OREGON STATE UNIVERSITY

energy and sustainability

Technology using microwave heating may impact electronics manufacture

The study this story is based on is available online: http://bit.ly/1pJjhnK

 

CORVALLIS, Ore. – Engineers at Oregon State University have successfully shown that a continuous flow reactor can produce high-quality nanoparticles by using microwave-assisted heating – essentially the same forces that heat up leftover food with such efficiency.

Instead of warming up yesterday’s pizza, however, this concept may provide a technological revolution.

It could change everything from the production of cell phones and televisions to counterfeit-proof money, improved solar energy systems or quick identification of troops in combat.

The findings, recently published in Materials Letters, are essentially a “proof of concept” that a new type of nanoparticle production system should actually work at a commercial level.

“This might be the big step that takes continuous flow reactors to large-scale manufacturing,” said Greg Herman, an associate professor and chemical engineer in the OSU College of Engineering. “We’re all pretty excited about the opportunities that this new technology will enable.”

Nanoparticles are extraordinarily small particles at the forefront of advances in many biomedical, optical and electronic fields, but precise control of their formation is needed and “hot injection” or other existing synthetic approaches are slow, costly, sometimes toxic and often wasteful.

A “continuous flow” system, by contrast, is like a chemical reactor that moves constantly along. It can be fast, cheap, more energy-efficient, and offer lower manufacturing cost. However, heating is necessary in one part of the process, and in the past that was best done only in small reactors.

The new research has proven that microwave heating can be done in larger systems at high speeds. And by varying the microwave power, it can precisely control nucleation temperature and the resulting size and shape of particles.

“For the applications we have in mind, the control of particle uniformity and size is crucial, and we are also able to reduce material waste,” Herman said. “Combining continuous flow with microwave heating could give us the best of both worlds – large, fast reactors with perfectly controlled particle size.”

The researchers said this should both save money and create technologies that work better. Improved LED lighting is one possibility, as well as better TVs with more accurate colors. Wider use of solid state lighting might cut power use for lighting by nearly 50 percent nationally. Cell phones and other portable electronic devices could use less power and last longer on a charge.

The technology also lends itself well to creation of better “taggants,” or compounds with specific infrared emissions that can be used for precise, instant identification – whether of a counterfeit $20 bill or an enemy tank in combat that lacks the proper coding.

In this study, researchers worked with lead selenide nanoparticles, which are particularly good for the taggant technologies. Other materials can be synthesized using this reactor for different applications, including copper zinc tin sulfide and copper indium diselenide for solar cells.

New Oregon jobs and businesses are already evolving from this work.

OSU researchers have applied for a patent on aspects of this technology, and are working with private industry on various applications. Shoei Electronic Materials, one of the collaborators, is pursuing “quantum dot” systems based on this approach, and recently opened new manufacturing facilities in Eugene, Ore., to use this synthetic approach for quantum dot enabled televisions, smartphones and other devices.

The research has been supported by the Air Force Research Laboratory, OSU Venture Funds, and the Oregon Nanoscience and Microtechnologies Institute, or ONAMI.

Media Contact: 
Source: 

Greg Herman, 541-737-2496

Multimedia Downloads
Multimedia: 

Continuous flow reactor

Continuous flow reactor

OSU solar projects provide cost savings, reduce carbon emissions

CORVALLIS, Ore. – Oregon State University this spring has brought the largest of its ground-mounted solar arrays online as part of the Oregon University System’s “Solar by Degrees” program.

The university now has three solar project sites in Corvallis covering some 10 acres collectively that have the capacity to generate more than 2.6 million kilowatt-hours of power per year. The system not only provides cost savings by providing solar energy for less than current utility power rates, it helps Oregon State reduce its carbon footprint in a way that doesn’t cost the university money up front.

The arrays were constructed and are owned and operated by SolarCity, which has worked with OSU and the Oregon Institute of Technology for several years on the Solar by Degrees programs. The company’s collaboration with OSU has not been limited to the Corvallis campus, according to Brandon Trelstad, the university’s sustainability coordinator.

“The way the partnership works is that SolarCity installs the solar arrays at no cost to the university, and OSU simply pays for solar energy that they produce – at a lower rate than they would pay for utility power,” Trelstad said.

This past fall, SolarCity completed a 431-kilowatt installation at OSU’s Hermiston Agricultural Research and Experiment Station in Eastern Oregon, and another 221-kilowatt solar project at the North Willamette Research and Extension Center in Aurora. Annual electrical output from all five OSU solar sites is approximately equivalent to the annual carbon emissions from 255,025 gallons of gasoline or 477 passenger vehicles, according to US Environmental Protection Agency’s Greenhouse Gas Equivalencies Calculator.

“This is another step toward meeting OSU’s aggressive carbon emissions reduction targets,” Trelstad said. “It also saves the university money and provides some unique research and educational opportunities. Advancements like Solar by Degrees don’t come along often and I’m glad that OSU has been able to maximize our use of the groundwork laid by the Oregon University System.”

Two of the sites in Corvallis have operated for more than a year, but the latest site in Corvallis - which is located near 35th Street and Campus Way – just went online. Each installation is “grid-tied,” which means it seamlessly provides power when the sun shines and blends in utility power when it doesn’t.

At the branch Experiment Stations, the arrays not only save money, they provide an example of how solar power can work in a rural and/or agricultural setting.

“The solar array at Hermiston is expected to reduce our electricity costs by about half – a savings of about $30,000 in the first year and could increase in the future depending on electricity costs,” said Philip B. Hamm, director of the Hermiston Agricultural Research and Experiment Station.

“This allows us to provide more financial support toward our mission, which is to provide new research-based information to clients.”

Michael Bondi, director of the North Willamette Research and Extension Center located just south of Wilsonville, said the center at the end of February received its first electrical utility bill since the project was launched.

“For that month, we reduced our cost from the previous year by 50 percent,” Bondi said. “I like how that looks, especially in the middle of winter and a lot of gray days. Based on the design specs for the project, we expect to reduce our electrical usage from the grid by 80 to 85 percent each year.

“I’d say we are well on the way to that goal.”

“This will likely be the largest scale installations we complete here,” said Trelstad. “However, over the next few years, we will look for additional opportunities to install solar panels on roofs since we already have used much of the compatible ground space.”

At two of the three Corvallis installations, the College of Agricultural Sciences is grazing sheep next to the solar arrays, which is how the land previously was used. “This is a great way to optimize land use and not consume productive ground solely with solar installations,” Trelstad noted.  At the Aurora location, a bee and insect pollinator habitat area is being planned. At the Hermiston location, the area had never been used for research given its irregular shape and lack of water availability, but now benefits the campus to provide solar power in an otherwise unusable space.

More information on the arrays, including photos and electricity production information, is available at: http://oregonstate.edu/sustainability/ground-mounted-photovoltaic-arrays

Media Contact: 
Source: 

Brandon Trelstad, 541-737-3307, Brandon.trelstad@oregonstate.edu; Phil Hamm, 541-567-6337; philip.b.hamm@oregonstate.edu; Michael Bondi, 503-705-2434; Michael.bondi@oregonstate.edu

OSU scientists part of national APLU report outlining research challenges

CORVALLIS, Ore. – The national Association of Public and Land-grant Universities released a report today outlining six “grand challenges” facing the United States over the next decade in the areas of sustainability water, climate change, agriculture, energy and education.

The APLU project was co-chaired by W. Daniel Edge, head of the Department of Fisheries and Wildlife at Oregon State University. The report is available online at: http://bit.ly/1ksH2ud

The “Science, Education, and Outreach Roadmap for Natural Resources” is the first comprehensive, nationwide report on research, education and outreach needs for natural resources the country’s university community has ever attempted, Edge said.

“The report identifies critical natural resources issues that interdisciplinary research programs need to focus on over the next 5-10 years in order to address emerging challenges,” Edge noted. “We hope that policy-makers and federal agencies will adopt recommendations in the roadmap when developing near-term research priorities and strategies.”

The six grand challenges addressed in the report are: 

  • Sustainability: The need to conserve and manage natural landscapes and maintain environmental quality while optimizing renewable resource productivity to meet increasing human demands for natural resources, particularly with respect to increasing water, food, and energy demands.
  • Water: The need to restore, protect and conserve watersheds for biodiversity, water resources, pollution reduction and water security.
  • Climate Change: The need to understand the impacts of climate change on our environment, including such aspects as disease transmission, air quality, water supply, ecosystems, fire, species survival, and pest risk. Further, a comprehensive strategy is needed for managing natural resources to adapt to climate change.
  • Agriculture: The need to develop a sustainable, profitable, and environmentally responsible agriculture industry.
  • Energy: The need to identify new and alternative renewable energy sources and improve the efficiency of existing renewable resource-based energy to meet increasing energy demands while reducing the ecological footprint of energy production and consumption.
  • Education: The need to maintain and strengthen natural resources education at our schools at all levels in order to have the informed citizenry, civic leaders, and practicing professionals needed to sustain the natural resources of the United States.

 

Three other OSU researchers were co-authors on the report, including Hal Salwasser, a professor and former dean of the College of Forestry; JunJie Wu, the Emery N. Castle Endowed Chair in Resource and Rural Economics; and George Boehlert, former director of OSU’s Hatfield Marine Science Center.

Wu played a key role in the climate change chapter in identifying the need to better understand the tradeoffs between investing now in climate change adaptation measures versus the long-term risk of not adopting new policies.

Edge and Boehlert contributed to the energy chapter, which focuses primarily on renewable energy.

“The natural resources issues with traditional sources of energy already are well-understood,” Boehlert said, “with the possible exception of fracking. As the country moves more into renewable energy areas, there are many more uncertainties with respect to natural resources that need to be understood and addressed. There are no energy sources that do not have some environmental issues.”

Salwasser was an author on the sustainability chapter that identifies many issues associated with natural resource use, including rangelands, forestry, fisheries and wildlife and biodiversity. The authors contend the challenge is to use these resources in a sustainable manner meeting both human and ecosystem needs.

The project was sponsored by a grant from the U.S. Department of Agriculture to Oregon State University, which partnered with APLU and authors from numerous institutions.

-30-

Media Contact: 
Source: 

Dan Edge, 541-737-2810; Daniel.edge@oregonstate.edu

Amber fossil reveals ancient reproduction in flowering plants

CORVALLIS, Ore. – A 100-million-year old piece of amber has been discovered which reveals the oldest evidence of sexual reproduction in a flowering plant – a cluster of 18 tiny flowers from the Cretaceous Period – with one of them in the process of making some new seeds for the next generation.

The perfectly-preserved scene, in a plant now extinct, is part of a portrait created in the mid-Cretaceous when flowering plants were changing the face of the Earth forever, adding beauty, biodiversity and food. It appears identical to the reproduction process that “angiosperms,” or flowering plants still use today.

Researchers from Oregon State University and Germany published their findings on the fossils in the Journal of the Botanical Institute of Texas.

The flowers themselves are in remarkable condition, as are many such plants and insects preserved for all time in amber. The flowing tree sap covered the specimens and then began the long process of turning into a fossilized, semi-precious gem. The flower cluster is one of the most complete ever found in amber and appeared at a time when many of the flowering plants were still quite small.

Even more remarkable is the microscopic image of pollen tubes growing out of two grains of pollen and penetrating the flower’s stigma, the receptive part of the female reproductive system. This sets the stage for fertilization of the egg and would begin the process of seed formation – had the reproductive act been completed.

“In Cretaceous flowers we’ve never before seen a fossil that shows the pollen tube actually entering the stigma,” said George Poinar, Jr., a professor emeritus in the Department of Integrative Biology at the OSU College of Science. “This is the beauty of amber fossils. They are preserved so rapidly after entering the resin that structures such as pollen grains and tubes can be detected with a microscope.”

The pollen of these flowers appeared to be sticky, Poinar said, suggesting it was carried by a pollinating insect, and adding further insights into the biodiversity and biology of life in this distant era. At that time much of the plant life was composed of conifers, ferns, mosses, and cycads.  During the Cretaceous, new lineages of mammals and birds were beginning to appear, along with the flowering plants. But dinosaurs still dominated the Earth.

“The evolution of flowering plants caused an enormous change in the biodiversity of life on Earth, especially in the tropics and subtropics,” Poinar said.

“New associations between these small flowering plants and various types of insects and other animal life resulted in the successful distribution and evolution of these plants through most of the world today,” he said. “It’s interesting that the mechanisms for reproduction that are still with us today had already been established some 100 million years ago.”

The fossils were discovered from amber mines in the Hukawng Valley of Myanmar, previously known as Burma. The newly-described genus and species of flower was named Micropetasos burmensis.

Media Contact: 
Source: 

George Poinar, 541-752-0917

Multimedia Downloads
Multimedia: 

Ancient flowers

Ancient flower


Pollen tubes

Pollen tubes

OSU spinoff company NuScale to receive up to $226 million to advance nuclear energy

CORVALLIS, Ore. – A promising new form of nuclear power that evolved in part from research more than a decade ago at Oregon State University today received a significant boost: up to $226 million in funding to NuScale Power from the United States Department of Energy.

NuScale began as a spinoff company based on the pioneering research of OSU professor Jose Reyes, and since has become one of the international leaders in the creation of small “modular” nuclear reactors.

This technology holds enormous promise for developing nuclear power with small reactors that can minimize investment costs, improve safety, be grouped as needed for power demands and produce energy without greenhouse gas emissions. The technology also provides opportunities for OSU nuclear engineering students who are learning about these newest concepts in nuclear power.

“This is a wonderful reflection of the value that OSU faculty can bring to our global economy,” said Rick Spinrad, vice president for research at OSU. “The research conducted by Professor Reyes, colleagues and students at OSU has been a fundamental component of the innovation at NuScale.”

NuScale has continued to grow and create jobs in Oregon, and is bringing closer to reality a nuclear concept that could revolutionize nuclear energy. The Obama administration has cited nuclear power as one part of its blueprint to rebuild the American economy while helping to address important environmental issues.

In the early 2000s at OSU, Reyes envisioned a nuclear power reactor that could be manufactured in a factory, be transported to wherever it was needed, grouped as necessary to provide the desired amount of power, and provide another option for nuclear energy. It also would incorporate “passive safety” concepts studied at OSU in the 1990s that are already being used in nuclear power plant construction around the world. The design allows the reactor to shut down automatically, if necessary, using natural forces including gravity and convection.

The Department of Energy announcement represents a milestone in OSU’s increasing commitment to university and business partnerships and its goals of using academic research discoveries to promote new industries, jobs, economic growth, environmental protection and public health.

“OSU has made a strong effort to build powerful partnerships between our research enterprise and the private sector,” said OSU President Edward J. Ray. “The DOE support for NuScale is a vote of confidence in the strategy of building these meaningful relationships, and they are only going to pick up speed with our newest initiative, the OSU Advantage.”

The Oregon State University Advantage connects business with faculty expertise, student talent and world-class facilities to provide research solutions and help bring ideas to market. This effort is in partnership with the Oregon State University Foundation.

News of the NuScale grant award was welcomed by members of Oregon’s Congressional delegation.

 

“Oregon State University deserves a lot of credit for helping to develop a promising new technology that the Energy Department clearly thinks holds a lot of potential,” said Sen. Ron Wyden, chairman of the U.S. Senate Energy and Natural Resources Committee. “Today’s award shows that investing in strong public universities leads to innovative technologies to address critical issues, like the need for low-carbon sources of energy, while creating private sector jobs.”

U.S. Rep. Peter De Fazio added, “Congratulations to NuScale and Oregon State University. This is a big win for the local economy.” 

“This is an exciting time for us, as our students and faculty get incredibly valuable real-world experience in taking an idea through the startup and commercialization process,” said Kathryn Higley, professor and head of the Department of Nuclear Engineering & Radiation Health Physics. “We continue to work with NuScale as it goes through its design certification process, and we are particularly proud of Jose Reyes for his vision, enthusiasm and unwavering commitment to this concept.”

OSU officials say the development of new technologies such as those launched from NuScale could have significant implications for future energy supplies.

“The nation’s investment in the research of small-scale nuclear devices is a significant step toward a diverse and secure energy portfolio,” said Sandra Woods, dean of the College of Engineering at OSU. “Collaborative research is actively continuing between engineers and scientists at Oregon State and NuScale, and we’re proud and grateful for the role Oregon State plays in assisting them in developing cleaner and safer ways to produce energy.

Media Contact: 
Source: 

Rick Spinrad, 541-737-0662 or 541-220-1915 (cell)

OSU again named green college by Princeton Review

CORVALLIS, Ore. – Oregon State University received 95 points out of a possible 99 as a ‘green’ school in the latest edition of “The Princeton Review’s Guide to 332 Green Colleges: 2014 Edition.”

The Princeton Review tallies its Green Rating scores based on institutional data it obtains from colleges in response to survey questions focused on alternative transportation, advancing sustainability, waste-diversion rate and other related topics.

“It’s great to be recognized by Princeton Review for a fourth year in a row,” said Brandon Trelstad, OSU’s sustainability coordinator. “I believe it’s OSU’s diverse and broad sustainability efforts that have gotten us this far.  Student efforts, specifically, have been key in maintaining our leadership role.”

The guide is the only free comprehensive resource of its kind. It can be downloaded at http://www.princetonreview.com/green-guide and http://www.centerforgreenschools.org/greenguide.  It does not rank schools hierarchically, but each school’s green score can be found in their school profile on the main site (http://www.princetonreview.com/).

“Sustainability at OSU is a campus-wide endeavor that includes areas of institutional strength, like research, diversity, affordability, sustainability coordination and governance,” Trelstad said. “We are lucky to have high on- and off-campus community involvement in addressing campus and community sustainability.”

Among OSU’s green highlights were an overall waste diversion rate of 40 percent, its environmentally based degrees including ecological engineering, and the fact that the campus is in the process of bringing online five planned ground-mounted solar electrical arrays that will generate 2.9 megawatts of solar power.

"Best of all, OSU will help you put that academic knowledge into practice; it hosts a Nonprofit Career Day, with significant participation from national and local green groups," the guide states.

The Princeton Review created its "Guide to 332 Green Colleges" in partnership with the Center for Green Schools (www.usgbc.org) at the U.S. Green Building Council (USGBC)), with generous support from United Technologies Corp. (www.utc.com), founding sponsor of the Center for Green Schools.

Media Contact: 
Source: 

Brandon Trelstad, 541-737-3307; Brandon.trelstad@oregonstate.edu

OSU ranked 11th in nation as “Cool School” by Sierra Club for green efforts

CORVALLIS, OR. –Oregon State University has once again been honored for its commitment to sustainability, making it one of the top green colleges in the nation.

The Sierra Club has released its “Cool Schools” rankings based on the ‘greenness’ of participating universities, and Oregon State has the highest green ranking in the state, and is listed as 11th in the nation, rising from 24th in 2010.

Brandon Trelstad, OSU’s sustainability coordinator, said he is excited to see the university being honored by the Sierra Club.

“I’m delighted we have again been recognized for our sustainability efforts by the Sierra Club,” Trelstad said. “It showcases OSU’s strength in sustainability – a multifaceted approach that includes student engagement, reducing negative environmental impact, outstanding research and long-term cost savings, all aligned with OSU’s mission.”

“The recognition of Oregon State by the Sierra Club and its Cool Schools program helps the university by supporting our outreach and educational activities,” he added. “Several times in the past year, I have heard of students who, when they were thinking about where to pursue higher education, selected OSU because of its reputation for taking sustainability seriously.”

The Cool Schools ranking is open to all four-year undergraduate colleges and universities in the nation. The award honors 162 colleges that are helping to solve climate problems and making significant efforts to operate sustainably. Evaluations were based on survey information provided by the participating schools, as well as follow up inquiries and outside sources.

Oregon State’s emphasis on “being green” begins the moment when new students come on campus, according to the survey. Sustainability is a large part of the university’s new student orientation, including zero-waste food events, a Sustainability Fair, and an emphasis on recycling in the residence halls.

OSU has been honored for its efforts at supporting alternative transportation for students, faculty and staff living off campus, including ride sharing, a campus shuttle system, bike parking and lockers, utilization of Corvallis transit and WeCar sharing.

There are a number of active green student groups on the Oregon State campus, including the Student Sustainability Initiative, which is involved in everything from the restoration of local watersheds to composting on campus to sustainable food projects.

OSU offers hundreds of courses on campus with a sustainability emphasis, ranging from “Sustainable Forest Management” to “Renewable Energy Alternatives: Economics and Technology.” There are even study abroad programs with a sustainability focus to places like Australia and Costa Rica.

Other highlights include OSU’s leadership in the formation of Oregon BEST (Built Environment & Sustainable Technologies Center) which helps Oregon businesses compete globally by transforming and commercializing university research into new technologies, services, products, and companies, all with an emphasis in renewable energy and sustainable products.

The campus participates in an annual, month-long Campus Carbon Challenge, which encourages students, staff and faculty to reduce their carbon footprint by changing their daily behaviors. There is an emphasis on reducing waste and using sustainable products in the dining centers, and around campus, a variety of alternative energy approaches have been used, including the utilization of solar hot water systems at the Kelley Engineering Building and at the International Living Center, which supply half of those buildings’ hot water needs.

To learn more about the Sierra Club’s “Cool Schools” survey, go to: www.sierraclub.org/coolschools.

Lewis & Clark College came in at in 19th place, followed by Southern Oregon at 26th, Portland State University at 31st, and University of Oregon at 46th.

Media Contact: 
Source: 

Brandon Trelstad, 541-737-3307, Brandon.trelstad@oregonstate.edu

Multimedia Downloads
Multimedia: 

recycling
Students recycle items
when moving out of dorms

Pass the salt: Common condiment could enable new high-tech industry

CORVALLIS, Ore. – Chemists at Oregon State University have identified a compound that could significantly reduce the cost and potentially enable the mass commercial production of silicon nanostructures – materials that have huge potential in everything from electronics to biomedicine and energy storage.

This extraordinary compound is called table salt.

Simple sodium chloride, most frequently found in a salt shaker, has the ability to solve a key problem in the production of silicon nanostructures, researchers just announced in Scientific Reports, a professional journal.

By melting and absorbing heat at a critical moment during a “magnesiothermic reaction,” the salt prevents the collapse of the valuable nanostructures that researchers are trying to create. The molten salt can then be washed away by dissolving it in water, and it can be recycled and used again.

The concept, surprising in its simplicity, should open the door to wider use of these remarkable materials that have stimulated scientific research all over the world.

“This could be what it takes to open up an important new industry,” said David Xiulei Ji, an assistant professor of chemistry in the OSU College of Science. “There are methods now to create silicon nanostructures, but they are very costly and can only produce tiny amounts.

“The use of salt as a heat scavenger in this process should allow the production of high-quality silicon nanostructures in large quantities at low cost,” he said. “If we can get the cost low enough many new applications may emerge.”

Silicon, the second most abundant element in the Earth’s crust, has already created a revolution in electronics. But silicon nanostructures, which are complex structures much smaller than a speck of dust, have potential that goes far beyond the element itself.

Uses are envisioned in photonics, biological imaging, sensors, drug delivery, thermoelectric materials that can convert heat into electricity, and energy storage.

Batteries are one of the most obvious and possibly first applications that may emerge from this field, Ji said. It should be possible with silicon nanostructures to create batteries – for anything from a cell phone to an electric car – that last nearly twice as long before they need recharging.

Existing technologies to make silicon nanostructures are costly, and simpler technologies in the past would not work because they required such high temperatures. Ji developed a methodology that mixed sodium chloride and magnesium with diatomaceous earth, a cheap and abundant form of silicon.

When the temperature reached 801 degrees centigrade, the salt melted and absorbed heat in the process. This basic chemical concept – a solid melting into a liquid absorbs heat – kept the nanostructure from collapsing.

The sodium chloride did not contaminate or otherwise affect the reaction, researchers said. Scaling reactions such as this up to larger commercial levels should be feasible, they said.

The study also created, for the first time with this process, nanoporous composite materials of silicon and germanium. These could have wide applications in semiconductors, thermoelectric materials and electrochemical energy devices.

Funding for the research was provided by OSU. Six other researchers from the Department of Chemistry and the OSU Department of Chemical Engineering also collaborated on the work.

Media Contact: 
Source: 

David Xiulei Ji, 541-737-6798

Multimedia Downloads
Multimedia: 

Silicon nanostructure

Silicon nanostructures


Table salt

Table salt

Global warming to cut snow water storage 56 percent in Oregon watershed

The study this story is based on is available online: http://bit.ly/13ZLzl1

CORVALLIS, Ore. – A new report projects that by the middle of this century there will be an average 56 percent drop in the amount of water stored in peak snowpack in the McKenzie River watershed of the Oregon Cascade Range -  and that similar impacts may be found on low-elevation maritime snow packs around the world.

The findings by scientists at Oregon State University, which are based on a projected 3.6 degree Fahrenheit temperature increase, highlight the special risks facing many low-elevation, mountainous regions where snow often falls near the freezing point. In such areas, changing from snow to rain only requires a very modest rise in temperature.

As in Oregon, which depends on Cascade Range winter snowpack for much of the water in the populous Willamette Valley, there may be significant impacts on ecosystems, agriculture, hydropower, industry, municipalities and recreation, especially in summer when water demands peak.

The latest study was one of the most precise of its type done on an entire watershed, and was just published in Hydrology and Earth System Sciences, with support from the National Science Foundation. It makes it clear that new choices are coming for western Oregon and other regions like it.

“In Oregon we have a water-rich environment, but even here we will have to manage our water resources differently in the future,” said Eric Sproles, who led this study as a doctoral student at OSU.

“In the Willamette River, for instance, between 60-80 percent of summer stream flow comes from seasonal snow above 4,000 feet,” he said. “As more precipitation falls as rain, there will more chance of winter flooding as well as summer drought in the same season. More than 70 percent of Oregon’s population lives in the Willamette Valley, with the economy and ecosystems depending heavily on this river.”

Annual precipitation in the future may be either higher or lower, the OSU researchers said. They did calculations for precipitation changes that could range 10 percent in either direction, although change of that magnitude is not anticipated by most climate models.

The study made clear, so far as snowpack goes, that temperature is the driving force, far more than precipitation. Even the highest levels of anticipated precipitation had almost no impact on snow-water storage, they said.

“This is not an issue that will just affect Oregon,” said Anne Nolin, a professor in the College of Earth, Ocean, and Atmospheric Sciences, and co-author of the study. “You may see similar impacts almost anywhere around the world that has low-elevation snow in mountains, such as in Japan, New Zealand, Northern California, the Andes Mountains, a lot of Eastern Europe and the lower-elevation Alps.”

The focus of this study was the McKenzie River, a beautiful, clear mountain river that rises in the high Cascade Range near the Three Sisters volcanoes, and supplies about 25 percent of the late summer discharge of the Willamette River. Researchers said this is one of the most detailed studies of its type done on a large watershed.

Among the findings of the study:

  • The average date of peak snowpack in the spring on this watershed will be about 12 days earlier by the middle of this century.
  • The elevation zone from 1,000 to 1,500 meters will lose the greatest volume of stored water, and some locations at that elevation could lose more than 80 days of snow cover in an average year.
  • Changes in dam operations in the McKenzie River watershed will be needed, but will not be able to make up for the vast capability of water storage in snow.
  • Summer water flows will be going down even as Oregon’s population surges by about 400,000 people from 2010 to 2020.
  • Globally, maritime snow comprises about 10 percent of the Earth’s seasonal snow cover.
  • Snowmelt is a source of water for more than one billion people.
  • Precipitation is highly sensitive to temperature and can fall as rain, snow, or a rain-snow mix.

The model developed for this research, scientists said, could be readily adapted to help other regions in similar situations determine their future loss of snow water in the future.

Media Contact: 
Source: 

Eric Sproles, 541-729-1377

Multimedia Downloads
Multimedia: 

McKenzie River watershed

McKenzie River watershed


McKenzie River

McKenzie River

Earth Week at OSU offers sustainable events, opportunities

CORVALLIS, Ore. – Oregon State University is promoting sustainability and awareness with an array of events during Earth Week, which begins Saturday, April 20.

Several new events this year include Campus Creature Census, in which community members are invited to contribute a creative work inspired by the various plants and animals that inhabit OSU. Participants may submit an entry in prose, field guide, artistic, or poetry form, which may be added to a compilation.

Returning events include the Hoo-Haa Earth Day Celebration, hosted by the Organic Grower’s Club at their farm on April 22. From 3-7 p.m., guests may enjoy free food and live music, watch a bubble artist in action, learn about soil, and discover how chickens may be used to till the earth. A shuttle bus will leave campus every 15 minutes from outside the OSU Beaver Store.

The 13th annual Earth Week Community Fair will be April 23. About 50 groups, both on and off of campus, will offer activities and environmental information. Students may also bring styrofoam for free recycling. Acceptable items include foam sheets and wraps, as well as bendable and rigid blocks. However, food packaging and expanding foam will not be accepted.

OSU Surplus Property will host the OSUsed Store Earth Week sale on April 24. Furniture, computers, electronics, housewares, and more will be on sale to students and community members from noon to 3 p.m.

This year also marks the 100-year anniversary of the planting of the elm trees that stand in the library quad.  A celebration will be held from noon to 1 p.m. on April 26, as an additional tree is planted to commemorate the next 100 years.

A more detailed list of events may be found at:  (http://tiny.cc/earth-calendar).

Media Contact: 
Source: 

Andrea Norris, 541-737-5398