environment and natural resources


PORTLAND - In the next 100 years, Alaska will experience a massive loss of its historic tundra, as global warming allows these vast regions of cold, dry, lands to support forests and other vegetation that will dramatically alter native ecosystems, an Oregon State University researcher said today.

Polar regions such as Alaska will be among the first to illustrate the profound impacts of climate change, said Dominique Bachelet, an associate professor in the OSU Department of Bioengineering and expert on the effects of climate change on terrestrial vegetation.

She spoke at the annual meeting of the Ecological Society of America.

More precipitation, an overall loss of soil carbon, a probable reduction in forest fires and a likely increase in insect and pathogen attacks on trees are also projected by some of the most sophisticated computer models yet developed, Bachelet said.

"The effects of climate change in Alaska will be among the most visible in the world," Bachelet said. "The tundra has no place else to go, and it will largely disappear from the Alaskan landscape, along with the related plant, animal and even human ecosystems that are based upon it."

The newest research suggests that 90 percent of Alaska's tundra that was present in 1920 will be gone by 2100, less than a century from now, under one of the climate models projecting the most extreme warming. A model with more conservative estimates indicates that 77 percent of the tundra will disappear during that time.

Temperatures have already been above the historical norm in Alaska for the past 17 years. But about 100 years from now, the average annual temperature in Alaska may soar up to 13 degrees Fahrenheit higher in the worst case scenario predicted by climate models.

Tundra is a cold, comparatively dry ecosystem that now covers much of Alaska, characterized by the permanently frozen deep soil layers called permafrost, few or no trees, grasses and dwarf shrubs, and an extremely short growing season. But it also supports brown bear, wolf, wolverine, caribou, arctic hare, mink, weasel, lemming and millions of migrating waterfowl. In summer it can feature thousands of lakes and large marshy areas.

According to Bachelet, despite some of the criticisms aimed at them, climate models appear to work better and achieve higher accuracy over longer rather than shorter periods of time.

"If you ask these models to predict exactly what the global climate will be in the summertime five years from now, that's much more difficult because of the natural, short-term variations in weather and climate," Bachelet said. "But based on everything we've learned, when we predict what's going to happen during a 20-year period about a century from now, we can be fairly confident. We also test these models by running them backward into the past, and the results are quite accurate."

Bachelet and her colleagues at OSU and the U.S. Forest Service have developed the Dynamic Global Vegetation Model MC1, an improved way of predicting what certain climate scenarios will mean in terms of vegetation growth, plant and soil processes, carbon storage or emissions, forest fire and other important ecological effects.

The latest simulations with this model were done with Alaska as a prelude to work with much of the world's Arctic region, Bachelet said.

"Some of this is not that surprising; the winters in Alaska are already getting milder and the summers warmer," Bachelet said. "Were already seeing glacial melting, movement in fish migrations, Inuits who are having to change their fishing and hunting habits because of melting ice."

But any changes so far pale in comparison of what's to come, and fairly soon, Bachelet said. Among the predictions:

  • Boreal mixed forests could yield to a maritime and temperate conifer forest much like those of southeast Alaska, and cover huge areas of Alaska.


  • The only large area of remaining tundra in Alaska 100 years from now will be on its north coast.


  • Because of increases in precipitation and despite an increase in statewide biomass, forest fires should become less frequent overall and could shift from central Alaska to the northeast.


  • Insects and pathogens, which can adapt more readily to changing environmental conditions, may cause massive epidemics of plant disease and insect attack - in some cases causing large forest die-offs that could then lead to more fires, adding complexity to the picture.


  • The average annual temperatures in much of Alaska could increase by more than 13 degrees above a 1920-2000 average by the last decade of the 21st century, according to the most extreme climate scenario, and eight degrees under a more conservative scenario.

There are some variables that could affect these projections, Bachelet said, such as major changes in ocean circulation patterns that could have unpredictable effects on regional climate. One such change that has been suggested - a shutdown of a major ocean current and circulation pattern in the North Atlantic ocean that currently is responsible for warming much of Europe - might have other ripple effects that would cause regional climate impacts to vary.

"You'll always have some uncertainties when you are trying to predict the localized impact of global climate change," Bachelet said. "But it's pretty certain that our global climate is warming up, and at this time, it looks like one of the major impacts will be on the tundra ecosystem of Alaska."

Story By: 

Dominique Bachelet, 360-570-2015


CORVALLIS - Oregon State University and the Portland architectural firm Zimmer Gunsul Frasca Partnership have been awarded a $100,000 planning grant from the Kresge Foundation of Troy, Mich., to develop an environmentally sensitive design for a new Earth Systems Science Center building.

The proposed 115,000-square foot building would be constructed on the Corvallis campus and designed to house the research and educational activities of OSU's College of Oceanic and Atmospheric Sciences and the Geosciences Department of the College of Science.

This pre-design effort will set the stage for the fund-raising portion of the project. The cost of the building - an estimated $70 million - would be funded through a combination of private gifts, bonds and some federal support.

As a model of sustainability, the building will serve as a teaching tool that incorporates green building functions such as water conservation, landscaping, solar design, and building materials, while providing "an inspiring, productive research and learning environment," said Mark Abbott, dean of OSU's College of Oceanic and Atmospheric Sciences.

"The Kresge Foundation's generous planning support will make possible a new Earth Systems Science Center building that will be a national showcase and model for environmentally sustainable laboratory building design," Abbott said. "The building itself will become part of the university's educational mission."

The new building's design, construction, and operation will use high performance systems to reduce its impact on the environment, and the facility will include exhibits highlighting the unique features of the building.

Scientific investigations to understand the origin, dynamics, and sustainability of the Earth and its resources will be conducted by university researchers and students in the Earth Systems Science Center's advanced laboratories. The building will also include classroom and display spaces that promote environmental education and awareness for students and the general public.

When completed, the Earth Systems Science Center will be a signature building reflecting the oceanographic, meteorological, climate, and geosciences missions of the College of Oceanic and Atmospheric Sciences and the College of Science.

The Kresge Foundation's Green Building Initiative brings national attention to the importance of environmental sustainability through the development of sensitive building designs by nonprofit organizations. The grant will support integrated design workshops, energy analysis and modeling to minimize the building's energy use and evaluate the feasibility of solar, wind, and other advanced technologies, and ecological site planning for environmentally sustainable water management and landscaping approaches.

Zimmer Gunsul Frasca Partnership is a leader in the adoption of environmentally responsible building standards, practices, and technologies, and is a member of the U.S. Green Building Council, the Oregon Natural Step Network, and the Sustainable Products Purchasers Coalition.

Story By: 

Mike Freilich, 541-737-3504


CORVALLIS - Researchers from Oregon State University have received a three-year, $449,970 grant from the Environmental Protection Agency to develop regional "exposure scenarios" for Native American tribes living in different eco-regions of the United States.

These exposure scenarios are designed to help tribes estimate risks from environmental pollutants from which their members may contact through their lifestyles.

EPA standards are based primarily on urban and suburban populations and are not suitable for typical tribal communities whose members pursue subsistence, or traditional lifestyles that may include more frequent "living off the land," said Anna Harding, an associate professor of public health at OSU and co-investigator in the study.

Especially, she added, when those lands may be contaminated.

"The EPA guidelines say, for example, that the average adult will consume about 17.5 grams of fish a day," Harding said. "But studies suggest that the average for Native Americans in areas where subsistence fishing is practiced may be over a pound a day, so the exposure scenario will underestimate risks for these people. And if the fish happen to come from a water source that is contaminated, the health risks may be much greater than currently accounted for."

Stuart Harris, director of the Department of Science and Engineering at the Confederated Tribes of the Umatilla Indian Reservation, said "the need for understanding the pathways that directly involve the traditional American Indian cannot be understated."

"Our ties to the environment are much more complex and intense than is generally understood," said Harris, who also is co-investigator on the study. "My tribal culture and religion are essentially synonymous with and inseparable from the land."

Modern tribal diets and lifestyles, while significantly different from the average suburban resident, are likely not as healthy as they once were, said Barbara Harper, an OSU public health toxicologist and the study's principal investigator. "Our approach is to reconstruct original diets and lifestyles that reflect tribal health and natural resource restoration goals," Harper said.

Using literature review, as well as new research on activity levels associated with those lifestyles, will enable tribes to evaluate risks based on their current resource-intensive lifestyles, as well as on their fully traditional lifestyles, she added.

"There are certain exposures that are potentially underestimated for a broad cross-section of tribal members," Harper said. "For example, animal parts have many non-food uses that could contribute to personal exposure. Teeth and bones are used for decoration and whistles, skin is made into clothing, fish belly fat is rendered and used as a base for body paint, and so on.

"As with game, plants are used for more than just nutrition," she added. "Daily cleaning, preparation and ingestion of stored plants - and crafting of plant materials into household goods - occur throughout the year."

On average, Harding says, Native Americans engaged in subsistence activities eat more game and fish, drink more water, and consume more native plant and animal foods than the average American. EPA surveys show that the average American, for instance, will inadvertently consume about 50 milligrams of soil a day, through daily activities outside or eating vegetables like carrots that may include traces of dirt.

However, the subsistence intake rate for a tribal member is estimated to be 400 milligrams of soil a day, eight times higher than that of a suburban lifestyle.

"These differences become critical when assessing risks to environmental contaminants," Harding said. "Our goal with the study is to develop regional exposure scenarios for tribes living in five different ecosystems so that any tribes living within those areas can examine their own exposure factors and evaluate their risk for contamination."

Working with Harper, Harding, and Harris on the grant are Therese Waterhous, an OSU nutrition researcher; Tony Wilcox, an OSU exercise physiologist; and several graduate students.

Participating tribes located in various eco-regions include:

  • The Confederated Tribes of the Umatilla Indian Reservation and the Spokane (eastern Oregon and Washington) - lower Columbia basin plateau;


  • The Elem Tribe (Clear Lake, CA) - northwest forest/Mediterranean California;


  • The Swinomish (Puget Sound area, WA) - marine/west coast forest;


  • The Chippewa (Minnesota) - northern forest/Great Plains;


  • The Aroostook Band of MicMac (Maine) - northern forest/Atlantic highland.

The researchers will develop scenarios for the different ecosystems describing key resources in the area, traditional diets, and traditional activities. Such activities may include hunting and fishing, gathering foods and medicines, making material items, farming, gardening with irrigation, raising livestock, and pursuits associated with cultural heritage and identity, such as sweat lodge ceremonies.

Exposure factors evaluated will include exposure to air, water, soil, and natural resource use for food and materials specific to the local environment.

"There are many potential exposure pathways that are unique to Native Americans but not accounted for in scenarios developed for the general public," Harding said. "These pathways may be significant to people with traditional specialties, such as flint knapping, pottery and basket-making., or using certain paints and dyes, smoke and smudges.

"We're not specifically looking for contaminants," she emphasized. "Our goal is to describe the exposure scenarios for different ecosystems that will enable the tribes to determine their own exposure risks."

Harding said an advisory council that includes representatives from each of the participating tribes will evaluate and validate the researchers' findings.

"It is a huge undertaking," she said, "but this represents an important partnership between tribal and university scientists to develop new knowledge about how tribes may be exposed to environmental contaminants when practicing traditional activities as part of their cultural lifestyle."

Story By: 

Anna Harding, 541-737-3830


CORVALLIS - The Environmental Science Graduate Program at Oregon State University is adding a new option in which students can concentrate their studies - natural resources.

Coursework focused in this field of study will integrate biology, ecology and management with sociology, economics, policy, ethics and communications, officials say, and should be ideally suited to multidisciplinary research and problem resolution.

"The broad study of natural resources concerns the relationship between natural and managed population systems, human systems and the environment they share," said Andrew Blaustein, director of the program. "This new area of concentration should fit well with OSU's strategic plans for the future."

Those goals include understanding the dynamics and sustainability of the Earth and its resources, optimizing the health and well-being of the public, managing natural resources in a fashion that protects quality of life, and sustaining natural resource based industries.

Existing master's and doctoral degrees can both be awarded in the new area of concentration, Blaustein said. More information on the programs can be obtained on the web at http://oregonstate.edu/dept/envsci.

Story By: 

Andrew Blaustein, 541-737-5356

First coordinator hired for Oregon State University Master Naturalist Program

CORVALLIS, Ore. – Jason O'Brien must adapt to an entirely new ecosystem this month after leaving Iowa State University to become the first coordinator of the new Master Naturalist Program at Oregon State University.

But O'Brien looks forward to the challenges he faces in learning about Oregon's natural resources in what he calls a dream job. "When it comes to people, Iowa and Oregon have a lot of similarities," he said, "primarily because the land is the basis of how we make a living."

Prior to his arrival in Oregon, O'Brien was interim ISU Extension wildlife specialist and director of the Iowa NatureMapping Program.

O'Brien will "put wheels under the program" that has been under development for more than a year and a half, according to Jim Johnson, program leader of the OSU Forestry and Natural Resources Extension program. O'Brien will start training the first volunteers next spring.

The Master Naturalist program is similar to the popular OSU Master Gardener program in that individuals receive training from university experts and volunteer their services to the community.

Volunteers will help with education at schools and interpretation at nature centers, Johnson said. Stewardship projects might involve planting trees or removing invasive plants, and volunteers can do "citizen science" with research projects such as water-quality monitoring.

"The Master Naturalist program is a great fit in Oregon," Johnson said, "and funding is secured for three years. People like to have an organized way to help the environment, and this is a good way to do it," he said. Funding agencies are the Oregon Department of Forestry and four OSU Extension Service programs: Forestry and Natural Resources, Agricultural Sciences and Natural Resources, 4-H Youth Development and Sea Grant.

Other organizations that have expressed interest in becoming advisers and partners include the Oregon Coast Aquarium, the Siskiyou Field Institute in Cave Junction and the Oregon Zoo in Portland.

In addition, OSU’s Hatfield Marine Science Center in Newport received funding from the National Science Foundation to start work on the coastal regional program.

The statewide program is expected to have training for everyone, as well as by eco-regions such as the coast, Klamath-Siskiyou and eastern Oregon regions.

The OSU Master Gardener program began in 1976 and trains more than 800 people a year. The first 24 volunteers in the newly formed Climate Masters program trained last winter. Other OSU programs are the Master Woodland Manager, Master Food Preservers, Master Recyclers and Master Watershed Stewards.


Jim Johnson, 541-737-8954


CORVALLIS - Typical fall weather may arrive early this year, with cooler temperatures, potentially wet conditions and a better-than-average chance for a severe wind, rain or even snow storm through December.

But the turn of the calendar to 2005 should usher in above-average temperatures, though don't put away the umbrellas too early. It may still be wet.

Oregon State University atmospheric scientist George Taylor, who serves as the state climatologist, says Oregon's fall and winter weather is influenced by a variety of factors, from sea surface temperatures in the tropical Pacific Ocean to climate cycles that researchers are just beginning to understand.

"One of the useful tools we use is to analyze analog years, in which El Nino and La Nina conditions are similar to the current year, as are other factors like surface temperatures, wind conditions and solar cycles," Taylor said. "And one thing that stands out about this coming fall and winter is that the highest analog years were characterized by some extreme weather events.

"If that holds true, we could see a major wind storm, a snow storm, high rainfall events, or maybe even a tornado," he added. "They're rare in Oregon, but they do occur."

Conditions were similar in 1971-72, Taylor said, when a flood struck northwestern Oregon in January of 1972, leading to two deaths and numerous injuries. In the spring of that year, a tornado began near Portland and crossed the Columbia River into Washington.

In 1987, another analog year, there weren't any "extreme" events, Taylor said. But a windstorm in December with 50- to 60-mile-an-hour winds caused three deaths, and an unusually late snowstorm in March of 1988 bogged down the state in a slushy mess.

"The year 1994-95 was a truly wild one for weather," Taylor said. "After a peaceful early fall, storms began in late October and continued on and off all winter. Two major storms hit within five days of each other, dousing western Oregon and causing huge snowfall in the Cascades. Winds hit 70-miles-an-hour in Tillamook and gusts up to 100-miles-an-hour were recorded at 7,000 feet on Mt. Hood.

"Then in December, a major snowstorm affected western Oregon, all the way down to the valley floors," he added.

OSU's Taylor offered the following forecast for fall and winter in Oregon:

  • The Oregon Coast: October through December will have slightly below-normal temperatures and slightly above-normal precipitation. Temperatures and precipitation should be slightly above normal January through March.


  • The Willamette Valley: Near-normal temperatures and slightly above-normal precipitation October through December; and slightly above-normal temperatures and precipitation January through March.


  • Southwest Interior: Slightly below-normal temperatures and precipitation October through December; above-normal temperatures and slightly above-normal precipitation January through March.


  • Northeast Oregon: Slightly above-normal temperatures and precipitation October through December; above-normal temperatures and slightly above-normal precipitation January through March.


  • Southeast Oregon: Near-normal temperatures and precipitation October through December; above-normal temperatures and near-normal precipitation January through March.

The complete forecast is available at the Oregon Climate Service website, through OSU. It can be accessed at: http://www.ocs.oregonstate.edu/index.html.

Story By: 

George Taylor, 541-737-5705

Kitzhaber to reflect on salmon, science in Jan. 6 OSU lecture

CORVALLIS - Oregon Gov. John Kitzhaber will reflect on salmon, science and the recent evolution of Oregon's salmon policy when he delivers the John V. Byrne Lecture at Oregon State University on Thursday, Jan. 6.

Kitzhaber's lecture, "From Science to Public Action: The Oregon Approach to Natural Resource Management," will begin at 4 p.m. in Austin Auditorium of OSU's LaSells Stewart Center. The talk, sponsored by Oregon Sea Grant and the OSU College of Oceanic and Atmospheric Sciences, is free and open to the public.

This year's lecture is also part of "Celebrate 2000," a series of talks sponsored by OSU, the Corvallis Gazette-Times and Albany Democrat-Herald newspapers, and Linn-Benton Community College.

Although it had been developing over nearly a century, the salmon crisis escalated in Oregon not long after Kitzhaber started his first term as governor in 1995. As increasing runs of wild salmon became candidates for federal Endangered Species Act listing, the state was forced to face the prospect of federal intervention.

The result, forged under Kitzhaber's leadership, was the Oregon Plan for Salmon and Watersheds. The plan, the only one of its kind in force nationwide, takes a science-based, land owner-focused, watershed-wide approach to restoring at-risk native salmon runs, initially along the coast but now throughout the state.

In his 1998 State of the State speech, Kitzhaber explained the philosophy behind the Oregon Plan: "... We can accomplish more for our environment - and for our sense of community - by helping people do the right thing than by simply punishing them for their past practices; ... we will accomplish more for a watershed when a community has made it a priority than when the state has made it a mandate."

Despite a court ruling and a subsequent National Marine Fisheries Service decision which stripped the Oregon Plan of some of its formal authority, Kitzhaber this year issued an executive order reaffirming the state's intent to use the plan to guide state and local restoration efforts.

A key to the federal government's acceptance of the Oregon Plan as a restoration strategy is its reliance on science to help shape decisions about habitat and fish management. Under the Oregon Plan, biologists, forest ecologists, oceanographers and other scientists are considered an integral part of the restoration team, along with resource managers, agency staff and land owners.

The plan calls for an independent, multidisciplinary science team to periodically review the state's efforts to ensure that "the best scientific information available" backs up Oregon's restoration efforts. The first such review was issued this past September.

Kitzhaber is the third lecturer in the Byrne series, named after John Byrne, OSU president from 1984-95. A marine geologist, Byrne was the first head of OSU's Oceanography Department (1972) and subsequently served as dean of research, acting dean of the Graduate School, and vice president for research and graduate studies.

Oregon Sea Grant and COAS established the lecture series to increase public awareness and discussion of scientific and public policy issues concerning the ocean and atmosphere and related subjects. Doors open for the lecture at 3:15 p.m. LaSells Stewart Center is located at 26th Street and Western Boulevard, across from Reser Stadium.

Story By: 

Oceanic and Atmospheric Sciences, 541-737-3504


CORVALLIS, Ore. - A new report concludes that wood is one of the most environmentally sensitive building materials for home construction - it uses less overall energy than other products, causes fewer air and water impacts and does a better job of the carbon "sequestration" that can help address global warming.

The research showed that wood framing used 17 percent less energy than steel construction for a typical house built in Minnesota, and 16 percent less energy than a house using concrete construction in Atlanta. And in these two examples, the use of wood had 26-31 percent less global warming potential.

This $1 million study was prepared by the Consortium for Research on Renewable Industrial Materials, a non-profit corporation of 15 research universities. It was published in the Journal of Forest Products and is the first major update on this topic since a 1976 report by the National Academy of Science.

The type of information and data provided in this report may be increasingly useful as consumers and government agencies try to identify construction techniques and materials for homes and other structures that minimize environmental impacts, said James Wilson, a professor of wood science and engineering at Oregon State University, and vice president of this research consortium.

"There's a significant consumer movement and even some voluntary standards that are interested in 'green,' or environmentally conscious construction methods," Wilson said. "We need to have a good understanding of the overall effects that different types of construction have in such areas as energy consumption, global warming, air and water impacts, or solid waste disposal."

California and some other states are already moving towards "environmentally preferable purchase" standards that identify the best materials to use for energy conservation, environmental protection and other issues, Wilson said. And it's quite possible that some states or localities may legally require such approaches in the future for construction of public buildings, he said.

After some experimentation with new building approaches such as concrete or steel in recent decades, Wilson said, it appears that for environmental purposes we may return to one of the most ancient, tried-and-true materials of them all - wood.

"We've seen a general substitution for wood in many aspects of home construction for years, using less of it for siding, windows, roofing, other purposes," Wilson said.

"Price and availability of wood were some of the factors involved, along with building codes," he said. "And about five years ago the steel industry began a big push for more use of steel in home construction, which didn't accomplish as much as that industry hoped for, but did have some impact."

The new study that was done looks at the total "life-cycle assessment" of different construction products and techniques, considering such issues as how materials are grown, mined, processed, produced, used and ultimately disposed of, to give a better picture of their overall impact on the environment. It considers effects on energy use, air and water emissions, global warming and other topics.

Although many people are not aware of their overall makeup, houses require a broad range of natural resources, such as limestone, clay, iron ore, sand, gypsum, wood fiber, resins, coal and more. The process of building them uses energy in the form of electricity, diesel fuel, gasoline, wood, coal, or nuclear power. The cumulative impact of using all these natural resources and energy can be significant in ways that are not always apparent - everything from the electricity used in running a steel mill to the mining of raw materials or the diesel fuel that powers a truck hauling logs.

Compiled in a database, this type of information can help consumers, builders, architects, policy makers or government regulators make more informed choices, Wilson said. This particular project examined the implications of a wood frame housing design versus a steel frame design for the cold Minneapolis region, and a wood frame versus concrete design for the hot, humid Atlanta area.

In the Minneapolis example, steel framing, compared to wood, used 17 percent more energy; caused 26 percent more global warming potential; caused a 14 percent higher level of air emissions of concern; more than 300 percent, or triple the level of water emissions of concern; and had about the same solid waste disposal impact.

In the Atlanta example, concrete construction, compared to wood, used 16 percent more energy; caused 31 percent more global warming potential; caused a 23 percent higher level of air emissions of concern; had the same impact on water emissions of concern; and created 51 percent more solid waste. Wood had a particular value in addressing the global warming issue, the data indicate. The growth of wood in renewable forests works to "sequester" and remove carbon from the atmosphere, and fewer carbon emissions are created in the processing needed to produce wood products than their steel and concrete counterparts.

The report also suggested ways to redesign houses to lower fossil fuel use, reduce the use of excessive amounts of materials, recycle demolition wastes and other improvements. In continued research, Wilson said, scientists hope to expand their studies of wood and other types of construction materials as they relate to even more environmental issues. It will consider more housing examples, different regions of forest resources and manufacturing, use of resins and other structural products that play a role in house construction.

The data base created in this study will be freely available to anyone, researchers say. More detail on the study can be found on the Web at www.corrim.org.

Story By: 

James Wilson, 541-737-4227


CORVALLIS - Gail Andrews, a water quality educator with Oregon State University Extension, will teach two classes called "Rural Living Basics: Well Water and Septic Systems" on Sept. 28 and 29 at the Corvallis-Benton County Public Library, Sixth Street and Monroe Avenue.

Located in the library's main conference room, the classes are free and open to the public. However, pre-registration is required. To register, call Elena at (541) 737-2041 or send e-mail to maus@engr.orst.edu.

The classes are meant to help rural residents learn how to care for their private water systems to protect their family's health, their homestead investment and their community's groundwater, Andrews said.

Class times are Tuesday, Sept. 28, from 6:30 to 8:30 p.m. and Wednesday, Sept. 29, from 9:30 to 11:30 a.m. Doors will open half an hour before the class for individual questions and browsing publications.

Both classes are the same, but are meant to accommodate people's busy schedules, Andrews said.

Participants who bring about a cup of well water in any clean container will receive a free screening of the water for nitrate.

The Southern Willamette Valley Groundwater Management Area is sponsoring the event.

For more information, contact Andrews at (541) 737-6294 or visit the Web site at http://groundwater.oregonstate.edu/willamette/.


Gail Andrews, 541-737-6294


CORVALLIS - Ross Stein, a seismologist with the U.S. Geological Survey, will present the 2004 Condon Lecture at Oregon State University on the mechanisms that trigger earthquakes.

The lecture will be at LaSells Stewart Center on the OSU campus on Wednesday, Oct. 6, beginning at 8 p.m. It is free and open to the public.

The presentation is titled "Earthquake Conversations," referring both to an accessible discussion of earthquake mechanisms and to the fact that earthquakes seem to "speak" with each other across time and space.

Stein has been a leader in research on the earthquake danger of "blind" faults that curve over horizontally in their upper reaches, so as to never reach the surface. He has advised international reinsurance companies on the earthquake risks facing Istanbul and Tokyo, and been honored by awards from the USGS, American Geophysical Union, National Oceanic and Atmospheric Administration, and Stanford University.

Stein's presentation at OSU will include animations of earthquakes in action. He also will demonstrate earthquake triggering using a tabletop model.

The Condon Lecture Series at OSU was established to honor Thomas Condon, a pioneer in Oregon geology. Its purpose is to help interpret the results of significant scientific research for non-specialists.

Story By: 

George Moore, 541-737-1244

Multimedia Downloads

Ross Stein

Ross Stein