energy and sustainability

New program to train international specialists in water conflict resolution

CORVALLIS, Ore. – The increasing need for access to fresh water for drinking, agriculture, fisheries and other uses is at the root of a growing number of geopolitical conflicts around the world, yet there are few resource managers in charge who have training in both water science and diplomacy.

A new cooperative international education program aims to address that shortfall.

Oregon State University, the University for Peace in Costa Rica, and the UNESCO-IHE Water Education Center in The Netherlands are creating an international joint education program aimed at addressing water conflicts in a more professional manner. The program will launch this fall with about 10 students enrolled to earn master’s degrees, eventually growing to 30 students from around the world.

“There is a real need for people trained in the art of ‘hydro-diplomacy,’” said Aaron Wolf, an Oregon State University geographer and internationally recognized expert on water conflict. “The problem is really rather simple – there just isn’t enough water to go around for every need. So if you manage water, you have to know how to manage conflict and that’s where the training has been lacking.

“The good news is that water gives you the opportunity to get certain people into the room that wouldn’t ordinarily sit across from each other,” Wolf added. “And it gives them a common language.”

Students in the new program will study at each of the three sites, ending up at Oregon State where they will be required to conduct a collaborative, applied research project somewhere in the United States where water management issues are in play, according to Mary Santelmann, director of Oregon State’s Water Resources Graduate Program, which will coordinate the new degree in the U.S.

The venture builds on a certificate program OSU offers in water conflict management, and utilizes the expertise of each institution.

“Oregon State has some 90 faculty members who are involved in some aspect of water science and another 20 faculty members who focus on some aspect of public policy and conflict resolution,” Santelmann said. “That expertise, along with OSU’s work with a variety of federal agencies, made the university uniquely positioned to play a lead role in the new educational venture.”

The University for Peace in Costa Rica is a United Nations-mandated institution established in 1980 as a treaty organization by the UN General Assembly. Scholars there have a great deal of experience at high-level diplomacy, as well as conflict theory and geopolitical expertise with developing countries.

The United Nations Educational, Scientific and Cultural Organization (UNESCO) Institute for Water Education is the largest international graduate water education facility in the world, and has researchers with extensive experience in working on water resource issues in Europe and elsewhere.

“There is no single institution that could offer an entire curriculum and suite of experiences necessary to train a generation of students in hydro-diplomacy,” said Wolf, who is a 2015 recipient of the prestigious Heinz Award for public policy. “It had to be collaborative, international and experiential.”

The issues students will deal with are vast. In Oregon, for example, there has been a major conflict over water rights in the Klamath River basin, where agricultural interests compete with fisheries management and tribal rights.

These kinds of issues are not unusual in the United States, Wolf pointed out, and can become even more contentious when an international component is added.

“Ethiopia has been constructing a major dam and Egypt is so concerned about the impact on its water that it has discussed going to war over it,” Wolf said. “There are many countries in central and Southeast Asia where similar border tensions have arisen over water that flows across multiple jurisdictions.”

Water management is conflict management, Santelmann pointed out. The collaborative new program will focus on guiding students to gain skills in a variety of areas through field work, working with experts from different disciplines, and gaining a broad understanding of varying points of view, resolution processes, and water management science.

“Regardless of the scale, there is a demand for people who can ensure that the needs of the people and the ecosystem that rely on this critical resource will be met,” Santelmann said.

Santelmann and Wolf are in Oregon State’s College of Earth, Ocean, and Atmospheric Sciences.

Media Contact: 

Mary Santelmann, 541-737-1215, santelmm@geo.oregonstate.edu;

Aaron Wolf, 541-737-2722; wolfa@geo.oregonstate.edu

Multimedia Downloads




This tributary of the Nu River in China has all of its water diverted by dams and is dry – just one example of water use conflict around the world. A new collaborative program that includes Oregon State University aims to help train leaders in water conflict resolution. (Photo by Kelly Kibler, courtesy of Oregon State University)

OSU’s Aaron Wolf receives prestigious Heinz Award

CORVALLIS, Ore. – Oregon State University’s Aaron Wolf, an internationally recognized expert on water conflict resolution, has been named a 2015 recipient of the Heinz Award in the category of public policy.

Established to honor the memory of U.S. Sen. John Heinz, the awards recognize significant contributions in arts and humanities, environment, human condition, public policy, and technology, the economy and employment. Wolf’s award, given by the Heinz Family Foundation, includes an unrestricted cash award of $250,000.

Wolf was cited for “applying 21st-century insights and ingenuity, as well as ancient wisdoms, to problems that few are paying attention to for the security of the planet.”

“In a world where water is rapidly becoming the most precious of resources and most geopolitical of issues, Aaron Wolf has found practical solutions to protect our water resources and find common ground on water-centered conflicts,” said Teresa Heinz, chairman of the Heinz Family Foundation.

“Water issues cross state and national boundaries, and his advocacy has driven treaties and agreements that recognize our competing demands on water resources and the vital importance of protecting those resources from a modern-day ‘tragedy of the commons.’”

A professor of geography in Oregon State’s College of Earth, Ocean, and Atmospheric Sciences, Wolf decided early in his career to find ways to ease the tension over water rights, developing a negotiation approach that emphasizes listening and finding shared values among competing users.

Wolf also was cited for working to prepare future generations of scholars and leaders in water conflict resolution. He and other leading academics founded a consortium of 10 universities on five continents that seeks to build a global water governance culture focused on peace, sustainability and human security.

He also helped develop a new partnership between Oregon State, the UNESCO-IHE Institute for Water Education in The Netherlands and the University for Peace in Costa Rica that will offer a joint master’s degree program on water cooperation and peace.

“One thing I’m struck by over and over is what people of goodwill and creativity can accomplish, even in situations where everybody feels like they’re going to lose something,” Wolf said. “As I’ve watched the discourse change from water wars to water cooperation and peace, I’ve learned firsthand that people will resolve seemingly intractable problems when they’re given the space and the opportunity.”

Other Heinz Award winners include:

  • Roz Chast of Ridgefield, Connecticut, best-selling illustrator and cartoonist, the arts and humanities category;
  • Frederica Perera of New York, and environmental health researcher at Columbia University, the environment category;
  • William McNulty and Jacob Wood, founders of Team Rubicon in Los Angeles – which engages returning veterans to help in global relief efforts – the human conditions category;
  • Sangeeta Bhatia, a bioengineer at the Massachusetts Institute of Technology, in the technology, economy and employment category for pioneering efforts to cultivate liver cells outside the human body.

Wolf and the other winners will be honored at a ceremony on May 13 in Pittsburgh.

Media Contact: 

Aaron Wolf, 541-737-2722; wolfa@geo.oregonstate.edu

Multimedia Downloads

Natural Resources Leadership Academy 2012
OSU's Aaron Wolf

OSU named a “top green school” by Princeton Review

CORVALLIS, Ore. – Oregon State University was ranked number 38 of “50 Top Green Schools” in the 2015 edition of The Princeton Review Guide to 353 Green Colleges.

The guide profiles colleges with exceptional commitments to sustainability, based on their academic offerings and career preparation for students, campus policies, initiatives, and activities. It also gives college applicants information about each school's admission requirements, cost and financial aid, as well as student body facts and statistics.

OSU received a green rating score of 98, and was recognized for its formal sustainability committee, available transportation alternatives and the availability of sustainability-focused degrees, among other things. The highest score a college can receive is 99.

The company tallied 861 colleges in summer 2014, using data from its 2013-14 survey of school administrators. The survey asked them to report on their school's sustainability-related policies, practices, and programs. 

The guide is available online at http://bit.ly/1DQ8te0 and is the only free comprehensive resource of its kind.

According to the review, students at OSU enjoy an "exceptional 'green living' education" on campus. Even the exercise machines at the recreation center help power the university's electrical grid. Known for its excellent reputation in sustainability, many students are drawn to OSU's outstanding engineering, forestry, biology, and geoscience programs. 

“OSU continues to be recognized for going above and beyond in its efforts to create a sustainable campus and a well-rounded student experience that increases awareness of critical global issues,” said Brandon Trelstad, OSU’s sustainability coordinator. “It’s great to be consistently recognized by the Princeton Review and other organizations, and it encourages us to keep meeting higher goals for our sustainability efforts.”

Media Contact: 

Brandon Trelstad, 541-737-3307 or Brandon.trelstad@oregonstate.edu

Multimedia Downloads


Benton Hall

OSU receives Gold designation for sustainability

CORVALLIS, Ore. – Oregon State University has again received a “Gold” designation from the Sustainability Tracking, Assessment and Rating System, or STARS, the second highest rating a university can receive.  Platinum is the highest rating, but no university received that designation this year.

STARS is administered by the Association for the Advancement of Sustainability in Higher Education, of which OSU is a member. Schools are rated in four large categories of academics; engagement; operations, planning and administration; and one additional innovation category.

“This repeated Gold designation is a great indicator of the comprehensive and consistent nature of OSU’s sustainability work,” said Brandon Trelstad, OSU’s sustainability coordinator.

“It’s a team effort that includes entities beyond the Sustainability Office, like Campus Recycling and the Student Sustainability Initiative,” Trelstad said. “We have established solid programs but are always looking for ways to expand positive impact and demonstrate leadership.”

OSU was the first Oregon university to be rated by STARS, and received a Gold designation in 2011, and again in 2013.

This year, OSU received high marks for its sustainability coordination and planning, its diversity and affordability, and a perfect score on campus engagement. It also earned high marks for academic research, including support and access.

President Edward Ray said that STARS provided a guidepost in helping the university develop programs and initiatives around sustainability.

"The assessment is a valuable tool in forging new conversations and inspiring actions around issues of global importance, like biodiversity, climate change, divestment and social justice," Ray wrote in his submittal letter to the STARS Steering Committee.

Of other participating Oregon institutions, only Portland State University received a Gold designation. Pacific University and Oregon Institute of Technology received “Bronze” designations, and University of Oregon’s designation was “Reporter.”

To see OSU’s full STARS assessment, visit http://bit.ly/1qOeGAW. For more information on OSU’s efforts in sustainability,  http://fa.oregonstate.edu/sustainability/

Media Contact: 

Brandon Trelstad, 541-737-3307

Multimedia Downloads

solar Solar panel array at Oregon State University

Technology using microwave heating may impact electronics manufacture

The study this story is based on is available online: http://bit.ly/1pJjhnK


CORVALLIS, Ore. – Engineers at Oregon State University have successfully shown that a continuous flow reactor can produce high-quality nanoparticles by using microwave-assisted heating – essentially the same forces that heat up leftover food with such efficiency.

Instead of warming up yesterday’s pizza, however, this concept may provide a technological revolution.

It could change everything from the production of cell phones and televisions to counterfeit-proof money, improved solar energy systems or quick identification of troops in combat.

The findings, recently published in Materials Letters, are essentially a “proof of concept” that a new type of nanoparticle production system should actually work at a commercial level.

“This might be the big step that takes continuous flow reactors to large-scale manufacturing,” said Greg Herman, an associate professor and chemical engineer in the OSU College of Engineering. “We’re all pretty excited about the opportunities that this new technology will enable.”

Nanoparticles are extraordinarily small particles at the forefront of advances in many biomedical, optical and electronic fields, but precise control of their formation is needed and “hot injection” or other existing synthetic approaches are slow, costly, sometimes toxic and often wasteful.

A “continuous flow” system, by contrast, is like a chemical reactor that moves constantly along. It can be fast, cheap, more energy-efficient, and offer lower manufacturing cost. However, heating is necessary in one part of the process, and in the past that was best done only in small reactors.

The new research has proven that microwave heating can be done in larger systems at high speeds. And by varying the microwave power, it can precisely control nucleation temperature and the resulting size and shape of particles.

“For the applications we have in mind, the control of particle uniformity and size is crucial, and we are also able to reduce material waste,” Herman said. “Combining continuous flow with microwave heating could give us the best of both worlds – large, fast reactors with perfectly controlled particle size.”

The researchers said this should both save money and create technologies that work better. Improved LED lighting is one possibility, as well as better TVs with more accurate colors. Wider use of solid state lighting might cut power use for lighting by nearly 50 percent nationally. Cell phones and other portable electronic devices could use less power and last longer on a charge.

The technology also lends itself well to creation of better “taggants,” or compounds with specific infrared emissions that can be used for precise, instant identification – whether of a counterfeit $20 bill or an enemy tank in combat that lacks the proper coding.

In this study, researchers worked with lead selenide nanoparticles, which are particularly good for the taggant technologies. Other materials can be synthesized using this reactor for different applications, including copper zinc tin sulfide and copper indium diselenide for solar cells.

New Oregon jobs and businesses are already evolving from this work.

OSU researchers have applied for a patent on aspects of this technology, and are working with private industry on various applications. Shoei Electronic Materials, one of the collaborators, is pursuing “quantum dot” systems based on this approach, and recently opened new manufacturing facilities in Eugene, Ore., to use this synthetic approach for quantum dot enabled televisions, smartphones and other devices.

The research has been supported by the Air Force Research Laboratory, OSU Venture Funds, and the Oregon Nanoscience and Microtechnologies Institute, or ONAMI.

Media Contact: 

Greg Herman, 541-737-2496

Multimedia Downloads

Continuous flow reactor

Continuous flow reactor

OSU solar projects provide cost savings, reduce carbon emissions

CORVALLIS, Ore. – Oregon State University this spring has brought the largest of its ground-mounted solar arrays online as part of the Oregon University System’s “Solar by Degrees” program.

The university now has three solar project sites in Corvallis covering some 10 acres collectively that have the capacity to generate more than 2.6 million kilowatt-hours of power per year. The system not only provides cost savings by providing solar energy for less than current utility power rates, it helps Oregon State reduce its carbon footprint in a way that doesn’t cost the university money up front.

The arrays were constructed and are owned and operated by SolarCity, which has worked with OSU and the Oregon Institute of Technology for several years on the Solar by Degrees programs. The company’s collaboration with OSU has not been limited to the Corvallis campus, according to Brandon Trelstad, the university’s sustainability coordinator.

“The way the partnership works is that SolarCity installs the solar arrays at no cost to the university, and OSU simply pays for solar energy that they produce – at a lower rate than they would pay for utility power,” Trelstad said.

This past fall, SolarCity completed a 431-kilowatt installation at OSU’s Hermiston Agricultural Research and Experiment Station in Eastern Oregon, and another 221-kilowatt solar project at the North Willamette Research and Extension Center in Aurora. Annual electrical output from all five OSU solar sites is approximately equivalent to the annual carbon emissions from 255,025 gallons of gasoline or 477 passenger vehicles, according to US Environmental Protection Agency’s Greenhouse Gas Equivalencies Calculator.

“This is another step toward meeting OSU’s aggressive carbon emissions reduction targets,” Trelstad said. “It also saves the university money and provides some unique research and educational opportunities. Advancements like Solar by Degrees don’t come along often and I’m glad that OSU has been able to maximize our use of the groundwork laid by the Oregon University System.”

Two of the sites in Corvallis have operated for more than a year, but the latest site in Corvallis - which is located near 35th Street and Campus Way – just went online. Each installation is “grid-tied,” which means it seamlessly provides power when the sun shines and blends in utility power when it doesn’t.

At the branch Experiment Stations, the arrays not only save money, they provide an example of how solar power can work in a rural and/or agricultural setting.

“The solar array at Hermiston is expected to reduce our electricity costs by about half – a savings of about $30,000 in the first year and could increase in the future depending on electricity costs,” said Philip B. Hamm, director of the Hermiston Agricultural Research and Experiment Station.

“This allows us to provide more financial support toward our mission, which is to provide new research-based information to clients.”

Michael Bondi, director of the North Willamette Research and Extension Center located just south of Wilsonville, said the center at the end of February received its first electrical utility bill since the project was launched.

“For that month, we reduced our cost from the previous year by 50 percent,” Bondi said. “I like how that looks, especially in the middle of winter and a lot of gray days. Based on the design specs for the project, we expect to reduce our electrical usage from the grid by 80 to 85 percent each year.

“I’d say we are well on the way to that goal.”

“This will likely be the largest scale installations we complete here,” said Trelstad. “However, over the next few years, we will look for additional opportunities to install solar panels on roofs since we already have used much of the compatible ground space.”

At two of the three Corvallis installations, the College of Agricultural Sciences is grazing sheep next to the solar arrays, which is how the land previously was used. “This is a great way to optimize land use and not consume productive ground solely with solar installations,” Trelstad noted.  At the Aurora location, a bee and insect pollinator habitat area is being planned. At the Hermiston location, the area had never been used for research given its irregular shape and lack of water availability, but now benefits the campus to provide solar power in an otherwise unusable space.

More information on the arrays, including photos and electricity production information, is available at: http://oregonstate.edu/sustainability/ground-mounted-photovoltaic-arrays

Media Contact: 

Brandon Trelstad, 541-737-3307, Brandon.trelstad@oregonstate.edu; Phil Hamm, 541-567-6337; philip.b.hamm@oregonstate.edu; Michael Bondi, 503-705-2434; Michael.bondi@oregonstate.edu

OSU scientists part of national APLU report outlining research challenges

CORVALLIS, Ore. – The national Association of Public and Land-grant Universities released a report today outlining six “grand challenges” facing the United States over the next decade in the areas of sustainability water, climate change, agriculture, energy and education.

The APLU project was co-chaired by W. Daniel Edge, head of the Department of Fisheries and Wildlife at Oregon State University. The report is available online at: http://bit.ly/1ksH2ud

The “Science, Education, and Outreach Roadmap for Natural Resources” is the first comprehensive, nationwide report on research, education and outreach needs for natural resources the country’s university community has ever attempted, Edge said.

“The report identifies critical natural resources issues that interdisciplinary research programs need to focus on over the next 5-10 years in order to address emerging challenges,” Edge noted. “We hope that policy-makers and federal agencies will adopt recommendations in the roadmap when developing near-term research priorities and strategies.”

The six grand challenges addressed in the report are: 

  • Sustainability: The need to conserve and manage natural landscapes and maintain environmental quality while optimizing renewable resource productivity to meet increasing human demands for natural resources, particularly with respect to increasing water, food, and energy demands.
  • Water: The need to restore, protect and conserve watersheds for biodiversity, water resources, pollution reduction and water security.
  • Climate Change: The need to understand the impacts of climate change on our environment, including such aspects as disease transmission, air quality, water supply, ecosystems, fire, species survival, and pest risk. Further, a comprehensive strategy is needed for managing natural resources to adapt to climate change.
  • Agriculture: The need to develop a sustainable, profitable, and environmentally responsible agriculture industry.
  • Energy: The need to identify new and alternative renewable energy sources and improve the efficiency of existing renewable resource-based energy to meet increasing energy demands while reducing the ecological footprint of energy production and consumption.
  • Education: The need to maintain and strengthen natural resources education at our schools at all levels in order to have the informed citizenry, civic leaders, and practicing professionals needed to sustain the natural resources of the United States.


Three other OSU researchers were co-authors on the report, including Hal Salwasser, a professor and former dean of the College of Forestry; JunJie Wu, the Emery N. Castle Endowed Chair in Resource and Rural Economics; and George Boehlert, former director of OSU’s Hatfield Marine Science Center.

Wu played a key role in the climate change chapter in identifying the need to better understand the tradeoffs between investing now in climate change adaptation measures versus the long-term risk of not adopting new policies.

Edge and Boehlert contributed to the energy chapter, which focuses primarily on renewable energy.

“The natural resources issues with traditional sources of energy already are well-understood,” Boehlert said, “with the possible exception of fracking. As the country moves more into renewable energy areas, there are many more uncertainties with respect to natural resources that need to be understood and addressed. There are no energy sources that do not have some environmental issues.”

Salwasser was an author on the sustainability chapter that identifies many issues associated with natural resource use, including rangelands, forestry, fisheries and wildlife and biodiversity. The authors contend the challenge is to use these resources in a sustainable manner meeting both human and ecosystem needs.

The project was sponsored by a grant from the U.S. Department of Agriculture to Oregon State University, which partnered with APLU and authors from numerous institutions.


Media Contact: 

Dan Edge, 541-737-2810; Daniel.edge@oregonstate.edu

Amber fossil reveals ancient reproduction in flowering plants

CORVALLIS, Ore. – A 100-million-year old piece of amber has been discovered which reveals the oldest evidence of sexual reproduction in a flowering plant – a cluster of 18 tiny flowers from the Cretaceous Period – with one of them in the process of making some new seeds for the next generation.

The perfectly-preserved scene, in a plant now extinct, is part of a portrait created in the mid-Cretaceous when flowering plants were changing the face of the Earth forever, adding beauty, biodiversity and food. It appears identical to the reproduction process that “angiosperms,” or flowering plants still use today.

Researchers from Oregon State University and Germany published their findings on the fossils in the Journal of the Botanical Institute of Texas.

The flowers themselves are in remarkable condition, as are many such plants and insects preserved for all time in amber. The flowing tree sap covered the specimens and then began the long process of turning into a fossilized, semi-precious gem. The flower cluster is one of the most complete ever found in amber and appeared at a time when many of the flowering plants were still quite small.

Even more remarkable is the microscopic image of pollen tubes growing out of two grains of pollen and penetrating the flower’s stigma, the receptive part of the female reproductive system. This sets the stage for fertilization of the egg and would begin the process of seed formation – had the reproductive act been completed.

“In Cretaceous flowers we’ve never before seen a fossil that shows the pollen tube actually entering the stigma,” said George Poinar, Jr., a professor emeritus in the Department of Integrative Biology at the OSU College of Science. “This is the beauty of amber fossils. They are preserved so rapidly after entering the resin that structures such as pollen grains and tubes can be detected with a microscope.”

The pollen of these flowers appeared to be sticky, Poinar said, suggesting it was carried by a pollinating insect, and adding further insights into the biodiversity and biology of life in this distant era. At that time much of the plant life was composed of conifers, ferns, mosses, and cycads.  During the Cretaceous, new lineages of mammals and birds were beginning to appear, along with the flowering plants. But dinosaurs still dominated the Earth.

“The evolution of flowering plants caused an enormous change in the biodiversity of life on Earth, especially in the tropics and subtropics,” Poinar said.

“New associations between these small flowering plants and various types of insects and other animal life resulted in the successful distribution and evolution of these plants through most of the world today,” he said. “It’s interesting that the mechanisms for reproduction that are still with us today had already been established some 100 million years ago.”

The fossils were discovered from amber mines in the Hukawng Valley of Myanmar, previously known as Burma. The newly-described genus and species of flower was named Micropetasos burmensis.

Media Contact: 

George Poinar, 541-752-0917

Multimedia Downloads

Ancient flowers

Ancient flower

Pollen tubes

Pollen tubes

OSU spinoff company NuScale to receive up to $226 million to advance nuclear energy

CORVALLIS, Ore. – A promising new form of nuclear power that evolved in part from research more than a decade ago at Oregon State University today received a significant boost: up to $226 million in funding to NuScale Power from the United States Department of Energy.

NuScale began as a spinoff company based on the pioneering research of OSU professor Jose Reyes, and since has become one of the international leaders in the creation of small “modular” nuclear reactors.

This technology holds enormous promise for developing nuclear power with small reactors that can minimize investment costs, improve safety, be grouped as needed for power demands and produce energy without greenhouse gas emissions. The technology also provides opportunities for OSU nuclear engineering students who are learning about these newest concepts in nuclear power.

“This is a wonderful reflection of the value that OSU faculty can bring to our global economy,” said Rick Spinrad, vice president for research at OSU. “The research conducted by Professor Reyes, colleagues and students at OSU has been a fundamental component of the innovation at NuScale.”

NuScale has continued to grow and create jobs in Oregon, and is bringing closer to reality a nuclear concept that could revolutionize nuclear energy. The Obama administration has cited nuclear power as one part of its blueprint to rebuild the American economy while helping to address important environmental issues.

In the early 2000s at OSU, Reyes envisioned a nuclear power reactor that could be manufactured in a factory, be transported to wherever it was needed, grouped as necessary to provide the desired amount of power, and provide another option for nuclear energy. It also would incorporate “passive safety” concepts studied at OSU in the 1990s that are already being used in nuclear power plant construction around the world. The design allows the reactor to shut down automatically, if necessary, using natural forces including gravity and convection.

The Department of Energy announcement represents a milestone in OSU’s increasing commitment to university and business partnerships and its goals of using academic research discoveries to promote new industries, jobs, economic growth, environmental protection and public health.

“OSU has made a strong effort to build powerful partnerships between our research enterprise and the private sector,” said OSU President Edward J. Ray. “The DOE support for NuScale is a vote of confidence in the strategy of building these meaningful relationships, and they are only going to pick up speed with our newest initiative, the OSU Advantage.”

The Oregon State University Advantage connects business with faculty expertise, student talent and world-class facilities to provide research solutions and help bring ideas to market. This effort is in partnership with the Oregon State University Foundation.

News of the NuScale grant award was welcomed by members of Oregon’s Congressional delegation.


“Oregon State University deserves a lot of credit for helping to develop a promising new technology that the Energy Department clearly thinks holds a lot of potential,” said Sen. Ron Wyden, chairman of the U.S. Senate Energy and Natural Resources Committee. “Today’s award shows that investing in strong public universities leads to innovative technologies to address critical issues, like the need for low-carbon sources of energy, while creating private sector jobs.”

U.S. Rep. Peter De Fazio added, “Congratulations to NuScale and Oregon State University. This is a big win for the local economy.” 

“This is an exciting time for us, as our students and faculty get incredibly valuable real-world experience in taking an idea through the startup and commercialization process,” said Kathryn Higley, professor and head of the Department of Nuclear Engineering & Radiation Health Physics. “We continue to work with NuScale as it goes through its design certification process, and we are particularly proud of Jose Reyes for his vision, enthusiasm and unwavering commitment to this concept.”

OSU officials say the development of new technologies such as those launched from NuScale could have significant implications for future energy supplies.

“The nation’s investment in the research of small-scale nuclear devices is a significant step toward a diverse and secure energy portfolio,” said Sandra Woods, dean of the College of Engineering at OSU. “Collaborative research is actively continuing between engineers and scientists at Oregon State and NuScale, and we’re proud and grateful for the role Oregon State plays in assisting them in developing cleaner and safer ways to produce energy.

Media Contact: 

Rick Spinrad, 541-737-0662 or 541-220-1915 (cell)

“Beyond Earth Day” celebrations begin at OSU

CORVALLIS, Ore. – Oregon State University is expanding this year’s Earth Day celebration into 11 days of festivities.

“Beyond Earth Day” will include 24 events from April 18-28. The events will include a wide range of sustainability-related topics, as well as activities related to the environment and social justice, film showings, educational events and service projects.

Many of the events occur annually, such as the 15th annual Community Fair on April 21 from 11:30 a.m. to 3 p.m. at the Student Experience Center Plaza. With more than 40 booths from local student and community organizations, students can learn about sustainability topics through interactive games and activities.

The celebrations will begin on April 18 with the fourth annual Earth Day of Service, where students can help at one of five projects. Last year, more than 100 volunteers provided a total 400 hours of service.

The celebration concludes April 28 with a screening of the film “Food Chains” about the impact and buying power of major supermarkets. The film’s producer and several local organizations will hold a dialogue after the film. It takes place from 6 to 8:15 p.m., in the Memorial Union Horizon Room.

Visit the official calendar at http://bit.ly/1JQCyuL for a full list of events, locations and times.


Media Contact: 

Andrea Norris, andrea.norris@oregonstate.edu or 541-737-5398