OREGON STATE UNIVERSITY

college of engineering

New type of semiconductor could change face of consumer electronics

CORVALLIS, Ore. – Materials first developed at Oregon State University more than a decade ago with an eye toward making “transparent” transistors may be about to shake up the field of consumer electronics – and the first uses are not even based on the transparent capability of the materials.

Transparent transistors were invented by OSU researchers in 2002. In continued work and in collaboration with private industry, certain transparent transistor materials – amorphous oxide semiconductors – are now gaining some of their first commercial applications. Licensing of the compounds is under way to a range of companies.

One of the first and most important of the semiconductors is based on the compound indium gallium zinc oxide, or IGZO. It’s now being used to produce flat-panel displays for computer monitors with extraordinary resolution and clarity, and in ultrathin HDTVs. IGZO will also soon find its way into tablets and cell phone displays.

But that may be just the beginning, experts say.

“Amorphous oxide semiconductors appear well-positioned to significantly impact a $100 billion industry,” said John Wager, holder of the Michael and Judith Gaulke Chair in the OSU School of Electrical Engineering and Computer Science.

“Because of their increased electron mobility, compounds like IGZO can provide brighter displays with higher resolution,” Wager said.

Transistors made using IGZO consume much less standby power - cell phones might be created that only need charging once or twice a week instead of once a day.

The primary competition for amorphous oxide semiconductors is low-temperature polysilicon, Wager said. But this technology is more complex and expensive.

“Amorphous oxide semiconductors benefit from the fact that they can be implemented by retrofitting an existing fabrication facility,” Wager said. “This would save billions of dollars, rather than having to build a new plant, as required for low-temperature polysilicon.

“Amorphous oxide semiconductor implementation appears on the verge of exploding,” he said. “If the current trend continues, in the next five years most people will likely own some device with these materials in them. This is a breathtaking pace.”

The commercialization of amorphous oxide semiconductors also bodes well for the future of transparent electronics.

Conceptually, electronics could be incorporated into any glass surface. A bathroom mirror could display your schedule for that day in an updatable and interactive way. A window could function as a computer display in conjunction with touchscreen control. Driving directions could appear on the windshield of your automobile. Or you could replace your drapes with a bedroom window that would automatically or manually darken to block out light.

Media Contact: 
Source: 

John Wager, 541-737-2994

Atmospheric carbon dioxide used for energy storage products

CORVALLIS, Ore. – Chemists and engineers at Oregon State University have discovered a fascinating new way to take some of the atmospheric carbon dioxide that’s causing the greenhouse effect and use it to make an advanced, high-value material for use in energy storage products.

This innovation in nanotechnology won’t soak up enough carbon to solve global warming, researchers say. However, it will provide an environmentally friendly, low-cost way to make nanoporous graphene for use in “supercapacitors” – devices that can store energy and release it rapidly.

Such devices are used in everything from heavy industry to consumer electronics.

The findings were just published in Nano Energy by scientists from the OSU College of Science, OSU College of Engineering, Argonne National Laboratory, the University of South Florida and the National Energy Technology Laboratory in Albany, Ore. The work was supported by OSU.

In the chemical reaction that was developed, the end result is nanoporous graphene, a form of carbon that’s ordered in its atomic and crystalline structure. It has an enormous specific surface area of about 1,900 square meters per gram of material. Because of that, it has an electrical conductivity at least 10 times higher than the activated carbon now used to make commercial supercapacitors.

“There are other ways to fabricate nanoporous graphene, but this approach is faster, has little environmental impact and costs less,” said Xiulei (David) Ji, an OSU assistant professor of chemistry in the OSU College of Science and lead author on the study. “The product exhibits high surface area, great conductivity and, most importantly, it has a fairly high density that is comparable to the commercial activated carbons.

“And the carbon source is carbon dioxide, which is a sustainable resource, to say the least,” Ji said. “This methodology uses abundant carbon dioxide while making energy storage products of significant value.”

Because the materials involved are inexpensive and the fabrication is simple, this approach has the potential to be scaled up for production at commercial levels, Ji said.

The chemical reaction outlined in this study involved a mixture of magnesium and zinc metals, a combination discovered for the first time. These are heated to a high temperature in the presence of a flow of carbon dioxide to produce a controlled “metallothermic” reaction. The reaction converted the elements into their metal oxides and nanoporous graphene, a pure form of carbon that’s remarkably strong and can efficiently conduct heat and electricity. The metal oxides could later be recycled back into their metallic forms to make an industrial process more efficient.

By comparison, other methods to make nanoporous graphene often use corrosive and toxic chemicals, in systems that would be challenging to use at large commercial levels.

“Most commercial carbon supercapacitors now use activated carbon as electrodes, but their electrical conductivity is very low,” Ji said. “We want fast energy storage and release that will deliver more power, and for that purpose the more conductive nanoporous graphene will work much better. This solves a major problem in creating more powerful supercapacitors.”

A supercapacitor is a type of energy storage device, but it can be recharged much faster than a battery and has a great deal more power. They are mostly used in any type of device where rapid power storage and short, but powerful energy release is needed.

They are being used in consumer electronics, and have applications in heavy industry, with the ability to power anything from a crane to a forklift. A supercapacitor can capture energy that might otherwise be wasted, such as in braking operations. And their energy storage abilities may help “smooth out” the power flow from alternative energy systems, such as wind energy.

They can power a defibrillator, open the emergency slides on an aircraft and greatly improve the efficiency of hybrid electric automobiles. Nanoporous carbon materials can also adsorb gas pollutants, work as environmental filters, or be used in water treatment. The uses are expanding constantly and have been constrained mostly by their cost.

Media Contact: 
Source: 

Xiulei (David) Ji, 541-737-6798

Multimedia Downloads
Multimedia: 

Nanoporous graphene
Nanoporous graphene

Matched “hybrid” systems may hold key to wider use of renewable energy

CORVALLIS, Ore. – The use of renewable energy in the United States could take a significant leap forward with improved storage technologies or more efforts to “match” different forms of alternative energy systems that provide an overall more steady flow of electricity, researchers say in a new report.

Historically, a major drawback to the use and cost-effectiveness of alternative energy systems has been that they are too variable – if the wind doesn’t blow or the sun doesn’t shine, a completely different energy system has to be available to pick up the slack. This lack of dependability is costly and inefficient.

But in an analysis just published in The Electricity Journal, scientists say that much of this problem could be addressed with enhanced energy storage technology or by developing “hybrid” systems in which, on a broader geographic scale, one form of renewable energy is ramping up even while the other is declining.

Wind energy is already pretty cost-competitive and solar energy is quickly getting there,” said Anna Kelly, a graduate student in the School of Public Policy at Oregon State University, and an energy policy analyst. “The key to greater use of these and other technologies is to match them in smart-grid, connected systems.

“This is already being done successfully in a number of countries and the approach could be expanded.”

For instance, the wind often blows more strongly at night in some regions, Kelly said, and solar technology can only produce energy during the day. By making more sophisticated use of that basic concept in a connected grid, and pairing it with more advanced forms of energy storage, the door could be opened for a much wider use of renewable energy systems, scientists say.

“This is more than just an idea, it’s a working reality in energy facilities around the world, in places like Spain, Morocco and China, as well as the U.S.,” Kelly said. “Geothermal is being paired with solar; wind and solar with lithium-ion batteries; and wind and biodiesel with batteries. By helping to address the price issue, renewable energy is being produced in hybrid systems by real, private companies that are making real money.”

Advanced energy storage could be another huge key to making renewable energy more functional, and one example is just being developed in several cooperating states in the West. Electricity is being produced by efficient wind farms in Wyoming; transmitted to Utah where it’s being stored via compressed air in certain rock formations; and ultimately used to help power Los Angeles.

This $8 billion system could be an indicator of things to come, since compressed air can rapidly respond to energy needs and be readily scaled up to be cost-competitive at a significant commercial level.

“There are still a number of obstacles to overcome,” said Joshua Merritt, a co-author on the report and also a graduate student in mechanical engineering and public policy at OSU. “Our transmission grids need major improvements so we can more easily produce energy and then send it to where it’s needed. There are some regulatory hurdles to overcome. And the public has to more readily accept energy systems like wind, wave or solar in practice, not just in theory.”

The “not in my back yard” opposition to renewable energy systems is still a reality, the researchers said, and there are still some environmental concerns about virtually any form of energy, whether it’s birds killed by wind turbine rotors, fish losses in hydroelectric dams or chemical contaminants from use of solar energy.

The near future may offer more options, the researchers said. Advanced battery storage technologies are becoming more feasible. Wave or tidal energy may become a real contributor, and some of those forces are more predictable and stable by definition. And the birth of small, modular nuclear reactors – which can be built at lower cost and produce no greenhouse gas emissions – could play a significant role in helping to balance energy outflows from renewable sources.

The long-term goal, the report concluded, is to identify technologies that can work in a hybrid system that offers consistency, dependability and doesn’t rely on fossil fuels. With careful matching of systems, improved transmission abilities and some new technological advances, that goal may be closer than realized, they said.

“With development, the cost of these hybrid systems will decrease and become increasingly competitive, hopefully playing a larger role in power generation in the future,” the researchers wrote in their conclusion.

Media Contact: 
Source: 
Multimedia Downloads
Multimedia: 

Wind farm
Wind farm

New technology may speed up, build awareness of landslide risks

CORVALLIS, Ore. – Engineers have created a new way to use lidar technology to identify and classify landslides on a landscape scale, which may revolutionize the understanding of landslides in the U.S. and reveal them to be far more common and hazardous than often understood.

The new, non-subjective technology, created by researchers at Oregon State University and George Mason University, can analyze and classify the landslide risk in an area of 50 or more square miles in about 30 minutes - a task that previously might have taken an expert several weeks to months. It can also identify risks common to a broad area rather than just an individual site.

And with such speed and precision, it reveals that some landslide-prone areas of the Pacific Northwest are literally covered by landslides from one time or another in history. The system is based on new ways to use light detecting and ranging, or lidar technology, that can seemingly strip away vegetation and other obstructions to show land features in their bare form.

“With lidar we can see areas that are 50-80 percent covered by landslide deposits,” said Michael Olsen, an expert in geomatics and the Eric HI and Janice Hoffman Faculty Scholar in the OSU College of Engineering. “It may turn out that there are 10-100 times more landslides in some places than we knew of before.

“We’ve always known landslides were a problem in the Pacific Northwest,” Olsen said. “Many people are just now beginning to realize how big the problem is.”

An outline of the new technology was recently published in Computers and Geosciences, a professional journal.

Oregon and Washington, especially in the Coast Range and Cascade Range, are already areas commonly known to have landslides, and as a result Oregon’s Department of Geology and Mineral Industries has become a national leader in mapping of them, Olsen said. But previous approaches are slow, and the new technology, called a Contour Connection Method, could radically speed up widespread mapping, and build both professional and public awareness of the issue.

Despite the prevalence and frequency of landslides, they are not generally covered by most homeowner insurance policies; coverage can be purchased separately, but most people don’t. And with increasing population growth, more and more people are moving into more remote locations, or building in scenic areas near the hills around cities where landslide risk might be high.

“A lot of people don’t think in geologic terms, so if they see a hill that’s been there for a long time, they assume there’s no risk,” said Ben Leshchinsky, a geotechnical engineer in the OSU College of Forestry. “And many times they don’t want to pay extra to have an expert assess landslide risks or do something that might interfere with their land development plans.”

Lidar is already a powerful tool, but the new system developed at OSU offers an automated way to improve the use of it, and could usher in a new era of landslide awareness, experts say. Information could be more routinely factored into road, bridge, land use, zoning, building and other decisions.

With this technology, a computer automatically looks for land features, such as suddenly steeper areas of soil, that might be evidence of a past landslide. It then searches the terrain for other features, such as a “toe” of soils at the base of the landslide. And in minutes it can make unbiased, science-based classifications of past landslides that consistently use the same criteria.

The technology was applied to the region surrounding the landslide of March, 2014, that killed 43 people near the small town of Oso, Washington. In about nine minutes it was able to analyze more than 2,200 acres and many prehistoric landslide features that are readily apparent in lidar images, in this region known for slope instability.

Eventually, adaptations of the technology might even allow for real-time monitoring of soil movement, the researchers said.

Media Contact: 
Source: 

Michael Olsen, 541-737-9327

Multimedia Downloads
Multimedia: 

Landslide detection

Landslide detection




Landslide map of region
Mapped landslide inventory




Oso landslide
Oso, Washington landslide

New advance in cryopreservation could change management of world blood supplies

CORVALLIS, Ore. – Engineers at Oregon State University have identified a method to rapidly prepare frozen red blood cells for transfusions, which may offer an important new way to manage the world’s blood supply.

It’s already possible to cryopreserve human red blood cells in the presence of 40 percent glycerol, but is rarely done because of the time-consuming process to thaw and remove the glycerol from the blood. This can take an hour or more and makes it logistically difficult to use frozen blood.

However, some initial experiments and computer modeling of a proposed new process suggest that this hour-long process can be reduced to as little as three minutes, using a membrane-based, microfluidic device. This could make it far more feasible to use frozen blood in emergency or time-constrained medical situations.

The findings were just reported in the journal Biomicrofluidics.

“Only a small fraction of our blood supply is now frozen, because it’s often impractical to wait so long when a transfusion is needed immediately,” said Adam Higgins, an expert in medical bioprocessing and associate professor in the OSU School of Chemical, Biological and Environmental Engineering.

“Because of that, our entire system depends on constantly balancing the use and supply of blood products that can only last six weeks or less with refrigeration,” he said. “This is difficult, and can lead to loss of outdated blood, periodic shortages, and other inefficiencies that could be solved with the use of frozen blood.”

Researchers in the OSU College of Engineering, however, have become national leaders in the science of microfluidics, which uses microchannel-based approaches to processing fluids for various purposes, ranging from more efficient heat pumps to innovative methods for kidney dialysis.

In the case of frozen blood, extremely tiny microchannel plates and membranes could be used to precisely control removal of glycerol from blood at a time scale of seconds. This would allow much more rapid thawing of frozen blood, which isn’t possible using the centrifugal cell washers that have been around for decades and are the only other way to remove glycerol from the blood.

The new approach should work, OSU experts say.

“Our results pave the way for development of a clinical device for ultra-rapid glycerol extraction, which would greatly improve the logistics of blood banking,” the researchers wrote in their report.

According to their report, each year more than 100 million blood donations are collected worldwide, enabling millions of life-saving transfusions. But refrigerated blood has a short shelf life, and some recent studies even suggest that “older” blood being used within what’s believed to be an acceptable refrigeration period may be linked to severe complications.

Cryopreservation could extend the shelf life of blood from weeks to years; dramatically smooth out the undependable supplies of blood; and according to recent research, produce cryopreserved red blood cells that have superior biochemical and tissue oxygenation capabilities compared to refrigerated red blood cells.

This research has been supported by a CAREER Award from the National Science Foundation.

In continued studies, researchers said they hope to create working prototypes of the needed technology for further development and testing of the concept. An optimized process may also be even faster than the three minutes now being predicted, they said.

Media Contact: 
Source: 

Adam Higgins, 541-737-4600

Running robots of future may learn from world’s best two-legged runners: birds

CORVALLIS, Ore. – With an eye toward making better running robots, researchers have made surprising new findings about some of nature’s most energy-efficient bipeds – running birds.

Although birds are designed primarily for flight, scientists have learned that species that predominately live on land and scurry around on the ground are also some of the most sophisticated runners of any two-legged land animals. These characteristics may have been evolving since the time of the dinosaurs and, some would say, now transcend the ability of other bipedal runners, including humans.

In a study published today in the Journal of Experimental Biology, researchers from Oregon State University, the Royal Veterinary College and other institutions outline how running birds have achieved an impressive ability to run while minimizing energy cost, avoiding falls or injury, and maintaining speed and direction.

“Birds appear to be the best of bipedal terrestrial runners, with a speed and agility that may trace back 230 million years to their dinosaur ancestors,” said Jonathan Hurst, an associate professor and robotics expert in the OSU College of Engineering.

Running birds come in an enormous range of sizes, from tiny quails to an ostrich that has 500 times as much body mass. Most, but not all, can fly, but spend most of their lives on the ground, and they don’t always look the most graceful when they run. But researchers found that they maximize the results while keeping their priorities straight – save energy and don’t break a leg.

In the wild, an injury could lead to predation and death; and in like fashion, when food resources are limited, economy of motion is essential.

“These animals don’t care that they appear a little unstable or have a waver in their gait,” Hurst said. “Their real goal is to limit peak forces, avoid falling, be safe and be as efficient as possible. If their upper body seems to lurch around a little as a result, that’s okay. What they are accomplishing is really quite elegant.”

Even more surprisingly, a wide variety of ground-running bird species with very different body sizes use essentially the same strategy to accomplish these sometimes conflicting tasks. In order to hop over obstacles on uneven ground, they use a motion that’s about 70 percent a “vaulting” movement as they approach the obstacle, and 30 percent a more-crouched posture while on top of the obstacle.

“Evolution has shaped running birds into all different sizes and skeletal structures,” said Christian Hubicki, a doctoral student at Oregon State who co-authored the study. “But we found their behavior in how they run is essentially the same.”

In collaboration with Monica Daley at the Royal Veterinary College in London, the researchers studied five species of birds and developed a computer model in OSU’s Dynamic Robotics Laboratory that closely matches that behavior.

“We should ultimately be able to encode this understanding into legged robots so the robots can run with more speed and agility in rugged terrain,” Hubicki said. “These insights may also help us understand the walking and running behaviors of all the common ancestors involved, including theropod dinosaurs such as the velociraptor.”

The researchers began the study with a hypothesis that body stability would be a priority, since it might help avoid falls and leg injuries. That’s not what they found, however.

Instead, running birds have a different definition of stability – they do avoid falls, but also allow their upper bodies to bounce around some, just so long as they don’t fall. Like a scrambling football runner, their leg motion may sometimes speed up or slow down, in the interest of staying upright, dealing with obstacles and generally staying on course to where they are going. The process isn’t always pretty, but it’s functional.

Large animals are limited by the strength of their legs because peak loads increase with body mass, and they run with somewhat straighter legs to compensate. But the basic approach large birds use to run is similar to much smaller birds, and remains highly efficient.

Modern robots, by contrast, are usually built with an emphasis on total stability, which often includes maintaining a steady gait. This can be energy-intensive and sometimes limits their mobility.

What robots could learn from running birds, the scientists said, is that it’s okay to deviate from normal steady motions, because it doesn’t necessarily mean you’re going to fall or break something. Robotic control approaches “must embrace a more relaxed notion of stability, optimizing dynamics based on key task-level priorities without encoding an explicit preference for a steady gait,” the researchers said in their conclusion.

Collaborators on the research were from the Royal Veterinary College in the United Kingdom. The work was supported by the Biotechnology and Biological Sciences Research Council in the United Kingdom and the Human Frontier Science Program.

“The running robots of the future are going to look a lot less robotic,” Hurst said. “They will be more fluid, like the biological systems in nature. We’re not necessarily trying to copy animals, but we do want to match their capabilities.”

Media Contact: 
Source: 

Jonathan Hurst, 541-737-7010

Multimedia Downloads
Multimedia: 

Running forces
Model of motion


Running turkey
Running turkey

Rivers recover natural conditions quickly following dam removal

 

The study this story is based on is available online: http://bit.ly/1rdQ4wL

CORVALLIS, Ore. – A study of the removal of two dams in Oregon suggests that rivers can return surprisingly fast to a condition close to their natural state, both physically and biologically, and that the biological recovery might outpace the physical recovery.

The analysis, published by researchers from Oregon State University in the journal PLOS One, examined portions of two rivers – the Calapooia River and Rogue River. It illustrated how rapidly rivers can recover, both from the long-term impact of the dam and from the short-term impact of releasing stored sediment when the dam is removed.

Most dams have decades of accumulated sediment behind them, and a primary concern has been whether the sudden release of all that sediment could cause significant damage to river ecology or infrastructure.

However, this study concluded that the continued presence of a dam on the river constituted more of a sustained and significant alteration of river status than did the sediment pulse caused by dam removal.

“The processes of ecological and physical recovery of river systems following dam removal are important, because thousands of dams are being removed all over the world,” said Desirée Tullos, an associate professor in the OSU Department of Biological and Ecological Engineering.

“Dams are a significant element in our nation’s aging infrastructure,” she said. “In many cases, the dams haven’t been adequately maintained and they are literally falling apart. Depending on the benefits provided by the dam, it’s often cheaper to remove them than to repair them.”

According to the American Society of Civil Engineers, the United States has 84,000 dams with an average age of 52 years. Almost 2,000 are now considered both deficient and “high hazard,” and it would take $21 billion to repair them. Rehabilitating all dams would cost $57 billion. Thus, the removal of older dams that generate only modest benefits is happening at an increasing rate.

In this study, the scientists examined the two rivers both before and after removal of the Brownsville Dam on the Calapooia River and the Savage Rapids Dam on the Rogue River. Within about one year after dam removal, the river ecology at both sites, as assessed by aquatic insect populations, was similar to the conditions upstream where there had been no dam impact.

Recovery of the physical structure of the river took a little longer. Following dam removal, some river pools downstream weren’t as deep as they used to be, some bars became thicker and larger, and the grain size of river beds changed. But those geomorphic changes diminished quickly as periodic floods flushed the river system, scientists said.

Within about two years, surveys indicated that the river was returning to the pre-removal structure, indicating that the impacts of the sediment released with dam removal were temporary and didn’t appear to do any long-term damage.

Instead, it was the presence of the dam that appeared to have the most persistent impact on the river biology and structure – what scientists call a “press” disturbance that will remain in place so long as the dam is there.

This press disturbance of dams can increase water temperatures, change sediment flow, and alter the types of fish, plants and insects that live in portions of rivers.  But the river also recovered rapidly from those impacts once the dam was gone.

It’s likely, the researchers said, that the rapid recovery found at these sites will mirror recovery on rivers with much larger dams, but more studies are needed.

For example, large scale and rapid changes are now taking place on the Elwha River in Washington state, following the largest dam removal project in the world. The ecological recovery there appears to be occurring rapidly as well. In 2014, Chinook salmon were observed in the area formerly occupied by one of the reservoirs, the first salmon to see that spot in 102 years.

“Disturbance is a natural river process,” Tullos said. “In the end, most of these large pulses of sediment aren’t that big of a deal, and there’s often no need to panic. The most surprising finding to us was that indicators of the biological recovery appeared to happen faster than our indicators of the physical recovery.”

The rates of recovery will vary across sites, though. Rivers with steeper gradients, more energetic flow patterns, and non-cohesive sediments will recover more quickly than flatter rivers with cohesive sediments, researchers said.

This research was supported by the Oregon Watershed Enhancement Board, the National Oceanic and Atmospheric Association and the National Marine Fisheries Service. It was a collaboration of researchers from the OSU College of Agricultural Sciences, College of Engineering, and College of Science.

Media Contact: 
Source: 

Desirée Tullos, 541-737-2038

Multimedia Downloads
Multimedia: 

Dam removal

Removing Savage Rapids Dam

Task force outlines major initiatives to prepare for Pacific Northwest earthquake, tsunami

CORVALLIS, Ore. – A task force that studied implementation of the Oregon Resilience Plan today submitted to the Oregon legislature an ambitious program to save lives, mitigate damage and prepare for a massive subduction zone earthquake and tsunami looming in the future of the Pacific Northwest.

The recommendations of the Governor’s Task Force on Resilience Plan Implementation, if enacted, would result in spending more than $200 million every biennium in a long-term initiative.

The program would touch everyone from energy providers and utility companies to their customers, parents and school children, businesses, builders, land use regulators, transportation planners and fire responders. It would become one of the most aggressive efforts in the nation to prepare for a costly, life-threatening disaster that’s seen as both catastrophic and inevitable.

“We have a clear plan for what needs to be done, and now is the time to take our first significant steps forward,” said Scott Ashford, dean of the College of Engineering at Oregon State University, chair of the Governor’s Task Force, and an expert on liquefaction and earthquake engineering who has studied disasters all over the world, similar to those that Oregon will face.

“The scope of the disaster that the Pacific Northwest faces is daunting,” Ashford said. “And we won’t be able to accomplish everything we need to do in one or two years, but hopefully we won’t have to. What’s important is to get started, and the time for that is now.”

The task force making these recommendations included members of the Oregon legislature; advisers to Gov. Kitzhaber; private companies; the Oregon Office of Emergency Management; Oregon Department of Transportation; the Oregon Health Authority; city, county  and business leaders; the Red Cross and others.

The Oregon Resilience Plan, which was completed in early 2013, outlines more than 140 recommendations to reduce risk and improve recovery from a massive earthquake and tsunami that’s anticipated on the Cascadia Subduction Zone, similar to the one that hit Fukushima, Japan, in 2011.

The newest analysis identified specific steps that are recommended for the 2015-17 biennium. They address not only earthquake damage, but also the special risks facing coastal residents from what is expected to be a major tsunami.

One of the largest single steps would be biennial funding of $200 million or more for the OBDD/IFA Seismic Rehabilitation Grant Program, with similar or higher levels of funding in the future. Funds could be used to rehabilitate existing public structures such as schools to improve their seismic safety; demolish unsafe structures; or replace facilities that must be moved out of a tsunami inundation zone.

It was recommended that additional revenue be identified to complete work within a decade on the most critical roads and bridges that form “backbone” transportation routes; that the state Department of Geology and Mineral Industries receive $20 million to update inventory and evaluate critical facilities; and that $5 million be made available through existing programs for tsunami resilience planning by coastal communities.

Utility companies regulated by the Oregon Public Utility Commission would also be required to conduct seismic assessments of their facilities, and be allowed through rate increases to recover their costs if they make prudent investments to mitigate vulnerabilities.

When I studied areas that had been hard-hit by earthquakes in Chile, New Zealand and Japan, it became apparent that money spent to prepare for and minimize damage from the earthquake was hugely cost-effective,” Ashford said.

“One utility company in New Zealand said they saved about $10 for every $1 they had spent in retrofitting and rebuilding their infrastructure,” he said. “There’s a lot we can do right now that will make a difference and save money in the long run.”

Other key recommendations included:

  • Establish a resilience policy adviser to the governor;
  • Use the most recent tsunami hazard maps to redefine the inundation zone for construction;
  • Provide $1 million annually for scientific research by Oregon universities, to provide matching funds for earthquake research supported by the state, federal government or private industry;
  • Provide $500,000 to the Office of Emergency Management for educational programs and training aimed at managers, agencies, businesses and the general public;
  • Provide $500,000 to the Department of Education to lead a K-12 educational program;
  • Require water providers and wastewater agencies to complete a seismic risk assessment and mitigation plan, as part of periodic updates to master plans;
  • Require firefighting agencies, water providers and emergency management officials to create joint standards to use in a firefighting response to a large seismic event.

“Our next steps will include a lot of discussion, with the legislature, with business and community leaders, with the general public all over the state,” Ashford said. “The challenges we face are enormous but I really believe Oregonians are ready to take an important step toward resilience. This is our chance.”

Media Contact: 
Source: 

Scott Ashford, 541-737-5232

Multimedia Downloads
Multimedia: 

Sinking structures

Japan liquefaction

YouTube video of damage done in the Japanese earthquake is available online: http://bit.ly/ZYH35d

Mechanized human hands: System designed to improve hand function lost to nerve damage

CORVALLIS, Ore. – Engineers at Oregon State University have developed and successfully demonstrated the value of a simple pulley mechanism to improve hand function after surgery.

The device, tested in cadaver hands, is one of the first instruments ever created that could improve the transmission of mechanical forces and movement while implanted inside the body.

After continued research, technology such as this may offer new options to people who have lost the use of their hands due to nerve trauma, and ultimately be expanded to improve function of a wide range of damaged joints in the human body.

The findings were just reported in Hand, a professional journal, by researchers from OSU and the School of Medicine at the University of Washington. The research was supported by OSU.

“This technology is definitely going to work, and it will merge artificial mechanisms with biological hand function,” said Ravi Balasubramanian, an expert in robotics, biomechanics and human control systems, and assistant professor in the OSU College of Engineering.

“We’ll still need a few years to develop biocompatible materials, coatings to prevent fibrosis, make other needed advances and then test the systems in animals and humans,” Balasubramanian said. “But working at first with hands – and then later with other damaged joints such as knees or ankles – we will help people recover the function they’ve lost due to illness or injury.”

Initially, the OSU research will offer a significant improvement on surgery now used to help restore the gripping capability of hands following nerve damage. That procedure, called tendon-transfer surgery for high median-ulnar palsy, essentially reattaches finger tendons to a muscle that still works. But the hand function remains significantly impaired, requiring a large amount of force, the stretching of tendons, and fingers that all move at the same time, instead of separately as is often needed to grasp an object.

The new mechanism developed at OSU is not really robotic since it has no sensory, electronic or motor capabilities, Balasubramanian said. Rather, it’s a passive technology using a basic pulley that will be implanted within a person’s hand to allow more natural grasping function with less use of muscle energy.

“Many people have lost the functional use of their hands due to nerve damage, sometimes from traumatic injury and at other times from stroke, paralysis or other disorders,” Balasubramanian said. “The impact can be devastating, since grasping is a fundamental aspect of our daily life. The surgery we’re focusing on, for instance, is commonly performed in the military on people who have been injured in combat.”

The new research showed, in cadavers, how the mechanism developed for this problem can produce more natural and adaptive flexion of the fingers in grasping. The needed force to close all four fingers around an object was reduced by 45 percent, and the grasp improvement on an object reduced slippage by 52 percent.

Such progress can be an important step to improve function beyond the existing surgical procedure, by providing an alternative to the suture which has been the previous mainstay. The hand, experts say, is amazingly complex, with 35-38 muscles and 22 joints all working together, innervated by three nerves between the elbow and fingertip.

The long-term potential of such mechanized assistance is profound. In some cases, Balasubramanian said, it may indeed be possible to create joints or limbs that mechanically function as well or better than they did originally.

“There’s a lot we may be able to do,” he said. “Thousands of people now have knee replacements, for instance, but the knee is weaker after surgery. With mechanical assistance we may be able to strengthen and improve that joint.”

This work is part of a rapidly expanding robotics research and education program at OSU, in fields ranging from robotic underwater vehicles to prosthetic limbs, search and rescue missions and advanced manufacturing. New graduate degrees in robotics were just recently added at the university, one of the few institutions in the nation to have such graduate programs.

Media Contact: 
Multimedia Downloads
Multimedia: 

Mechanical hand

Pulley mechanism

Program expansion to continue progress with wave energy development

CORVALLIS, Ore. – With the support of new funding from the U.S. Department of Energy, the Northwest National Marine Renewable Energy Center (NNMREC) will expand its technological research and environmental monitoring efforts, and add a new partner – the University of Alaska Fairbanks.

The center was previously a partnership of Oregon State University and the University of Washington, but will now collaborate with experts in Alaska, a state with some of the greatest wave and tidal energy resources in the nation. The partnership will also enable researchers to learn more about the energy potential of large, flowing rivers.

The DOE announced last week that it will contribute up to $4 million for continued NNMREC research programs, and that NNMREC faculty will also share in another $3.25 million grant to improve “water power” technologies that convert the energy of waves, tides, rivers and ocean currents into electricity.

“We’re extremely excited about the opportunity to add Alaska Fairbanks to our program,” said Belinda Batten, director of NNMREC and a professor in the OSU College of Engineering.

“Alaska has an enormous energy resource, both in its coastal waves, tidal currents and powerful rivers,” she said. “Partnering with Alaska Fairbanks will allow us to expand the scope of our energy research and tap into additional expertise, to more quickly move wave, tidal, and river energy closer to commercial use.”

The new funding will allow NNMREC to develop an improved system for real-time wave forecasting; create robotic devices to support operations and maintenance; design arrays that improve the performance of marine energy conversion devices; improve subsea power transmission systems; and standardize approaches for wildlife monitoring. Federal officials said the overall goal is to reduce the technical, economic and environmental barriers to deployment of new marine energy conversion devices.

“Oregon State University has been a world leader in developing wave energy technology and it’s great that the Department of Energy has recognized this fact in awarding this grant,” said Oregon Sen. Ron Wyden, who helped obtain the new federal support for these programs.

“Along with its university partners in Washington and Alaska, this funding will help ensure that the Northwest National Marine Renewable Energy Center remains an important national center for ocean energy development not just for the Northwest, but for the entire country.”

Other steps have been taken recently by NNMREC to advance wave energy. They include:

  • The North Energy Test Site, located just north of Newport, Ore., is operational, and a mobile instrumentation buoy, the Ocean Sentinel, can be used to monitor and test wave energy conversion devices.
  • A $750,000 grant from the Department of Energy is helping the center continue its engineering design and planning for the South Energy Test Site, located just south of Newport. This will be a grid-connected, wave energy test facility that will use the power generated by conversion devices while assisting in their testing and development.
  • The two test sites together will function as the offshore wave energy facilities for the Pacific Marine Energy Center, and will be the leading facilities of this type in the United States.
  • Significant progress has been made in how to process, permit and monitor wave energy technology as it emerges from the laboratory to ocean test sites, and ultimately to commercial use.
  • Experts are working to anticipate some of the various types of wave energy devices that may be created and determine what types of environmental monitoring may be required when they are deployed.
  • As part of the regulatory process for the South Energy Test Site, NNMREC is collaborating closely with the Federal Energy Regulatory Commission, the Bureau of Ocean Energy Management, the National Marine Fisheries Services and more than a dozen other state and federal agencies.
  • Work is also continuing on environmental monitoring, characterization of the wave resource in this area, improved control systems for wave energy devices, testing of a mooring system, and other initiatives.
  • Studies are examining the sociological, biological and ecosystem effects of wave energy systems.

The Electric Power Research Institute estimates that the potential total recoverable wave energy resource along the U.S. continental shelf edge is almost one third of the total electricity used in the U.S. each year.

Wave energy’s sustainable generating potential equates to about 10 percent of global energy needs.

Media Contact: 
Source: 

Belinda Batten, 541-737-9492

Multimedia Downloads
Multimedia: 

Ocean Sentinel

Energy testing