due to shifts in ocean circulation patterns or other forces.

Scientists are continuing to search for the optimal sites in Antarctica that will allow them to take the ice core records back even further, Brook said.

Story By: 

Edward Brook,

Changing Ownership of Timber Lands Raises Social, Economic Challenges

CORVALLIS, Ore. – Almost all large, publicly-traded forest product companies have shed their timber lands in the past 20 years, a reflection of global economic pressures, new tax laws and other forces – and this phenomenon has changed the very nature of commercial forestry.

In their place are new real estate investment trusts and timberland investors that are focused on maximizing their profits, mixed in with remaining small and private forest landowners and companies struggling to survive. These wide-ranging changes are poorly understood and may not serve the best long term interests of society, according to recent studies in the College of Forestry at Oregon State University.

This revolution in America’s forest ownership and management has taken place quietly and largely under the radar, but it has huge business, social and environmental implications, said John Bliss, OSU professor and holder of the Starker Chair of Private and Family Forestry.

“In forestry, we grew up with the idea that large, public forest product companies would always own and manage forest lands,” Bliss said. “That was naïve. By and large they have gotten out of that business completely.”

These “vertically integrated” public forest product companies used to own large tracts of their own forest lands as well as the mills to process the timber, Bliss said. At the same time they retained professional land managers, employed huge numbers of forest and mill workers, and had a long-term commitment to forest products as their primary business. They dwarfed small forest landowners in size, and sometimes disparaged them as “less professional” and not using the latest practices or technology, Bliss said.

But in the last couple decades, these companies – International Paper, Georgia Pacific, Boise Cascade, Pope and Talbot – have either sold off their timber lands or gone out of business altogether. What’s left is a grab bag of small forest landowners, new types of large timber land owners, and commercial mills that have to buy timber wherever they can get it. The motivations and goals of these people and entities are quite different from those of the past, experts say.

“A lot of this was driven by very tough global competition and changes in tax laws,” said Erin Kelly, an OSU forestry doctoral student. “The tax laws were created at the federal level for business in general and had little to do with forestry. But the end result was that ownership of timber lands was dragging down the bottom line for the big forest product companies.”

More favorable tax situations were enjoyed by real estate investment trusts (REITs) or timber investment management organizations (TIMOs) which provided mechanisms that helped avoid corporate taxes and long-term capital gains. At the same time, large public companies faced cost-cutting, mergers and acquisitions, a drive for maximum efficiency and improved profits.

“Several CEOs of large public timber companies have said that they simply had no choice,” Bliss said. “It was either recognize the efficiency of new business models or go out of business.”

But those changing ownership structures, researchers say, have had multiple impacts. Real estate investment trusts, for instance, have a mandate to maximize the value of the lands they own. They don’t have a mill they are required to keep busy, and their managers don’t much care whether the land produces timber or gets turned into golf courses, resorts or subdivisions. And who, ultimately, are the new owners? They could be just about anybody, including the ordinary investor – pension funds, mutual funds and insurance companies hold many of these REITs and TIMOs, which can help them diversify their holdings.

“People who used to be in the timber production business are now in the investment business,” Kelly said. “The end result is a lot of pressure to take timber lands out of production for whatever other use makes more money. The largest private landowner in the United States right now is a real estate investment trust in Seattle. But whether this best serves the long-term good of society is a different question.”

At the same time, the remaining small timber land owners or small private companies are trying to produce wood and forest products in competition with large, multinational industries all over the world.

“In today’s global, intensely competitive free market, smallness of enterprise is not generally viewed as an asset,” the scientists wrote in one recent study. “Particularly in commodity markets, economies of scale in ownership, management, production, transportation and marketing all favor bigness.”

The challenge, OSU experts say, is to identify approaches or techniques that can allow economic survival of today’s smaller or more disjointed forest land owners. No easy solutions exist, Bliss said.

“There has been the idea that smaller landowners or companies in the U.S. could turn more to ‘green’ wood products that are produced in environmentally sensitive ways,” Bliss said. “But so far the American consumer has not generally indicated a willingness to pay more for these products.”

There may be some opportunities to grow older, very high quality logs in long rotations that can be used for specialty products and command higher prices, Bliss said. Some forest lands have also been sold to environmental groups for conservation purposes, which can be locally important but offer less of a widespread solution. Hunting leases and other ecotourism options provide some potential for income. And intensively-managed plantations on the best forest lands may help keep them economically viable.

Small forest landowners often provide the commitment to caring for the land, diversity of uses, personal attachment, flexibility and ethical underpinning that are viewed as very positive forces, Bliss said. These people are not always driven by the need to maximize production or convert forest lands for a quick profit – but they must compete in the marketplace in order to survive.

“The squeeze is on, there’s no doubt about it,” Bliss said. “Our challenge is to accept these new realities and find ways for the smaller owners to survive, hopefully even thrive.”

Story By: 

John Bliss,

New Studies Highlight Concern over Rising Jellyfish Populations

CORVALLIS, Ore. – Jellyfish populations appear to be increasing along the West Coast and in the Bering Sea and scientists studying the phenomenon are concerned because jellyfish may feed on the same plankton species targeted by herring, sardines and anchovies, juveniles salmon and other fishes.

Compounding the situation, the scientists say, is that there are few predators for adult jellyfish.

“A few birds and fish will eat the jellies in their larval or juvenile stages,” said Richard D. Brodeur, a NOAA biologist and adjunct professor in the College of Oceanic and Atmospheric Sciences at Oregon State University. “But once the medusae reach a certain size, not much eats them.”

Newly published studies by Brodeur, OSU oceanographer Lorenzo Ciannelli and others are looking at the link between climate change and jellyfish populations and they have found this relationship is complex. The prevailing school of thought has been that as ocean waters warm, jellyfish populations will increase. But they have discovered that food sources, reproduction dynamics and ocean currents all play a role in jellyfish populations.

In a paper just published in Progress in Oceanography, the scientists describe a steep increase in jellyfish populations in the Bering Sea through the 1990s, peaking in the summer of 2000. But during the years of 2001 through 2005, when scientists recorded some of the warmest temperatures ever in the Bering Sea, jellyfish populations declined.

“They were still well ahead of their historic averages for that region,” said Ciannelli, an assistant professor in OSU’s College of Oceanic and Atmospheric Sciences. “But clearly jellyfish populations are not merely a function of water temperature.”

One key to learning more about jellyfish expansion has been Ciannelli’s work looking into the organisms’ complex life cycle. Adult males release their sperm into the water column and fertilize the eggs that female adults have released. From each fertilized egg, a larva is produced that attaches itself to a rock or some other solid surface and produces a polyp. These polyps reproduce asexually and eventually the young medusae detach themselves and begin the life cycle anew.

The researchers’ preliminary findings suggest that warmer ocean waters may enhance the stage where polyps transform into colonies, but that hypothesis is based on lab work, not field research. The reason, Ciannelli says, is that polyps are notoriously difficult to locate because of their small size.

“We think that higher temperatures lead to a higher metabolic rate and faster division of cells,” he said. “It accelerates the whole system. But finding polyps in the Bering Sea is like trying to do research on the dark side of the moon.”

Ciannelli and his colleagues are funded by the National Science Foundation to better understand how these polyps are distributed. One hypothesis is that there is a single unique source that produces the small jellyfish in the Bering Sea and their expansion is a product of currents. An alternative theory is that the jellyfish are using pockets of warm water to establish new colonies, which would be consistent with global warming scenarios, he said.

“What we’re trying to figure out is where the energy of the food web is going,” Ciannelli pointed out. “If it is going to the jellyfish, which are eating the plankton, it creates an overall sink because they have few predators. It is diverting the energy of the ocean from the pelagic to the benthic system.”

Scientists have begun looking more closely at food sources for jellyfish off the West Coast of the United States and their findings are surprising. In a paper published in the April 2008 issue of the Marine Ecology Progress Series, a team of scientists including Brodeur quantified diet and predation rates for large jellyfish from an upwelling region in the northern California Current. They found that in an area north of Cape Blanco, Ore., abundant populations of jellyfish ate an average of one-third of all the euphausiid – a type of zooplankton – eggs available each day. Consumption of other taxa reached 10 to 12 percent of the standing stocks.

On the other hand, copepods, important components of the marine food web, were consumed at relatively low levels – less than 1 percent a day. Lead author on that study was Cynthia L. Suchman, who conducted her research out of OSU’s Hatfield Marine Science Center Hatfield Marine Science Center in Newport, Ore., where Brodeur works.

Few scientists are conducting long-term jellyfish studies and the authors suggest that zooplankton studies and predation impacts by jellyfish should be incorporated into long-term studies and ecosystem models. “Unfortunately,” Brodeur said, “there hasn’t been a great deal of funding for jellyfish studies, so we don’t know as much as we should about their impact.”

Trawl surveys by Brodeur and his colleagues found that the spatial overlap between jellyfish and most pelagic fishes, including salmon, was relatively small. But in a forthcoming article in Marine Biology, the researchers point out that the overlap with “planktivorous” fishes that consume copepods and euphausiid eggs – including Pacific sardines, the northern anchovy, Pacific saury, and Pacific herring – was considerable. These prey species also are critical to the diets of salmon and other species in the ocean.

“We’ve been collecting data now for about nine years and it appears, at least on a preliminary basis, that when cold water regimes are prevalent, jellyfish numbers increase,” Brodeur said. “During the warmer years, when food sources are scarcer, there may be fewer jellyfish, but they grow quickly – whether because of elevated metabolic rates or less competition, we don’t know.”

This summer Brodeur will be involved in a series of cruises off the Oregon coast to sample jellyfish populations and see what effect this year’s cold-water La Niña phenomenon may have had.

“It won’t be a good sign for the ecosystem if we get a lot of jellies out there,” he said.

Their research has been supported by the National Science Foundation, NOAA and the National Marine Fisheries Service.


Story By: 

Ric Brodeur,

Multimedia Downloads

chrysaora jellyfish

Chrysaora melanaster

OSU Aims to Hire 2 Researchers by September to Study Honeybee Health

CORVALLIS, Ore. – Oregon State University hopes to hire two research and Extension faculty members by September to examine the health of the state's honeybees and find out if any hives have been wiped out by a mysterious phenomenon that has caused losses in colonies throughout the country.

Honeybees are crucial pollinators for many of Oregon's crops, including blueberries, pears, cherries, apples and vegetable seeds.

The positions will be funded through a $215,000 emergency package approved last week by the Joint Legislative Emergency Board, which oversees budget requests when the state legislature is out of session. The money will also be used to increase the diagnostic capability at OSU's Insect ID Clinic and buy lab supplies for honeybee research. The funding is for 10 months, but the university hopes the legislature will renew funding in the 2009-11 budget for the Oregon University System.

OSU will conduct a nationwide search to fill the two new openings, said Stella Coakley, an associate dean at OSU's College of Agricultural Sciences. One position is for a lead scientist who will identify and work to resolve problems facing honeybees in Oregon. Ideally, the candidate would be an entomologist with expertise in apiculture and experience with honeybee health issues, Coakley said.

The other position is a research and Extension assistant who would aid the lead scientist and OSU insect clinic entomologist, Jim Young. Young presently is funded to devote four hours a week to honeybee health issues, but with the new funding, he will spend 10 hours a week on this. He also plans to analyze random samples of honeybees from across the state to form a general assessment of the health of hives.

Oregon does not have a full-time expert who specializes in diagnosing problems facing honeybees. The Oregon Department of Agriculture used to employ a honeybee expert but eliminated that position in the 1990s amid budget cuts.

Young is the only OSU employee paid to handle issues involving the health of honeybees. On his own time, Professor Emeritus Michael Burgett answers the public's questions about bees but isn't paid to do so.

Burgett and agricultural economists from Montana State University and North Carolina State University received a grant this year from the U.S. Department of Agriculture to calculate how many honeybee colonies have died in Oregon, Washington, and Idaho in 2007-08 and to assess the economic impact of these deaths on agriculture. Burgett said he expects the findings to be published in December or January.

Young oversees OSU Extension's Honey Bee Diagnostic Services (http://www.bcc.orst.edu/bpp/insect_clinic/bees.htm), which was created this year in response to concern from farmers, apiculturists and the general public. The lab diagnoses non-viral diseases and pests, including American and European foulbrood, chalkbrood, stonebrood and tracheal mites.

In April, Young mailed a survey, which is voluntary and anonymous, to 120 beekeepers in Oregon to find out what diseases and pests were affecting their honeybees. About 30 have been returned, he said.

"The replies are so scattered that there does not appear to be any pattern," Young said.

He said that some reported cases of American and European foulbrood, varroa mites, and nosema. Three or four beekeepers thought their hives suffered from colony collapse disorder, but that doesn't mean they actually had the condition, Young said.

Colony collapse disorder occurs when adult honeybees disappear from a hive, either entirely or in large numbers. The phenomenon came to light in late 2006, when beekeepers on the East Coast began to see their honeybee colonies dwindle. A cause has not been determined, but one possible suspect is a virus. The disorder has since spread to other states and may now be present in the Pacific Northwest, including Oregon.


Stella Coakley,

Coffee Grounds Perk up Compost Pile With Nitrogen

CORVALLIS, Ore. – Coffee grounds can be an excellent addition to a compost pile. The grounds are relatively rich in nitrogen, providing bacteria the energy they need to turn organic matter into compost.

About 2 percent nitrogen by volume, used coffee grounds can be a safe substitute for nitrogen-rich manure in the compost pile, explained Cindy Wise, coordinator of the compost specialist program at the Lane County office of the Oregon State University Extension Service.

"A lot of people don't want to use manure because of concerns about pathogens," said Wise.

Contrary to popular belief, coffee grounds are not acidic. After brewing, the grounds are close to pH neutral, between 6.5 and 6.8. The acid in the beans is mostly water-soluble, so it leaches into the coffee we drink.

Since 2001, Wise has trained and coordinated OSU compost specialist volunteers. They have collected and composted nearly 200 tons of coffee grounds from 13 coffee shops and kiosks in Eugene, Springfield, Florence, Cottage Grove and Veneta. That's the equivalent of about 25 large dump trucks full of coffee grounds.

Lane County alone is estimated to generate a million pounds of used coffee grounds per year, said Wise.

"Recycling this valuable soil amendment and compost ingredient makes sense both economically and environmentally," she said.

Wise is encouraging gardeners and those that compost in other communities to arrange to collect coffee shop grounds for composting. But be sure to make prior arrangements with a coffee shop to collect grounds. Then, take a clean five-gallon bucket with a lid, label it with your name and telephone number on the bucket and lid and leave it at the shop and then pick it up at the shop's convenience.

Here are some suggestions for using composted grounds in the yard and garden from the OSU Extension compost specialists:

  • Mix grounds into soil as an amendment. Make sure to keep them damp. Add some nitrogen fertilizer if you do this, as coffee grounds encourage the growth of microbes in the soil, which use up nitrogen. While microbes are breaking down the grounds, the nitrogen will provide a source of nutrients for your plants.

  • Spread grounds on the soil surface, then cover them with leaves or bark mulch.

  • Add grounds to your compost pile, layering one part leaves to one part fresh grass clippings to one part coffee grounds, by volume. Turn once a week. This will be ready in three to six months.

  • Or, put them in an existing unturned pile. Just make sure to add a high carbon source, such as leaves to balance it.

  • Grounds may be stored for future use. They may develop molds but these appear to be consumed during the composting process. Or a large plastic bag works for storage as well.

  • Paper coffee filters may be composted with the grounds.

Keep in mind that uncomposted coffee grounds are NOT a nitrogen fertilizer. Coffee grounds have a carbon-to-nitrogen ration of about 20 to 1, in the same range as animal manure. Germination tests in Eugene showed that uncomposted coffee grounds, added to soil as about one-fourth the volume, showed poor germination and stunted growth in lettuce seed. Therefore, they need to be composted before using near plants.

Wise and her composting protégés have been conducting informal research on composting coffee grounds. So far, they have observed that coffee grounds help to sustain high temperatures in compost piles. High temperatures reduce potentially dangerous pathogens and kill seeds from weeds and vegetables that were added to the piles. They have noticed that coffee grounds seem to improve soil structure, plus attract earthworms.

When coffee grounds made up 25 percent of the volume of their compost piles, temperatures in the piles stayed between 135 degrees and 155 degrees for at least two weeks, enough time to have killed a "significant portion" of the pathogens and seeds. In contrast, the manure in the trials didn't sustain the heat as long..

"We were amazed at the results we got with coffee grounds when we did the trial," said Wise.

Jack Hannigan, an Extension-trained compost specialist, is pleased with the results he gets from the coffee grounds he collects from the Fast Lane Coffee Company in Springfield to use on his farm in Pleasant Hill.

"I make hotbeds that run about 150 degrees," Hannigan said. "It kills the weeds. I can get the piles hotter and break down the compost better with coffee grounds than I can with manure. It works great."

Coffee grounds also can be added directly to soil but the grounds need a few months to break down, Wise said. "We're not certain about how coffee grounds act with the soil, but anecdotally people say they do dig it into the soil," she said.

An additional benefit of diverting coffee grounds from the landfill is that it helps cut greenhouse gas emissions, said Dan Hurley, waste management engineer for Lane County's Short Mountain Landfill.

"To keep organics out of the landfill is a good thing for reducing greenhouse gas emissions because organics decompose and produce methane. Methane is about 25 times as bad as carbon dioxide, a greenhouse gas," said Hurley.

Recycling coffee shop grounds also fosters interactions between community residents and local businesses. The coffee grounds stay in their communities, meaning that fuel isn't being used to truck them from far-flung areas of the county to landfills

The OSU Extension Service offers several resources online to learn more about making and using compost:

Growing Your Own—Recycle with Compost Pile

Gardening with Composts, Mulches and Row Covers

Como hacer y usar el compost (in Spanish)

Improving Soils with Organic Matter


Cindy Wise,

Loss of Wolves Causes Major Ecosystem Disruption at Olympic National Park

CORVALLIS, Ore. – Olympic National Park was created in 1938, in part “to preserve the finest sample of primeval forests in the entire United States” – but a new study at Oregon State University suggests that this preservation goal has failed, as a result of the elimination of wolves and subsequent domination of the temperate rainforests by herds of browsing elk.

The park, with streamside ecosystems that have been largely denuded of the young trees needed to replace the old ones, and stream systems that bear little resemblance to the narrower and vegetation-lined rivers of the past, is now anything but “primeval” and a very different place than it was 70 years ago, researchers say.

The extermination of wolves in the early 1900s set off a “trophic cascade” of changes that appear to have affected forest vegetation and stream dynamics, with possible impacts on everything from fisheries to birds and insects, the scientists wrote in their report, just published in the journal Ecohydrology.

Members of the Press Expedition, hiking in 1890 through what is now Olympic National Park, found the banks of the upper Quinault River “so dense with underbrush as to be almost impenetrable,” they wrote at the time. Logs jammed the rivers, dense tree canopies shaded and cooled the streams, and trout and salmon thrived along with hundreds of species of plants and animals.

“Today, you go through the same area and instead of dense vegetation that you have to fight through, it’s a park-like stand of predominantly big trees,” said Bill Ripple, a co-author of the study and forestry professor at Oregon State University. “It’s just a different world.”

That world may still be quite beautiful with its jagged, glacier-covered peaks and towering old-growth trees. But it’s not the same one that so impressed President Theodore Roosevelt in 1909 that he created Mount Olympus National Monument – in large part to help protect elk herds that had been decimated by hunting. The Roosevelt elk, a massive animal that now bears his name, can weigh more than 1,000 pounds.

With protection from hunters and extermination of wolves not long after that, elk populations surged, and OSU researchers say that in the intervening decades the very nature of Olympic National Park has changed dramatically.

“Our study shows that there has been almost no recruitment of new cottonwood and bigleaf maple trees since the wolves disappeared, and also likely impacts on streamside shrubs, which are very important for river stability,” said Robert Beschta, lead author of the study and professor emeritus of forest hydrology at OSU. “Decreases in woody plant communities allow river banks to rapidly erode and river channels to widen.”

“Tree and shrub species along stream banks and floodplains started crashing first,” Beschta said. “Then, apparently, the rivers began to unravel. Now we have large areas where the forest understory vegetation is mostly just grasses and ferns.”

The study showed that river dynamics are quite different than they were historically. Streams that once were held together in tight channels by heavy bank vegetation are now wider and braided, with exposed gravel bars a common feature. The water is open to the warming sun and less enriched by plants and insects. Nearly half of the terraces along the Queets River have disappeared because of accelerated erosion over a period of multiple decades.

“We’ve seen the impact of wolves on the ecosystem in Yellowstone, the effect of cougars in Yosemite National Park, the same basic story about the importance of key predators being played out in many different places,” Ripple said. “What’s so surprising here is that it’s happening in a temperate rainforest, which is hugely productive and has such high levels of vegetation growth. But even there, when the ecosystem gets overwhelmed with many large herbivores, the vegetation just can’t keep up.”

In an area outside Olympic National Park where little foraging by elk occurred, tree recruitment has been normal and healthy in recent decades.

Since the Olympic National Park ecosystem bears some similarity to much of the temperate rainforests in the Coast Range of Oregon, Washington and British Columbia – with a mild climate and heavy levels of rainfall – it’s reasonable to believe similar forces are at work elsewhere when historic predators have been removed, the scientists said.

“Unlike some of the studies we’ve done in the Rocky Mountains, arid desert or canyon ecosystems, for us this one is hitting a little closer to home,” said Beschta, a forest hydrologist who has studied Pacific Northwest streams for more than 30 years. “These processes are at work right in our backyard.”

In multiple studies in the U.S. and Canada, usually in national parks where supposedly “pristine” ecosystems are still available, the OSU scientists in recent years have documented the critical impacts on ecosystems when key predators disappear – usually wolves or cougars. It has been shown that such predators help control the grazing impacts of elk and deer on several levels, by keeping their population levels down, but also in changing their patterns of behavior – a process that has been called “the ecology of fear.”

In the most classic case where these predators have been brought back into the ecosystem – wolves in Yellowstone National Park – OSU scientists have found that some stream ecosystems are now starting to recover where they had been in serious decline for more than half a century. Streamside trees and shrubs, beaver dams, and native plants, animals and fisheries are being restored.

An effort was considered to restore wolves to the Olympic National Park ecosystem in recent years, but no decision or actions have been undertaken to accomplish that, the OSU scientists said.

To view the Elk Video News clip:



Story By: 

Robert Beschta,

Multimedia Downloads


Elk grazing in Olympic National Park

Robert Beschta

OSU forestry researcher Robert Beschta

OSU Professor to Test Beijing Air Quality at Olympics

CORVALLIS, Ore. – A researcher from Oregon State University will travel to smog-cloaked Beijing this month to monitor the air quality before and during the Olympics and see what impact cleanup efforts have had.

"Hopefully, the research will help the Chinese government to better understand how it can control air quality in large cities," said Staci Simonich, an associate professor of chemistry and toxicology.

China has been taking steps to clean up its sky in preparation for the Olympics. The government announced this month that it has banned about 300,000 high-emission vehicles – about 10 percent of the total in Beijing – from the capital's roads until Sept. 20. It also said high-pollution businesses have been closed or moved, some provinces have been banned from burning straw, and thousands of government vehicles have been parked in the garage.

Simonich, who will be in China from July 19 to Aug. 15, forms part of a team of researchers who have been testing various aspects of the air quality in a project called CAREBEIJING. Led by Peking University, it was launched in 2006 with the mission of formulating a strategy to control air pollution during the games, which run from Aug. 8-24.

While in Beijing, Simonich will devote her attention to polycyclic aromatic hydrocarbons, which are produced by burning carbon-based materials such as gas, coal and wood. She'll focus on them because she's an expert on that subject and because they're a serious health concern in China given that some cause cancer, she said.

Simonich isn't worried about these hydrocarbons causing cancer in the athletes and visitors because they will be there only for a short time. But other pollutants, like particulate matter and ozone, could cause Beijing's guests to experience temporary respiratory problems, she said.

Standing on a rooftop at Peking University, Simonich will use a pump to suck air into white, rectangular, filters that will trap particles containing hydrocarbons. She'll begin sampling the air around the last week of July. After she leaves, a student from Peking University will conduct the tests during the last week of the games. Simonich will send the filters to her lab at OSU and determine which hydrocarbons are present. She'll also test them on bacteria to see if they cause cancer.

Simonich became involved in CAREBEIJING after inviting two of its participants to speak at OSU. Her visit will be the third time in recent months that OSU researchers have collected air samples in Beijing. Her graduate students gathered air samples in August 2007 and January of this year. Simonich expects to know the results of those tests as well as the ones from August 2008 within a year.

The Chinese government and the U.S. National Science Foundation will fund her trip and research.

Simonich specializes in studying how pollutants travel through the atmosphere. She runs a lab at OSU that identifies and tracks chemicals, like pesticides, that hitch rides along airstreams that start in Asia and blow across the Pacific Ocean to mountains in the western United States. She also is a member of a National Academy of Sciences committee that studies pollutants entering and leaving the United States.



Staci Simonich,

Keep It Growing – Plant Fall and Winter Vegetables in July

CORVALLIS, Ore. – In mild parts of western Oregon and along most of the coast, it is possible to grow a succession of garden vegetables throughout the year. You can extend the season well into fall in many parts of the Pacific Northwest with a little knowledge and protection of your plants from the elements.

When space becomes available after harvesting the last of your spring-planted peas or greens, keep those veggies coming.

Even though your summer vegetables are growing like mad, late June through the first of August is time to plant many of your fall garden seeds in many parts of the Pacific Northwest. Lettuce and winter greens can be put in until August in many locations. Transplants can be put into the ground up until the end of July for best odds of a fall and winter harvest.

When planning a winter garden, choose the warmest, most sheltered spots in the garden, advises Ross Penhallegon, Oregon State University Extension horticulturist. Choose heat-resistant varieties and shade and water them frequently as they grow. Enation-resistant pea varieties include Oregon Pioneer shelling peas, Sugar Daddy snap peas and Oregon Sugar Pod II snow peas. Bolt-resistant greens include Tyee spinach and oak leaf lettuce. Greens can be planted in the shade of taller plants for summer and fall growth. July is a good time to put in more carrots for fall and winter harvest, as well.

"Be sure you avoid poorly-drained or windy sites and places that are frost pockets," said Penhallegon. "And add a good dose of organic matter to clay soils prior to planting for fall and winter."

Keep carrot seeds moist until germination. In hot, dry weather, a damp burlap sack or light mulch over the row will ease germination. Keep it damp and check for germination every five days. Twenty to 30 feet of row should keep a family of four in carrots into spring. Royal Chantenay, Danvers 1/2 Long and Merida are good carrots for planting in July and can be harvested all winter.

Other vegetable varieties that will grow through the winter include purple-sprouting broccoli, Utah-improved celery or President endive. Many kinds of Swiss chard, even if planted in the spring, will over winter and resprout the following spring. Improved kales are a very reliable crop to plant in late June into July.

Most members of the cabbage family can be harvested in fall or early winter if planted by early July. Many other greens in this group, such as Chinese cabbage, kale, collards and mustard, hold well into the winter.

If you missed planting leeks in May, try garlic or overwintering WallaWalla sweet onions. Both can be planted in September, and harvested the following late spring into early summer.

Slugs can be a major problem in the fall and winter vegetable gardens. Use properly labeled slug baits until cold weather arrives. Many gardeners prefer the least toxic iron phosphate baits such as "Sluggo," for environmental and safety reasons. Another way to reduce slugs is to thoroughly till the soil before planting to reduce the slug population. Tender crops such as buttercrunch or black-seeded Simpson lettuce especially need protection from both slugs and rain. For best results, grow them under cloches or cold frames during the late fall and winter.

The OSU Extension Service offers a guide to winter gardening for all areas of the Pacific Northwest, called "Fall and Winter Gardening in the Pacific Northwest," (PNW 548). It includes variety recommendations and temperature limitations for each vegetable. Season extending techniques are provided as well. It is on line at: http://extension.oregonstate.edu/catalog/html/pnw/pnw548/

Or purchase a printed copy by calling 1-800-561-6719.



Ross Penhallegon,

New Report: Greatest Value of Forests is Sustainable Water Supply

CORVALLIS, Ore. – The forests of the future may need to be managed as much for a sustainable supply of clean water as any other goal, researchers say in a new federal report – but even so, forest resources will offer no “quick fix” to the insatiable, often conflicting demands for this precious resource.

This new view of forests is evolving, scientists say, as both urban and agricultural demands for water continue to increase, and the role of clean water from forests becomes better understood as an “ecosystem service” of great value. Many factors – changing climate, wildfires, insect outbreaks, timber harvest, roads, and even urban sprawl – are influencing water supplies from forests.

Preserving and managing forests may help sustain water supplies and water quality from the nation’s headwaters in the future, they conclude, but forest management is unlikely to increase water supplies.

“Historically, forest managers have not focused much of their attention on water, and water managers have not focused on forests,” said Julia Jones, a professor of geosciences at Oregon State University, and vice chair of a committee of the National Research Council, which today released a report on the hydrologic effects of a changing forest landscape. “But today’s water problems demand that these groups work together closely.

“Because forests can release slightly more water for a decade or so following timber harvest, there have been suggestions that forests could be managed to increase water supplies in some areas,” Jones said. “But we’ve learned that such increases don’t last very long, and often don’t provide water when you need it most.”

The science of how forest management affects water quantity and quality, Jones said, has produced a solid foundation of principles. But forests in the United States are changing rapidly, and additional research may reveal ways to provide a sustainable flow of fresh, clean water.

Changes in water supplies from forests due to climate change, the researchers said, are a particular concern, and water supplies may already be affected by increased fire frequency and insect or disease epidemics. Many such factors require more study, they said.

Among the findings of the report:

  • Forests cover about one-third of the nation’s land area, and although they have roles in timber production, habitat, recreation and wilderness, their most important output may be water.
  • Forests provide natural filtration and storage systems that process nearly two-thirds of the water supply in the U.S.
  • Demand for water continues to rise due to population growth, while forest acreage is declining and remaining forest lands are threatened by climate change, disease epidemics, fire and global climate change.
  • Forest vegetation and soils, if healthy and intact, can benefit human water supplies by controlling water yield, peak flows, low flows, sediment levels, water chemistry and quality.
  • Increases in water yield after forest harvesting are transitory; they decrease over time as forests re-grow, and in the meantime water quality may be reduced.
  • Impervious surfaces such as roads and road drainage systems increase overland flow, deliver water directly to stream channels, and can increase surface erosion.
  • Forest chemicals, including those used to fight fire, can adversely affect aquatic ecosystems, especially if they are applied directly to water bodies or wet soil.
  • One of the biggest threats to forests, and the water that derives from them, is the permanent conversion of forested land to residential, industrial and commercial uses.

The report also outlined a number of research needs for the future, especially to improve specific predictions about the implications of forest harvests, disturbances by fire, insects and disease, climate change, land development, and shifts in forest species composition.

Modern forest practices have helped to protect streams and riparian zones, but more needs to be learned about the implications of such practices as thinning or partial cuts – development of “best management” practices could help balance timber harvest with sustainable water flow and quality.

And global warming, which affects timing and amount of snowmelt runoff, wildfires, and insect and disease outbreaks, is a huge variable.

The study also cited the value of watershed councils and citizen groups in getting more people involved in water, stream and land management issues at a local level, increasing the opportunities for all views to be considered, and conflicts avoided.

Support for this project, which involved numerous representatives from academia and private industry in the U.S. and Canada, was provided by the U.S. Department of the Interior and the Department of Agriculture. The National Research Council is operated by the National Academy of Sciences. This is one of the first major studies on forests and water since a U.S. Forest Service project in 1976, the authors noted.

“Times have changed,” the authors wrote in the report. “Thirty years ago, no one would have imagined that clearcutting on public lands in the Pacific Northwest would come to a screeching halt; or that farmers would give up water for endangered fish and birds; or that climate change would produce quantifiable changes in forest structure, species and water supplies.”

Those changes demanded a new assessment of current conditions, an understanding of rising tensions, and an evaluation of future needs, the researchers said.


Story By: 

Julia Jones,