OREGON STATE UNIVERSITY

college of science

International science team: Marine reserves can help mitigate climate change

CORVALLIS, Ore. – An international team of scientists has concluded that “highly protected” marine reserves can help mitigate the effects of climate change and suggests that these areas be expanded and better managed throughout the world.

Globally, coastal nations have committed to protecting 10 percent of their waters by 2020, but thus far only 3.5 percent of the ocean has been set aside for protection – and less than half of that (1.6 percent) is strongly protected from exploitation. Some scientists have argued that as much as 30 percent of the ocean should be set aside as reserves to safeguard marine ecosystems in the long-term. 

Results of the study, which evaluated 145 peer-reviewed studies on the impact of marine reserves, is being published this week in Proceedings of the National Academy of Sciences.

“Marine reserves cannot halt or completely offset the growing impacts of climate change,” said Oregon State University’s Jane Lubchenco, former National Oceanic and Atmospheric Administration (NOAA) Administrator and co-author on the study. “But they can make marine ecosystems more resilient to changes and, in some cases, help slow down the rate of climate change. 

“Protecting a portion of our oceans and coastal wetlands will help sequester carbon, limit the consequences of poor management, protect habitats and biodiversity that are key to healthy oceans of the future, and buffer coastal populations from extreme events,” Lubchenco said. “Marine reserves are climate reserves.”

The scientists say marine reserves can help protect ecosystems – and people – from five impacts of climate change that already are taking place: ocean acidification, rising sea levels, an increase in the severity of storms, shifts in the distribution of species, and decreased ocean productivity and availability of oxygen.

Lead author Callum Roberts, from the University of York, said that many studies already have shown that marine reserves can protect wildlife and support productive fisheries. The goal of this peer-reviewed literature-study was to see whether the benefits of marine reserves could ameliorate or slow the impacts of climate change. 

“It was soon quite clear that they can offer the ocean ecosystem and people critical resilience benefits to rapid climate change,” Roberts said.

The benefits are greatest, the authors say, in large, long-established and well-managed reserves that have full protection from fishing and mineral extraction, and isolation from other damaging human activities. 

The study notes that ocean surface waters have become on average 26 percent more acidic since pre-industrial times, and by the year 2100 under a “business-as-usual” scenario they will be 150 percent more acidic. The authors say coastal wetlands – including mangroves, seagrasses and salt marshes – have demonstrated a capacity for reducing local carbon dioxide concentrations because many contain plants with high rates of photosynthesis.

“Unfortunately,” Lubchenco said, “these ecosystems are some of the most threatened coastal areas and have experienced substantial reductions in the past several decades. Wetland protection should be seen as a key element in achieving greater resilience for coast communities.” 

Coastal wetlands, along with coral and oyster reefs, kelp forests and mud flats, can help ameliorate impacts of rising sea levels and storm surge. The average global sea level has risen about seven inches since 1900, and is expected to increase nearly three feet by the year 2100, threatening many low-lying cities and nations. The dense vegetation in coastal wetlands can also provide protection against severe storms, which are increasing in intensity in many parts of the world.

Climate change already is having a major impact on the abundance and distribution of marine species. Phytoplankton communities are changing in response to warming, acidification and stratifying oceans, and upper trophic level species are being affected, threatening global food security. Climate change interacts with and exacerbates other stressors like overfishing and pollution, the researchers say.

Reducing some stressors can increase the resilience of species and ecosystems to impacts of other stressors. 

“We have seen how marine reserves can be a haven for some species that are under duress from over-fishing or habitat loss, and as a ‘stepping-stone’ for other species that are recolonizing or moving into new areas,” Lubchenco said. “Reserves also promote genetic diversity and provide protection for older fish and other marine organisms. In short, reserves are one of the most powerful tools in our adaptation toolbox. Reserves enhance the resilience of marine ecosystems, and thus our resilience.”

Lubchenco, who recently completed a two-year term as the first U.S. Science Envoy for the Ocean, has been involved in research at Oregon State on the interactions between people and marine ecosystems. She has led pioneering studies on coastal hypoxia (so-called “dead zones”) and innovative ways to achieve sustainable fishing and other uses of the ocean. 

The authors point out that effectiveness of marine reserves is often challenged by lack of staff, equipment and funding; inconsistent management; lack of communication with industry and local communities; and concerns about displacing fishing activities. But, they point out, these challenges can be resolved. Their findings that reserves enhance the resilience of marine ecosystems suggests that reserves may offer the best hope to adapt to a changing climate.

“Marine reserves will not halt, change or stop many of the threats associated with climate change affecting communities within their boundaries,” they write. “We contend, however, that existing and emerging evidence suggests that (marine reserves) can serve as a powerful tool to help ameliorate some problems resulting from climate change, slow the development of others, and improve the outlook for continued ecosystem functioning and delivery of ecosystem services.”

Lubchenco is a distinguished professor in the College of Science at Oregon State and marine studies adviser to OSU President Ed Ray.

Story By: 
Source: 

Jane Lubchenco, 541-737-5337, lubchenco@oregonstate.edu

Multimedia Downloads
Multimedia: 

Photo at left: Marine life around Palau. Photo by Richard Brooks

Acidified ocean water widespread along North American West Coast

CORVALLIS, Ore. – A three-year survey of the California Current System along the West Coast of the United States found persistent, highly acidified water throughout this ecologically critical nearshore habitat, with “hotspots” of pH measurements as low as any oceanic surface waters in the world.

The researchers say that conditions will continue to worsen because the atmospheric carbon dioxide primarily to blame for this increase in acidification has been rising substantially in recent years.

One piece of good news came out of the study, which was published this week in Nature Scientific Reports. There are “refuges” of more moderate pH environments that could become havens for some marine organisms to escape more highly acidified waters, and which could be used as a resource for ecosystem management.

“The threat of ocean acidification is global and though it sometimes seems far away, it is happening here right now on the West Coast of the United States and those waters are already hitting our beaches,” said Francis Chan, a marine ecologist at Oregon State University and lead author on the study.

“The West Coast is very vulnerable. Ten years ago, we were focusing on the tropics with their coral reefs as the place most likely affected by ocean acidification. But the California Current System is getting hit with acidification earlier and more drastically than other locations around the world.”

A team of researchers developed a network of sensors to measure ocean acidification over a three-year period along more than 600 miles of the West Coast. The team observed near-shore pH levels that fell well below the global mean pH of 8.1 for the surface ocean, and reached as low as 7.4 at the most acidified sites, which is among the lowest recorded values ever observed in surface waters.

The lower the pH level, the higher the acidity. Previous studies have documented a global decrease of 0.11 pH units in surface ocean waters since the beginning of the Industrial Revolution. Like the Richter scale, the pH scale in logarithmic, so that a 0.11 pH unit decrease represents an increase in acidity of approximately 30 percent.

Highly acidified ocean water is potentially dangerous because many organisms are very sensitive to changes in pH. Chan said negative impacts already are occurring in the California Current System, where planktonic pteropods – or small swimming snails – were documented with severe shell dissolution.

“This is about more than the loss of small snails,” said Richard Feely, senior scientist with the National Oceanic and Atmospheric Administration’s Pacific Marine Environmental Laboratory. “These pteropods are an important food source for herring, salmon and black cod, among other fish. They also may be the proverbial ‘canary in the coal mine’ signifying potential risk for other species, including Dungeness crabs, oysters, mussels, and many organisms that live in tidepools or other near-shore habitats.”

Previous studies at OSU have chronicled the impact of acidified water on the Northwest oyster industry.

Chan said the team’s observations, which included a broad-scale ocean acidification survey via ship by NOAA, did not vary significantly over the three years – even with different conditions, including a moderate El Niño event.

“The highly acidified water was remarkably persistent over the three years,” Chan said. “Hotspots stayed as hotspots, and refuges stayed as refuges. This highly acidified water is not in the middle of the Pacific Ocean; it is right off our shore. Fortunately, there are swaths of water that are more moderate in acidity and those should be our focus for developing adaptation strategies.”

The researchers say there needs to be a focus on lowering stressors to the environment, such as maintaining healthy kelp beds and sea grasses, which many believe can partially mitigate the effects of increasing acidity.

Further, the moderately acidified refuge areas can be strategically used and managed, Chan pointed out.

“We probably have a hundred or more areas along the West Coast that are protected in one way or another, and we need to examine them more closely,” he said. “If we know how many of them are in highly acidified areas and how many are in refuge sites, we can use that information to better manage the risks that ocean acidification poses.”

Managing for resilience is a key, the researchers conclude.

“Even though we are seeing compromised chemistry in our ocean waters, we still have a comparably vibrant ecosystem,” Chan said. “Our first goal should be to not make things worse. No new stresses. Then we need to safeguard and promote resilience. How do we do that? One way is to manage for diversity, from ensuring multiple-age populations to maintaining deep gene pools.

“The greater the diversity, the better chance of improving the adaptability of our marine species.”

Chan, a faculty member in the College of Science at Oregon State University, was a member of the West Coast Ocean Acidification and Hypoxia Panel appointed by the governments of California, Oregon, Washington and British Columbia.

Story By: 
Source: 

Francis Chan, 541-737-9131, chanft@science.oregonstate.edu

Multimedia Downloads
Multimedia: 

ocean acidification 2

Acidification is threatening tidepool organisms

ocean sensors 2

A sensor at the Oregon coast.

Blocking TB germs’ metabolic ‘escape pathways’ may be key to better, shorter treatment

CORVALLIS, Ore. – New research suggests the bacteria that cause tuberculosis alter their metabolism to combat exposure to antimicrobials, and that these metabolic “escape pathways” might be neutralized by new drugs to shorten the troublesome duration of therapy.

The findings are important because the respiratory disease kills nearly 2 million people a year worldwide, and its long treatment regimen leads to poor compliance and, in turn, drug-resistant germs.

Oregon State University scientist Luiz Bermudez estimated that decreasing the time of treatment from six months to three weeks would likely eliminate many of the compliance problems.

His research may be a key step toward that shorter therapy.

About one-third of the global population is infected with the bacteria that cause TB – Mycobacterium tuberculosis, or Mtb – though only a small percentage will develop the actual disease. For those who do, treatment is basically the same now as it was a half-century ago: taking a combination of drugs for six months because the germs do not die easily or quickly.

As Bermudez notes, anyone who’s ever had trouble sticking with a 10-day antibiotic regimen for an ear infection can understand the hurdles in taking multiple medicines for a couple of dozen weeks – especially given the numerous side effects of the TB drugs.

Another compliance issue is that tuberculosis is particularly prevalent in impoverished countries in which patients often live great distances from pharmacies and other medical facilities.

“Because of problems with compliance, you have resistance becoming more and more of an issue,” said Bermudez, a physician and a faculty member in OSU’s College of Veterinary Medicine. “And the second line of drugs is much more toxic than the first line of drugs.”

Bermudez and collaborators at the veterinary college, as well as researchers at Oregon State’s colleges of science and pharmacy and Oregon Health & Science University, took a biology-driven approach to learn how Mtb prolongs survival following exposure to bactericidal concentrations of antimicrobials.

Researchers investigated how the bacteria reacted to each class of anti-TB drug with the goal of making headway toward developing a more-reasoned combination therapy.

They studied the proteomic responses of the bacteria to five compounds – isoniazid, rifampicin, moxifloxacin, mefloquine and bedaquiline – and discovered escape pathways and enzymes associated with changes in metabolic state.

“When we looked at the enzymes carefully, we realized the enzymes being synthesized by the bacteria were enzymes connecting several different metabolic pathways,” Bermudez said. “Then we came up with the idea that maybe what the bacteria were trying to do, in the presence of a bactericidal compound that was threatening their way of living, was use other ways to survive. One of the things we saw, for example, was a shift to an anaerobic metabolism, which makes a lot of drugs inactive and incapable of killing bacteria. 

“The gene inactivation of some of these enzymes results in improved drug efficacy against Mtb,” he said. “The identified proteins may provide powerful targets for development of synergistic drugs aimed to accelerate bacterial killing.”

Bermudez said that using a combination of drugs to treat tuberculosis arose as an attempt to prevent antibiotic resistance.

“But the antibiotics used were never a rational combination of drugs and in some cases they could antagonize each other,” he said. “If we can use another compound that inhibits bacteria from shifting metabolic pathways, then we get a more reliable and desirable synergy of therapy. That might have a significant impact on reducing the time needed for therapy and improving compliance and, consequently, reducing the emergence of resistance.”

Findings were published recently in Antimicrobial Agents and Chemotherapy. The National Institutes of Health supported this research.

Media Contact: 

By Steve Lundeberg, 541-737-4039

Multimedia Downloads
Multimedia: 

Luiz Bermudez

Luiz Bermudez

Study provides detailed glimpse of predators’ effects on complex, subtidal food web

CORVALLIS, Ore. – Research using time-lapse photography in the Galapagos Marine Reserve suggests the presence of a key multilevel “trophic cascade” involving top- and mid-level predators as well as urchins and algae.

The findings are important because they include detailed information about interactions in a complex food web. Such information is crucial to knowing how to cause, prevent or reverse population changes within the web.

In the rocky, species-rich subtidal area off the Galapagos Islands, scientists from Oregon State University and Brown University examined the relationships among predatory fishes, urchins, the algae that the urchins graze on, and how the interactions among them were influenced by sea lions and sharks at the top of the food chain.

The key question: Do predators high up in the chain affect the abundance of the “primary producers” at the bottom – in this case algae – thus causing a trophic cascade?

Trophic level refers to a species’ position in the chain, and the cascade describes the series of effects that can occur.

Using GoPro cameras, the researchers made a number of key findings regarding triggerfish, Spanish hogfish, pencil urchins, the larger green urchins and algae, including:

  • Among a diverse guild of predatory fishes, triggerfish can control the abundance of pencil urchins and thus also the abundance of algae the urchins eat; the experiments showed grazing on algae was eliminated when the pencil urchins were exposed to triggerfish predation, meaning triggerfish are a candidate for protection because of their strong effects on ecosystem function.
  • Green urchins eat more algae than pencil urchins yet are not the urchin prey of choice for predatory fish. That suggests those fish aren’t controlling green urchin populations and thus that green-urchin barrens in the Galapagos – areas where the urchins have stripped the sea floor of algae – are not the result of the overfishing of predatory fish.
  • Spanish hogfish are not major predators of urchins as earlier, survey-based research had suggested. Hogfish mainly eat the smaller pencil urchins and also interfere with triggerfish feeding on large pencil urchins; the hassling hogfish cause triggerfish to spend more time to eat an urchin and in some cases force a fumble.
  • Statistical modeling of predation on pencil urchins indicates that two types of interference behavior – the hogfish harassing the triggerfish, and sea lions and sharks startling the triggerfish – could slow the rate of triggerfish predation on pencil urchins.

The researcher who did the modeling, Mark Novak of the College of Science at Oregon State, noted that historically, ecologists believed complex food webs typical of the tropics were more immune to trophic cascades than the simpler food webs of higher latitudes; the Galapagos straddle the equator.

Studies such as this one now suggest that is not the case, and that the dynamics of complex food webs can be as predictable as simpler ones provided you understand who the relevant players are.

“When the backbone of the system is strong, you can connect the top of the food chain to the bottom despite all of the indirect effects and the complexities of the system,” said Novak, assistant professor of integrative biology.

“It’s important to know individual species identity when you’ve got a suite of consumers,” Novak said. “The hogfish, the triggerfish, they all feed on very similar things, yet one of the two is most important, the one that drove that first link. And an urchin isn’t just an urchin – one was more immune to consumption from triggerfish, the other more susceptible. And one urchin was important for grazing, and another was not.”

Merely lumping species together at trophic levels would have caused researchers to miss a lot of the subtleties that the photographic study uncovered.

“If you just put urchins out and see how quickly they disappear, you can’t attribute that to any given predator,” Novak said. “We were able to identify those species that were responsible for transmitting the cascade.”

Findings were recently published in PLOS One. The National Science Foundation supported this research.

Media Contact: 

Steve Lundeberg, 541-737-4039

Source: 
Multimedia Downloads
Multimedia: 

Galapagos fish

Triggerfish, top, and hogfish

Pigment discovered at Oregon State University inspires new Crayola crayon color

CORVALLIS, Ore. – A blue pigment discovered at Oregon State University is the inspiration for Crayola’s new crayon color.

The Easton, Pennsylvania-based company announced today that a recently retired yellow crayon known as Dandelion would be replaced by a color inspired by the YInMn pigment developed in the laboratory of OSU chemistry professor Mas Subramanian.

YInMn refers to the elements yttrium, indium and manganese, which along with oxygen comprise the vibrant pigment.

Crayola made the announcement at The Colorful World of Pigments, an OSU-hosted celebration of YInMn blue and its impact on art, culture and industry.

Subramanian, noting that people love the color blue for a wide variety of reasons, called it “truly an honor” that his discovery has led to a new crayon color.

“Blue is associated with open spaces, freedom, intuition, imagination, expansiveness, inspiration and sensitivity,” said Subramanian, the Milton Harris Chair of Materials Science. “Blue also represents meanings of depth, trust, loyalty, sincerity, wisdom, confidence, stability, faith, heaven and intelligence. We could not imagine a better partner than Crayola, a brand synonymous with color and creativity, to help us share this discovery with the world.”

Crayola is inviting the public to help name the color of its new blue with a contest that kicks off today at Crayola.com/NewColor and runs through June 2. Those who submit name ideas will be entered for a chance to win one of four weekly prizes. 

Crayola will unveil the new name and announce six grand prize winners in early September, and the new blue crayon will begin appearing in Crayola products in late 2017.

“We are a company all about kids, creativity and color, so we strive to keep our color palette innovative and on trend, which is why we’re excited to introduce a new blue crayon color inspired by the YInMn pigment,” said Smith Holland, CEO and president of Crayola. “The new blue crayon color will help Crayola to continue to inspire kids and kids at heart, to create everything imaginable.”

YInMn blue was discovered by accident in 2009 when Subramanian and his team were experimenting with new materials that could be used in electronics applications.

The researchers mixed manganese oxide – which is black in color – with other chemicals and heated them in a furnace to nearly 2,000 degrees Fahrenheit. One of their samples turned out to be a vivid blue. Oregon State graduate student Andrew Smith initially made these samples to study their electrical properties.

“This was a serendipitous discovery, a happy accident,” Subramanian said. “But in fact, many breakthrough discoveries in science happen when one is not looking for it. As Louis Pasteur famously said, ‘In the fields of observation, chance favors only the prepared mind.’

“Most pigments are discovered by chance,” Subramanian added. “The reason is because the origin of the color of a material depends not only on the chemical composition, but also on the intricate arrangement of atoms in the crystal structure. So someone has to make the material first, then study its crystal structure thoroughly to explain the color.”   

YInMn blue features a unique structure that allows the manganese ions to absorb red and green wavelengths of light while only reflecting blue. The vibrant blue is so durable, and its compounds are so stable – even in oil and water – that the color does not fade.

These characteristics, as well as its non-toxicity, make the new pigment versatile for a variety of commercial products. Used in paints, for example, they can help keep buildings cool by reflecting infrared light.

“What is amazing is that through much of human history, civilizations around the world have sought inorganic compounds that could be used to paint things blue but often had limited success,” Subramanian said. “Most had environmental and/or durability issues. The YInMn blue pigment is very stable/durable. There is no change in the color when exposed to high temperatures, water, and mildly acidic and alkali conditions.”

The Colorful World of Pigments event is part of a series known as SPARK: The Year of Arts and Science at OSU. The series explores the places where art and science intersect.

Hosted by the College of Science, the event included a discussion of color by a panel that included Subramanian; Holland; Christopher Manning of the Shepherd Color Company, OSU’s licensing partner for the pigment; and the curator of Harvard University’s 2,500-specimen Forbes Pigment Collection, a scientific catalog of color that includes YInMn blue.

“We are very excited about our part in bringing YInMn blue to market for this and other industries,” Manning said. “We pride ourselves on being at the leading edge of inorganic color and pigment technology.”

Also at the event, Subramanian led tours of the lab where YInMn blue was discovered, and demonstrated how it was discovered.

Media Contact: 

Steve Lundeberg, 541-737-4039

Multimedia Downloads
Multimedia: 

Blue pigment

YInMn blue

Researchers identify evidence of oldest orchid fossil on record

CORVALLIS, Ore. – The orchid family has some 28,000 species – more than double the number of bird species and quadruple the mammal species. As it turns out, they’ve also been around for a while.

A newly published study documents evidence of an orchid fossil trapped in Baltic amber that dates back some 45 million years to 55 million years ago, shattering the previous record for an orchid fossil found in Dominican amber some 20-30 million years old.

Results of the discovery have just been published in the Botanical Journal of the Linnean Society.

“It wasn’t until a few years ago that we even had evidence of ancient orchids because there wasn’t anything preserved in the fossil record,” said George Poinar, Jr., a professor emeritus of entomology in the College of Science at Oregon State University and lead author on the study. “But now we’re beginning to locate pollen evidence associated with insects trapped in amber, opening the door to some new discoveries.”

Orchids have their pollen in small sac-like structures called pollinia, which are attached by supports to viscidia, or adhesive pads, that can stick to the various body parts of pollinating insects, including bees, beetles, flies and gnats. The entire pollination unit is known as a pollinarium.

In this study, a small female fungus gnat was carrying the pollinaria of an extinct species of orchid when it became trapped in amber more than 45 million years ago. The pollinaria was attached to the base of the gnat’s hind leg. Amber preserves fossils so well that the researchers could identify a droplet of congealed blood at the tip of the gnat’s leg, which had been broken off shortly before it was entombed in amber.

At the time, all of the continents hadn’t even yet drifted apart.

The fossil shows that orchids were well-established in the Eocene and it is likely that lineages extended back into the Cretaceous period. Until such forms are discovered, the present specimen provides a minimum date that can be used in future studies determining the evolutionary history and phylogeny of the orchids.

How the orchid pollen in this study ended up attached to the fungus gnat and eventually entombed in amber from near the Baltic Sea in northern Europe is a matter of speculation. But, Poinar says, orchids have evolved a surprisingly sophisticated system to draw in pollinating insects, which may have led to the gnat’s demise.

“We probably shouldn’t say this about a plant,” Poinar said with a laugh, “but orchids are very smart. They’ve developed ways to attract little flies and most of the rewards they offer are based on deception.”

Orchids use color, odor and the allure of nectar to draw in potential pollinating insects. Orchids will emit a scent that suggests to hungry insects the promise of food, but after entering the flower they will learn that the promise of nourishment was false.

Likewise, female gnats may pick up a mushroom-like odor from many orchids, which attracts them as a place to lay their eggs because the decaying fungal tissue is a source of future nutrition. Alas, again it is a ruse. In frustration, they may go ahead and lay their eggs, dooming their offspring to a likely death from a lack of food.

Finally, male insects are attracted by the ersatz scent of female flies and they actually will attempt to copulate with a part of the orchid they think is a potential mate.

All three of these processes are based on deception, Poinar said, and they all have the same end result.

“Though the deception works in different ways, the bottom line is that the orchid is able to draw in pollinating insects, which unwittingly gather pollen that becomes attached to their legs and other body parts, and then pass it on to the next orchid flowers that lure them in,” he said.

“Orchids are, indeed, pretty smart.”

Story By: 
Source: 

George Poinar, Jr., poinarg@science.oregonstate.edu

Multimedia Downloads
Multimedia: 

Fig. 1

A fungus gnat trapped in amber some 45-55 million years ago is carrying on the upper portion of its severed leg a pollen sac from an orchid – the oldest evidence of the flower ever discovered.


Fig. 4 insert

This microscopic view shows pollinarium – a cluster of pollen found in orchids – that will stick to the legs and body of pollinating insects.

New function discovered for compound that may help slow aging

CORVALLIS, Ore. – Researchers at Oregon State University have found that a compound called rapamycin has unusual properties that may help address neurologic damage such as Alzheimer’s disease.

A study just published in Aging Cell outlines a new understanding of how this compound works.

“It’s possible this could provide a new therapeutic approach to neurologic disease,” said Viviana Perez, an assistant professor in the Department of Biochemistry and Biophysics in OSU’s College of Science, expert on the biological processes of aging and principal investigator in the Linus Pauling Institute.

Scientists have now identified two mechanisms of action of rapamycin. One was already known. The newly-discovered mechanism is what researchers say might help prevent neurologic damage and some related diseases.

“The value of rapamycin is clearly linked to the issue of cellular senescence, a stage cells reach where they get old, stop proliferating and begin to secrete damaging substances that lead to inflammation,” Perez said. “Rapamycin appears to help stop that process.”

This secretion of damaging compounds, researchers say, creates a toxic environment called senescence-associated secretory phenotype, or SASP. It’s believed this disrupts the cellular microenvironment and alters the ability of adjacent cells to function properly, compromising their tissue structure and function.

This broad process is ultimately linked to aging.

“The increase in cellular senescence associated with aging, and the inflammation associated with that, can help set the stage for a wide variety of degenerative disease, including cancer, heart disease, diabetes and neurologic disease, such as dementia or Alzheimer’s,” Perez said. “In laboratory animals when we clear out senescent cells, they live longer and have fewer diseases. And rapamycin can have similar effects.”

Prior to this research, it had only been observed that there was one mechanism of action for rapamycin in this process. Scientists believed it helped to increase the action of Nrf2, a master regulator that can “turn on” up to 200 genes responsible for cell repair, detoxification of carcinogens, protein and lipid metabolism, antioxidant protection and other factors. In the process, it helped reduce levels of SASP.

The new study concluded that rapamycin could also affect levels of SASP directly, separately from the Nrf2 pathway and in a way that would have impacts on neurons as well as other types of cells.

“Any new approach to help protect neurons from damage could be valuable,” Perez said. “Other studies, for instance, have shown that astrocyte cells that help protect neuron function and health can be damaged by SASP. This may be one of the causes of some neurologic diseases, including Alzheimer’s disease.”

Through its ability to help prevent SASP-related cellular damage through two pathways – one involving Nrf2 and the other more directly – rapamycin will continue to generate significant interest in addressing issues related to aging, Perez said.

Rapamycin is a natural compound first discovered from the soils of Easter Island in the South Pacific Ocean. It has already been intensively studied because it can mimic the valuable effects of dietary restriction, which in some animals has been proven to extend their lifespan.

Laboratory mice that have received rapamycin have demonstrated more fitness, less decline in activity with age, improved cognition and cardiovascular health, less cancer, and a longer life.

The use of rapamycin for that purpose in humans has so far been constrained by an important side effect, an increase in insulin resistance that may raise the risk of diabetes. That concern still exists, limiting the use of rapamycin to help address degenerative disease until ways can be found to address that problem.

This may be possible. Scientists are searching for rapamycin analogs that may have similar biological impacts but don’t cause that unwanted side effect.

This research was supported by the American Federation for Aging Research.

Story By: 
Source: 

Viviana Perez, 541-737-9551

viviana.perez@oregonstate.edu

More funding for long-term studies necessary for best science, environmental policy

CORVALLIS, Ore. – Environmental scientists and policymakers value long-term research to an extent that far outstrips the amount of funding awarded for it, according to a study published today.

Graduate students and faculty members in the Oregon State University College of Science were part of a collaboration that evaluated the perceived benefits of long-term ecological and environmental studies – known as LTEES – to both researchers and those who determine environmental policy. 

The issue is particularly important because support for LTEES by agencies such as the National Science Foundation is declining even though such research is disproportionately valued in comparison to the one- to five-year studies the agencies tend to support.

The OSU group was among 36 researchers who collectively analyzed the perceived value of LTEES, which can run for multiple decades, in research published in BioScience. The evaluation noted the policymaking and scientific communities’ growing appreciation and demand for studies that last much longer than the ones typically being funded.

Specifically, the scientists found:

 

  • The greater a scientific journal’s impact factor – the frequency with which its articles are cited in other scholarly articles – the higher its percentage of articles dealing with long-term studies;
  • The longer a study lasts, the more an article about it is cited;
  • In the policy-informing ecological reports of the U.S. National Research Council, long-term environmental studies have representation that’s greater than their frequency in scientific journals;
  • The authors of those reports expressed more demand for LTEES than they did for short-term research.

 

“For a long time, ‘monitoring’ has been a word you never put in a grant proposal, simply because if you did your work was perceived as not being hypothesis-driven research,” said Mark Novak, assistant professor of integrative biology at Oregon State.

“But many environmental scientists have long known from personal experience that you can’t know the value of new events unless you’ve studied a system long enough. The relative investment in LTEES by ecologists and funders needs to be seriously reconsidered, because LTEES advance our understanding of ecology the most, and contribute disproportionately to informing policy.”

The collaboration also found that among the comparatively few long-term studies that do exist, most are limited to single species or pairs of species.

“It’s not that short-term research isn’t important,” said Bruce Menge, the Wayne and Gladys Valley Professor of Marine Biology at Oregon State. “Both short- and long-term are really valuable. A shorter term can give you a more mechanistic understanding of long-term patterns. But the longer time series you have, the more power you have to understand changes.

“Ideally short- and long-term should go hand in hand,” Menge said. “We’re hoping to provide a prod to funding agencies, and give at least those in an agency who do appreciate long-term research some ammunition for reconsidering the allocation of funds.”

Menge has been studying intertidal rocky zones at numerous sites on the Oregon coast for more than three decades, analyzing ecological processes and patterns of community structure. The intertidal community includes sea stars, whose population was nearly wiped out three years ago by an epidemic of sea star wasting disease.

“One of the consequences of the disease was a huge influx of baby sea stars after the peak of the wasting was over,” Menge said. “We wouldn’t have really known the significance of that if we hadn’t been keeping track of how abundant sea stars were over the last 20-some years. The influx would have been remarkable, but we’d have had no idea how remarkable it truly was.”

Species studied by another of Menge’s OSU colleagues, assistant professor Kirsten Grorud-Colvert, are rockfishes, important commercial fishes whose long lifespan is a challenge for researchers being funded for only a few years.

“Rockfish can live for more than 100 years,” she said. “Three years doesn’t do it for us. If we want environmental research that effectively informs policy, that means we need funding cycles – and funding agencies – to help build that long-term storehouse of science. That’s how we can meet the demand for policy-relevant data.”

Graduate students and faculty from the University of California, Santa Cruz, joined the Oregon State scientists in the collaboration.

Media Contact: 

Steve Lundeberg, 541-737-4039

Source: 
Multimedia Downloads
Multimedia: 

LTEES

Intertidal invertebrate research

Reducing pressure on predators, prey simultaneously is best for species’ recovery

CORVALLIS, Ore. – Reducing human pressure on exploited predators and prey at the same time is the best way to help their populations recover, a new study indicates.

The findings about synchronous recovery are important because historically about half the attempts at species restoration have amounted to a sequential, one-species-at-a-time tactic – usually the prey species first, then the predator.

This study suggests that a synchronous approach almost always produces a recovery that is more rapid and more direct – faster than predator-first recovery and less prone to volatile population fluctuations than prey-first recovery. Just as crucial, synchronous is also better for the humans who earn a living harvesting the two species.

Findings of the research were published today in Nature Ecology and Evolution.

“You might think the loss of income associated with reducing harvest on both species at the same time would be greater than reducing harvest on one species after another, but our work suggests that synchronous recovery is ultimately better for recovering the ecosystem, and better from an economic perspective as well,” said Mark Novak of the Oregon State University College of Science.

Because of overharvest, declines of multiple animal populations – including at least one species that consumes other harvested species – characterize many ecosystems, Novak notes.

Examples of paired population collapses wholly or partially attributable to trophy hunting, industrial fisheries or the fur trade are lions and wildebeest; Steller sea lions and Pacific herring; and mink and muskrat.

Novak, assistant professor of integrative biology, notes that in both terrestrial and marine resources management, population restoration and the setting of harvest quotas has long been a single-species endeavor.

Even in the more holistic ecosystem-based rebuilding of food webs – the interconnected chains of who eats whom – the dominant strategy has been to release pressure at the bottom, letting prey populations return to the point where they ought to sustain the top predators more readily, Novak said.

Collaborators at the National Marine Fisheries Center, including Shannon Hennessey, now a graduate student at OSU, led the study, which points out the limitations of both of these philosophies. It also highlights the room for improvement in policy tools that synchronous recovery management could fill.

Media Contact: 

Steve Lundeberg, 541-737-4039

Source: 
Multimedia Downloads
Multimedia: 

Young Steller sea lion

Steller sea lions

Scientists: Warming temperatures could trigger starvation, extinctions in deep oceans by 2100

CORVALLIS, Ore. – Researchers from 20 of the world’s leading oceanographic research centers today warned that the world’s largest habitat – the deep ocean floor – may face starvation and sweeping ecological change by the year 2100.

Warming ocean temperatures, increased acidification and the spread of low-oxygen zones will drastically alter the biodiversity of the deep ocean floor from 200 to 6,000 meters below the surface. The impact of these ecosystems to society is just becoming appreciated, yet these environments and their role in the functioning of the planet may be altered by these sweeping impacts. 

Results of the study, which was supported by the Foundation Total and other organizations, were published this week in the journal Elementa.

“Biodiversity in many of these areas is defined by the meager amount of food reaching the seafloor and over the next 80-plus years – in certain parts of the world – that amount of food will be cut in half,” said Andrew Thurber, an Oregon State University marine ecologist and co-author on the study. “We likely will see a shift in dominance to smaller organisms. Some species will thrive, some will migrate to other areas, and many will die. 

“Parts of the world will likely have more jellyfish and squid, for example, and fewer fish and cold water corals.”

The study used the projections from 31 earth system models developed for the Intergovernmental Panel on Climate Change to predict how the temperature, amount of oxygen, acidity (pH) and food supply to the deep-sea floor will change by the year 2100. The authors found these models predict that deep ocean temperatures in the “abyssal” seafloor (3,000 to 6,000 meters deep) will increase as much as 0.5 to 1.0 degrees (Celsius) in the North Atlantic, Southern and Arctic oceans by 2100 compared to what they are now. 

Temperatures in the “bathyal” depths (200 to 3,000 meters deep) will increase even more – parts of this deep-sea floor are predicted to see an increase of nearly 4 degrees (C) in the Pacific, Atlantic and Arctic oceans.

“While four degrees doesn’t seem like much on land, that is a massive temperature change in these environments,” Thurber said. “It is the equivalent of having summer for the first time in thousands to millions of years.” 

The over-arching lack of food will be exacerbated by warming temperatures, Thurber pointed out.

“The increase in temperature will increase the metabolism of organisms that live at the ocean floor, meaning they will require more food at a time when less is available.” 

Most of the deep sea already experiences a severe lack of food, but it is about to become a famine, according to Andrew Sweetman, a researcher at Heriot-Watt University in Edinburgh and lead author on the study.

“Abyssal ocean environments, which are over 3,000 meters deep, are some of the most food-deprived regions on the planet,” Sweetman said. “These habitats currently rely on less carbon per meter-squared each year than is present in a single sugar cube. Large areas of the abyss will have this tiny amount of food halved and for a habitat that covers half the Earth, the impacts of this will be enormous.” 

The impacts on the deep ocean are unlikely to remain there, the researchers say. Warming ocean temperatures are expected to increase stratification in some areas yet increase upwelling in others. This can change the amount of nutrients and oxygen in the water that is brought back to the surface from the deep sea. This low-oxygen water can affect coastal communities, including commercial fishing industries, which harvest groundfish from the deep sea globally and especially in areas like the Pacific Coast of North America, Thurber said.

“A decade ago, we even saw low-oxygen water come shallow enough to kill vast numbers of Dungeness crabs,” Thurber pointed out. “The die-off was massive.” 

Areas most likely to be affected by the decline in food are the North and South Pacific, North and South Atlantic, and North and South Indian oceans.

“The North Atlantic in particular will be affected by warmer temperatures, acidification, a lack of food and lower oxygen,” Thurber said. “Water in the region is soaking up the carbon from the atmosphere and then sending it on its path around the globe, so it likely will be the first to feel the brunt of the changes.” 

Thurber, who is a faculty member in Oregon State’s College of Earth, Ocean, and Atmospheric Sciences and the OSU College of Science, has previously published on the “services” or benefits provided by the deep ocean environments. The deep sea is important to many of the processes affecting the Earth’s climate, including acting as a “sink” for greenhouse gases and helping to offset growing amounts of carbon dioxide emitted into the atmosphere.

These habitats are not only threatened by warm temperatures and increasing carbon dioxide; they increasingly are being used by fishing and explored by mining industries for extraction of mineral resources. 

“If we look back in Earth’s history, we can see that small changes to the deep ocean caused massive shifts in biodiversity,” Thurber said. “These shifts were driven by those same impacts that our model predict are coming in the near future. We think of the deep ocean as incredibly stable and too vast to impact, but it doesn’t take much of a deviation to create a radically altered environment.

Story By: 
Source: 

Andrew Thurber, 541-737-4500, athurber@coas.oregonstate.edu; Andrew Sweetman, +44 (0) 131 451 3993, a.sweetman@hw.ac.uk

Multimedia Downloads
Multimedia: 

Sea pig (Image Courtesy of Ocean Networks Canada)

SeaPig

Methane seep (Image by Andrew Thurber, OSU)

CRSeep