OREGON STATE UNIVERSITY

college of engineering

Northwest residents should channel fear of earthquake into pragmatic action

CORVALLIS, Ore. – A national news article suggesting that everything in Oregon west of Interstate-5 “would be toast” in a major Cascadia Subduction Zone earthquake certainly drew attention to the seismic reality facing the Pacific Northwest.

The concern, though, is that people are focusing on the most draconian or extreme scenarios, experts say, which can lead to a sense of fatalism. The reaction illustrates the state of earthquake and tsunami preparedness – or lack thereof – in the United States, said Patrick Corcoran, a Sea Grant education and outreach specialist at Oregon State University who works with coastal communities on disaster preparedness.

It’s a matter of feast or famine.

“The Cascadia Subduction Zone has shifted from a science project to a social studies project,” Corcoran said. “We need to find a sweet spot between fear and action. What I try to do is temper the tendency of people to toggle between the poles of ‘it won’t happen here’ and ‘it will be so bad that there’s no use worrying about it.’”

Oregon has been taking some of the first serious steps toward earthquake mitigation, said Scott Ashford, dean of OSU’s College of Engineering and chair of governor-appointed task force on preparation. Recent legislation has resulted in a large increase in funding for K-12 and emergency facility seismic retro-fitting, as well as the creation of a new position – the state’s first Chief Resilience Officer.

Oregon is also working on some of the first tsunami building codes, which likely will be implemented over the next few years.

Oregon State University scientists have been warning Pacific Northwest citizens for more than a quarter of a century about the potential of a major earthquake in the Cascadia Subduction Zone. The subduction of a tectonic plate beneath North America has the potential to trigger an earthquake ranging from  magnitude 8.0, as happened in Chile in 2010, to 9.0 (or greater), which took place in Japan in 2011.

Scientists believe that a magnitude 9.0-plus earthquake, which Corcoran calls “the largest of the large,” would likely trigger a tsunami that could devastate coastal communities, while the earthquake could destroy infrastructure throughout western Oregon and Washington, including roads, bridges, water and sewer lines, and the power grid.

However, he added, the more probable scenario is an earthquake on “the average side of large,” where the damage is less. The best response isn’t necessarily to flee the region, Corcoran said, but to become pro-active in preparing for a disaster.

As residents in Japan, Nepal, Chile and other countries have done, Northwesterners need to learn to live with the realistic threat of an earthquake and tsunami – not ignore the threat and hope they don’t happen.

The best approach, Corcoran says, is to prepare for the “most likely next event” – and that doesn’t necessarily mean the destruction of western Oregon as we know it.

“We don’t insist on the worst-case scenario with driving vehicles,” Corcoran said. “We don’t have a zero-tolerance for car fatalities. We try to do our best to identify and mitigate the risks, but we assume a great deal of risk. We don’t require that all cars be able to hit a brick wall at 100 miles per hour and have passengers unharmed. That’s impractical. We need to consider a similar approach with earthquakes.”

Chris Goldfinger, a professor in OSU’s College of Earth, Ocean, and Atmospheric Sciences and a leading expert on the Cascadia Subduction Zone, estimates that the chances of a major earthquake off the coast from northern California to just south of Astoria are about 24 percent in the next 50 years. “South of Cape Blanco, Ore., the chances increase to about 37 percent,” he added.

Goldfinger said the furor in news reports and on social media about western Oregon becoming “toast” have been misconstrued. The Federal Emergency Management Agency has to prepare for a worst-case scenario as the starting point for its planning, he said, but that doesn’t mean that experts think western Oregon will be destroyed.

So, how big will the next Northwest earthquake be? No one knows. Thus outreach specialists like Corcoran say the prudent thing to do is plan for a range of events. “Discussing the range and likelihood of the next event can bring some air into the room.”

Corcoran said preparation helped save 90 percent of the 200,000 people in the inundation zone during Japan’s 2011 earthquake and tsunami. The Northwest has a much smaller coastal population, he added. On the other hand, Japan was much more prepared for disaster.

“We have to prepare commensurate with the risk,” Corcoran said. “Our society tends to be dismissive of preparation, especially evacuation drills. They are silly, they are embarrassing and it’s usually raining. The only people who actually do drills are high schools and hospitals because they are required to. But drills save lives, as they learned in Japan.”

Communities and individuals can prepare for natural disasters by understanding that they eventually will happen. Once you accept that and actually expect it, Corcoran said, preparation becomes second nature. Strap down water heaters, learn where the shutoff valve for natural gas may be in your house, and have several days of food and water available, he added.

People on the coast living in inundation zones should identify areas of high ground near their homes, work and recreation areas. “Work locally to make them accessible,” Corcoran said, “then conduct practice drills on how to get to them.”

OSU engineering dean Ashford is spearheading an initiative called the Cascadia Lifeline Project that is organizing public utilities, transportation agencies, and others to begin work on how to prepare for life after a major earthquake. Communities need to think about restoring vital services after an earthquake, including power, water, sewer and others.

Ashford testified to Congress in May about the need for public agencies, private businesses and individuals to develop the resilience to withstand an earthquake. He urged Congress to support three federal initiatives:

  • Invest in more resilient transportation networks that will be critical to rescue, relief and recovery efforts following a natural disaster;
  • Partner with states to require seismic resilience of federally regulated utilities that transport liquid fuel through pipelines and supply the majority of a state’s population, such as in Oregon;
  • Invest in applied research to improve earthquake resilience.

“It will take 50 years for us to fully prepare for this impending earthquake,” Ashford said. “We can’t simply go out and replace all of our existing infrastructure. But we can start now, and we can begin to find ways to better retro-fit, replace or repair things after an earthquake.”

Corcoran said most people are not tuned into long-term threats like300-year earthquake cycles. Since people in the Pacific Northwest only recently learned about this major recurring natural disaster, it is natural for some to feel blindsided by the knowledge and not fully embrace it, he added.

Recent media attention has wakened some people to the idea of an earthquake, but it is critical to channel that awareness into positive action, he said.

“As good as our local emergency officials are, they will be overwhelmed by the sheer magnitude of the circumstances when a major earthquake takes place,” Corcoran said. “Preparation must begin with the individual, then focus on mutual aid among neighbors, and finally on public aid and assistance. Businesses, too, must support the safety of their employees and customers.”

Media Contact: 
Source: 

Pat Corcoran, 503-325- 8573, Patrick.corcoran@oregonstate.edu;

Chris Goldfinger, 541-737-5214, gold@coas.oregonstate.edu;

Scott Ashford, 541-737-5232, scott.ashford@oregonstate.edu

Multimedia Downloads
Multimedia: 













ashford2

Scott Ashford measures ground upheaval in Japan.

 

Toppled building in Concepcion

An earthquake-toppled building in Chile.

 

 

Corcoran_002LK
Patrick Corcoran works with coastal communities.

 

 

Gift establishes professorship in “humanitarian engineering” at Oregon State

CORVALLIS, Ore. – Oregon State University’s humanitarian engineering program has received a major boost with a $1.5 million gift creating one of the nation’s only endowed professorships in this emerging field.

OSU alumni Richard and Gretchen Evans, of Northern California, made prior gifts that helped to launch OSU’s program two years ago, responding to growing interest among engineering students in making a lasting, positive impact on the world.

Humanitarian engineering seeks science- and engineering-based solutions to improve the human condition by increasing access to basic human needs such clean water or renewable energy, enhancing quality of life, and improving community resilience, whether in face of natural disasters or economic turmoil. Although the greatest needs often lie in developing countries, needs also exist locally.

Oregon State’s program is focused on disadvantaged communities in the Pacific Northwest as well as around the world.

“The technical skills of engineering are essential, but so are abilities we might call human skills – such as communication, problem-solving, leadership and the ability to work across cultures,” said Richard Evans, an OSU College of Engineering alumnus who was president and CEO of Alcan, a Fortune-100 mining company and aluminum manufacturer based in Montreal. “The humanitarian engineering curriculum is a structured way for engineers to practice those human skills in challenging, real world settings.”

Drawing on the humanities also encourages creative solutions by “thinking outside the box,” added Gretchen Evans, an artist and interior designer who graduated from OSU’s College of Education and subsequently completed master’s courses at Legon University in Ghana, West Africa. “Listening is so important – not just believing that we know all of the answers going into every situation.”

The first Richard and Gretchen Evans Professor in Humanitarian Engineering is mechanical engineering professor Kendra Sharp, who directs the program.

“One of the things that’s most exciting about humanitarian engineering is that it captures the interest of a more diverse group of prospective students than we typically see in engineering, including a significant number of women,” Sharp said. “We are thrilled that the Evans’ gift will help us channel students’ passion for making a better world. The stability provided by this endowment will make a huge difference as we move forward.”

Oregon State’s humanitarian engineering program is grounded in a campus-wide emphasis on engaged service that springs from the university’s historic land grant mission. Multiple student organizations, including OSU’s award-winning Engineers Without Borders chapter and the American Society of Civil Engineering student chapter, have been working on water, energy and other projects in under-served Oregon communities and the developing world.

Yet in contrast to humanitarian engineering programs that are primarily an extracurricular activity, Oregon State’s is one of a handful nationwide rooted in an academic curriculum. Exemplifying OSU’s commitment to collaborative, transdisciplinary research and education, the curriculum was put together by a diverse group of faculty led by the College of Engineering but also involving the humanities, public health and education. A new undergraduate minor in humanitarian engineering will be open for enrollment in the coming year.

OSU’s humanitarian engineering program is further differentiated by residing in a university that also offers a Peace Corps Master’s International program in engineering. OSU was the first university in Oregon to join this program, which allows a graduate student to get a master’s degree while doing a full 27-month term of service in the Peace Corps. In addition to PCMI degrees in other fields, Oregon State remains one of just 10 universities nationwide to offer this degree in engineering.

College of Engineering Dean and Kearney Professor of Engineering Scott Ashford said that the humanitarian engineering professorship positions Oregon State for national leadership in this area while supporting one the college’s highest goals.

“We are dedicated to purposefully and thoughtfully increasing the diversity of our students and faculty, building a community that is inclusive, collaborative and centered on student success,” Ashford said. “This is the community that will produce locally conscious, globally aware engineers equipped to solve seemingly intractable problems and contribute to a better world. That’s the Oregon State engineer.”

Richard Evans is a senior international business adviser and director of companies including non-executive chairman of both Constellium, producer of advanced aluminum engineered products, and Noranda Aluminum Holdings, a U.S. regional aluminum producer. He is an independent director of CGI, Canada’s largest IT consulting and outsourcing company. In addition to her art, primarily in acrylics and mixed media, Gretchen Evans volunteers as an art teacher in a low-income Oakland, California, school.

Over the last decade, donors have established 81 endowed faculty positions at Oregon State, an increase of 170 percent, through gifts to the OSU Foundation. These prestigious positions help the university recruit and retain world-class leaders in teaching and research, with earnings from the endowments providing support for the faculty and creating opportunities for undergraduate and graduate students in the programs as well.

Media Contact: 
Media Contact: 

Molly Brown, 541-737-3602

Source: 

Kendra Sharp, 541-737-5246

Multimedia Downloads
Multimedia: 

Evans_Sharp

Sharp with the Evanses

Sharp_India[1]

Sharp in India

Tough tail of a seahorse may provide robotic solutions

CORVALLIS, Ore. – One of the ocean’s oddest little creatures, the seahorse, is providing inspiration for robotics researchers as they learn from nature how to build robots that have capabilities sometimes at odds with one another – flexible, but also tough and strong.

Their findings, published today in the journal Science, outline the virtues of the seahorse’s unusual skeletal structure, including a tail in which a vertebral column is surrounded by square bony plates. These systems may soon help create technology that offers new approaches to surgery, search and rescue missions or industrial applications.

Although technically a fish, the seahorse has a tail that through millions of years of evolution has largely lost the ability to assist the animal in swimming. Instead, it provides a strong, energy-efficient grasping mechanism to cling to things such as seaweed or coral reefs, waiting for food to float by that it can suck into its mouth.

At the same time, the square structure of its tail provides flexibility; it can bend and twist, and naturally returns to its former shape better than animals with cylindrical tails. This helps the seahorse hide, easily bide its time while food floats to it, and it provides excellent crushing resistance - making the animal difficult for predators to eat.

“Human engineers tend to build things that are stiff so they can be controlled easily,” said Ross Hatton, an assistant professor in the College of Engineering at Oregon State University, and a co-author on the study. “But nature makes things just strong enough not to break, and then flexible enough to do a wide range of tasks. That’s why we can learn a lot from animals that will inspire the next generations of robotics.”

Hatton said biological systems can combine both control and flexibility, and researchers gravitated to the seahorse simply because it was so unusual. They theorized that the square structure of its tail, so rare in nature, must serve a purpose.

“We found that this square architecture provides adequate dexterity and a tough resistance to predators, but also that it tends to snap naturally back into place once it’s been twisted and deformed,” Hatton said. “This could be very useful for robotics applications that need to be strong, but also energy-efficient and able to bend and twist in tight spaces.”

Such applications, he said, might include laparoscopic surgery, in which a robotic device could offer enhanced control and flexibility as it enters a body, moves around organs and bones, and then has the strength to accomplish a surgical task. It could find uses in industrial system, search and rescue robots, or anything that needs to be both resilient and flexible.

The researchers were able to study the comparative merits of cylindrical and square structures by using computer models and three-dimensional printed prototypes. They found that when a seahorse tail is crushed, the bony plates tend to slide past one another, act as an energy absorbing mechanism, and resist fracture of the vertebral column. They can then snap back to their normal position with little use of energy.

The square system also proved to be stiffer, stronger and more resilient than circular ones.

“Understanding the role of mechanics in these biologically inspired designs may help engineers to develop seahorse-inspired technologies for a wide variety of applications in robotics, defense systems or biomedicine,” the researchers wrote in their conclusion.

Collaborators on this study included corresponding author Michael Porter from Clemson University; Ghent University in Belgium; and the University of California at San Diego. The work was supported by the National Science Foundation, the Air Force Office of Scientific Research, and the Agency for Innovation by Science and Technology.

Media Contact: 
Source: 
Multimedia Downloads
Multimedia: 

Seahorse skeleton
Seahorse skeleton


Square structure
Square tail structure


Seahorse
Clinging to grass

New technology using silver may hold key to electronics advances

CORVALLIS, Ore. – Engineers at Oregon State University have invented a way to fabricate silver, a highly conductive metal, for printed electronics that are produced at room temperature.

There may be broad applications in microelectronics, sensors, energy devices, low emissivity coatings and even transparent displays.

A patent has been applied for on the technology, which is now available for further commercial development. The findings were reported in Journal of Materials Chemistry C.

Silver has long been considered for the advantages it offers in electronic devices. Because of its conductive properties, it is efficient and also stays cool. But manufacturers have often needed high temperatures in the processes they use to make the devices, adding to their cost and complexity, and making them unsuitable for use on some substrates, such as plastics that might melt or papers that might burn.

This advance may open the door to much wider use of silver and other conductors in electronics applications, researchers said.

“There’s a great deal of interest in printed electronics, because they’re fast, cheap, can be done in small volumes and changed easily,” said Chih-hung Chang, a professor in the OSU College of Engineering. “But the heat needed for most applications of silver nanoparticles has limited their use.”

OSU scientists have solved that problem by using a microreactor to create silver nanoparticles at room temperatures without any protective coating, and then immediately printing them onto almost any substrate with a continuous flow process.

“Because we could now use different substrates such as plastics, glass or even paper, these electronics could be flexible, very inexpensive and stable,” Chang said. “This could be quite important and allow us to use silver in many more types of electronic applications.”

Among those, he said, could be solar cells, printed circuit boards, low-emissivity coatings, or transparent electronics. A microchannel applicator used in the system will allow the creation of smaller, more complex electronics features.

This research has been supported by the National Science Foundation and Oregon Built Environment and Sustainable Technologies Center, or Oregon BEST.

Media Contact: 
Source: 

Chih-hung Chang, 541-737-8548

Inspired by humans, a robot takes a walk in the grass

CORVALLIS, Ore. – In a rolling, outdoor field, full of lumps, bumps and uneven terrain, researchers at Oregon State University last week successfully field-tested for the first time the locomotion abilities of a two-legged robot with technology that they believe heralds the running robots of the future.

The test demonstrated how their “ATRIAS” robot can move quite nicely, keep its balance and withstand mild blows from a bouncing rubber ball, while taking a walk in the grass, up and down hill, and over varying terrain at a normal walking speed of a little more than three miles per hour.

A video demonstration is available at http://bit.ly/1HQKqOZ

As a bipedal robot that was biologically inspired to mimic the spring-legged action of animals, the researchers said this is the closest a machine has yet come to resembling human locomotion.

The human-sized robot had six electric motors powered by a lithium polymer battery about the size of a half-gallon of milk, which is substantially smaller than the power packs of some other mobile robots. This is made possible by the energy efficiency of its elastic leg design and the energy retention that’s natural to animal movement.

“Animals with legs sort of flow in the energy used, in which retained kinetic energy is just nudged by very efficient muscles and tendons to continue the movement once it has begun,” said Jonathan Hurst, an Oregon State associate professor of mechanical engineering, and director of the Dynamic Robotics Laboratory in the OSU College of Engineering.

“That’s part of what’s unique about ATRIAS – not just that it can walk, and will eventually run – but that it’s doing so with animal-inspired fluidity of motion that is so efficient,” Hurst said. “This will ultimately allow a much wider range of robotic uses and potential than something which requires larger amounts of energy.”

In these tests, the robot was tethered to a safety harness on a supporting frame that rolled along with it – not to supply energy or aid in walking, but just to help catch it if it fell, which it did a couple times due to sensor glitches. The goal was to prevent costly damage during the research and development.

“It already appears that ATRIAS is three times more energy-efficient than any other human-sized bipedal robots,” said Christian Hubicki, an OSU postdoctoral scholar working with Hurst. “And this was the first time we’ve been able to show its abilities outside, in a far more challenging environment than anything in a laboratory.

“This is part of a continuous march toward running robots that are going to be useful and practical in the real world.”

This work has been supported by an original $4.7 million, four-year grant from the Defense Advanced Research Projects Agency of the U.S. military. It has been done in collaboration with Jessy Grizzle at the University of Michigan and Hartmut Geyer at Carnegie Mellon University, and scientific work on the motion of animals was done with Monica Daley at the Royal Veterinary College, which guided the robot’s development.

A key to progress with this new technology has been fundamental research on how animals move so effectively.

A one-year-old baby, or for that matter a strutting bird, can combine sensory input from nerves, vision, muscles and tendons to allow a level of locomotion that scientists are still working to emulate. Worth noting, however, is that the theoretical concept of “spring mass walking” developed less than a decade ago was on display last week in a working robot.

Near term goals, the researchers said, might be prosthetic limbs for people, or use of an exo-skeleton to assist people with muscular weakness. But robots that can move effectively over uneven terrain also open applications in the military, in disaster response, or any type of dangerous situation.

New videos are being posted regularly on the research group’s social media web site and are available for public viewing, via YouTube at https://www.youtube.com/user/OregonStateDRL; or on Twitter at https://twitter.com/ATRIASrobot

Media Contact: 
Source: 

Jonathan Hurst, 541-737-7010

Multimedia Downloads
Multimedia: 

Walking robot
Walking robot

OSU to help produce “Grand Challenge Engineers” of the future

CORVALLIS, Ore. – The College of Engineering at Oregon State University has joined more than 120 other engineering schools around the nation in an initiative led by President Barack Obama, to address some of the most pressing engineering issues facing society in the coming century.

As part of this commitment, each school pledges to graduate a minimum of 20 students per year who have been specially trained to lead the way in solving such large-scale problems, with a broader goal of training more than 20,000 “Grand Challenge Engineers” around the nation in the coming decade.

The challenges include complex yet critical goals such as engineering better medicines, making solar energy cost-competitive with coal, securing cyberspace, and advancing personalized learning tools to deliver better education to more individuals.

In pledging OSU to work toward these goals, along with other leading engineering programs in the nation, Scott Ashford, Kearney Professor and dean of the OSU College of Engineering, said in a letter to President Obama that “engineering is about creating a better future.”

“As the 16th largest engineering program in undergraduate enrollment in the United States, we offer our students hands-on research experience as early as their freshman year, in interdisciplinary areas such as materials science, personalized medicine, resilient infrastructure development, advanced manufacturing and clean water and energy solutions,” Ashford said.

“In response to growing demand by students to make a lasting, positive impact on the world, last year we launched one of the nation’s first Humanitarian Engineering programs,” Ashford said. “This new discipline applies engineering solutions to issues that affect local and global populations, such as agriculture, public health and climate change.”

From a hugely successful Global Formula Racing Team to helping the residents of a small community in Kenya obtain safe drinking water, OSU students are already reaching around the world to deal with a variety of technical and humanitarian challenges, Ashford said. Providing access to clean water is one of the challenges that has been outlined.

Other challenges also fit into areas where OSU has significant and growing expertise, such as making solar energy economical, securing cyberspace, advancing health informatics, developing carbon sequestration methods, preventing nuclear terror, and restoring and improving urban infrastructure. OSU has a major program under way to revolutionize the treatment of sepsis, a global killer.

Ashford, along with other institutional leaders, signed a commitment letter on this initiative which said that, “A measure of success will be the flourishing of hundreds of successful projects across the nation and globe, each benefitting a community while ultimately leading to solutions for the Grand Challenges themselves.”

Other Oregon engineering programs also agreeing to support the initiative included those at George Fox University and the University of Portland.

Media Contact: 
Source: 

Scott Ashford, 541-737-5232

Multimedia Downloads
Multimedia: 

Solar reactor
Solar energy advance

OSU to join National Science Foundation “Innovation Corps”

CORVALLIS, Ore. – Oregon State University has received a three year, $300,000 grant from the National Science Foundation to become one of just 36 academic institutions in the United States designated as an “Innovation Corps Site,” to help bring ideas and discoveries to the commercial marketplace.

This recognition will enhance OSU’s collaboration with the National Science Foundation, and allow it to join other prestigious universities that have received the same designation, such as the Massachusetts Institute of Technology, Carnegie-Mellon University, the University of Illinois, the University of Pennsylvania and the University of Southern California. 

The program is designed to accelerate commercialization of new technologies, products and processes that emerge from American universities, according to NSF representatives. It will nurture students and faculty involved in projects with commercial potential; develop a larger system of mentors, researchers, and entrepreneurs; and encourage collaboration between academia and industry.

At OSU, involvement with this program will be another boost to activities in its Advantage Accelerator, an existing initiative to help identify research discoveries with commercial potential and assist startup companies in bringing those discoveries to commercial success.

“This support from the NSF will be particularly helpful in preparing early stage concepts, to keep our pipeline full of new companies,” said John Turner, co-director of the OSU Advantage Accelerator. “One example is a pre-accelerator program we plan to begin next month, which will be a set of workshops open to both student, faculty and community innovators.”

This series of four workshops will allow participants to explore the formation of a startup company, generate a flow of new business concepts and help prepare applicants for the full Advantage Accelerator program, officials said.

OSU officials said this support also helps position the university to apply for larger grants and support from the NSF in the future.

As part of this program, OSU will be expected to create teams that engage competitively with other NSF “I-corps” teams for small business grants and other competitions, and contribute to a “National Innovation Network.”

Media Contact: 
Source: 

John Turner, 541-737-9219

Multimedia Downloads
Multimedia: 

New company
Building new companies

OSU innovation boosts Wi-Fi bandwidth tenfold

CORVALLIS, Ore. - Researchers at Oregon State University have invented a new technology that can increase the bandwidth of WiFi systems by 10 times, using LED lights to transmit information.

The technology could be integrated with existing WiFi systems to reduce bandwidth problems in crowded locations, such as airport terminals or coffee shops, and in homes where several people have multiple WiFi devices.

Experts say that recent advances in LED technology have made it possible to modulate the LED light more rapidly, opening the possibility of using light for wireless transmission in a “free space” optical communication system.

“In addition to improving the experience for users, the two big advantages of this system are that it uses inexpensive components, and it integrates with existing WiFi systems,” said Thinh Nguyen, an OSU associate professor of electrical and computer engineering. Nguyen worked with Alan Wang, an assistant professor of electrical and computer engineering, to build the first prototype.

The prototype, called WiFO, uses LEDs that are beyond the visual spectrum for humans and creates an invisible cone of light about one meter square in which the data can be received. To address the issue of a small area of usability, the researchers created a hybrid system that can switch between several LED transmitters installed on a ceiling, and the existing WiFi system.

“I believe the WiFO system could be easily transformed into a marketable product, and we are currently looking for a company that is interested in further developing and licensing the technology,” Nguyen said.

The system can potentially send data at up to 100 megabits per second. Although some current WiFi systems have similar bandwidth, it has to be divided by the number of devices, so each user might be receiving just 5 to 10 megabits per second, whereas the hybrid system could deliver 50-100 megabits to each user.

In a home where telephones, tablets, computers, gaming systems, and televisions may all be connected to the internet, increased bandwidth would eliminate problems like video streaming that stalls and buffers.

The receivers are small photodiodes that cost less than a dollar each and could be connected through a USB port for current systems, or incorporated into the next generation of laptops, tablets, and smartphones.

A provisional patent has been secured on the technology, and a paper was published in the 17th ACM International Conference on Modeling, Analysis and Simulation of Wireless and Mobile Systems. The research has been supported by the National Science Foundation.

Media Contact: 

Rachel Robertson, 541-737-7098

Source: 

Thinh Nguyen, 541-737-3470

Multimedia Downloads
Multimedia: 

Improved WiFi bandwidth

LED transmission system

Optics, nanotechnology combined to create low-cost sensor for gases

CORVALLIS, Ore. – Engineers have combined innovative optical technology with nanocomposite thin-films to create a new type of sensor that is inexpensive, fast, highly sensitive and able to detect and analyze a wide range of gases.

The technology might find applications in everything from environmental monitoring to airport security or testing blood alcohol levels. The sensor is particularly suited to detecting carbon dioxide, and may be useful in industrial applications or systems designed to store carbon dioxide underground, as one approach to greenhouse gas reduction.

Oregon State University has filed for a patent on the invention, developed in collaboration with scientists at the National Energy Technology Lab or the U.S. Department of Energy, and with support from that agency. The findings were just reported in the Journal of Materials Chemistry C.

University researchers are now seeking industrial collaborators to further perfect and help commercialize the system.

“Optical sensing is very effective in sensing and identifying trace-level gases, but often uses large laboratory devices that are terribly expensive and can’t be transported into the field,” said Alan Wang, a photonics expert and an assistant professor in the OSU School of Electrical Engineering and Computer Science.

“By contrast, we use optical approaches that can be small, portable and inexpensive,” Wang said. “This system used plasmonic nanocrystals that act somewhat like a tiny lens, to concentrate a light wave and increase sensitivity.”

This approach is combined with a metal-organic framework of thin films, which can rapidly adsorb gases within material pores, and be recycled by simple vacuum processes. After the thin film captures the gas molecules near the surface, the plasmonic materials act at a near-infrared range, help magnify the signal and precisely analyze the presence and amounts of different gases.

“By working at the near-infrared range and using these plasmonic nanocrystals, there’s an order of magnitude increase in sensitivity,” said Chih-hung Chang, an OSU professor of chemical engineering. “This type of sensor should be able to quickly tell exactly what gases are present and in what amount.”

That speed, precision, portability and low cost, the researchers said, should allow instruments that can be used in the field for many purposes. The food industry, for industry, uses carbon dioxide in storage of fruits and vegetables, and the gas has to be kept at certain levels.

Gas detection can be valuable in finding explosives, and new technologies such as this might find application in airport or border security. Various gases need to be monitored in environmental research, and there may be other uses in health care, optimal function of automobile engines, and prevention of natural gas leakage.

Media Contact: 
Source: 

Alan Wang, 541-737-4247

Expert: Artificial intelligence systems more apt to fail than to destroy

CORVALLIS, Ore. – The most realistic risks about the dangers of artificial intelligence are basic mistakes, breakdowns and cyber attacks, an expert in the field says – more so than machines that become super powerful, run amok and try to destroy the human race.

Thomas Dietterich, president of the Association for the Advancement of Artificial Intelligence and a distinguished professor of computer science at Oregon State University, said that the recent contribution of $10 million by Elon Musk to the Future of Life Institute will help support some important and needed efforts to ensure AI safety.

But the real risks may not be as dramatic as some people visualize, he said.

“For a long time the risks of artificial intelligence have mostly been discussed in a few small, academic circles, and now they are getting some long-overdue attention,” Dietterich said. “That attention, and funding to support it, is a very important step.”

Dietterich’s perspective of problems with AI, however, is a little more pedestrian than most – not so much that it will overwhelm humanity, but that like most complex engineered systems, it may not always work.

“We’re now talking about doing some pretty difficult and exciting things with AI, such as automobiles that drive themselves, or robots that can effect rescues or operate weapons,” Dietterich said. “These are high-stakes tasks that will depend on enormously complex algorithms.

“The biggest risk is that those algorithms may not always work,” he added. “We need to be conscious of this risk and create systems that can still function safely even when the AI components commit errors.”

Dietterich said he considers machines becoming self-aware and trying to exterminate humans to be more science fiction than scientific fact. But to the extent that computer systems are given increasingly dangerous tasks, and asked to learn from and interpret their experiences, he says they may simply make mistakes.

“Computer systems can already beat humans at chess, but that doesn’t mean they can’t make a wrong move,” he said. “They can reason, but that doesn’t mean they always get the right answer. And they may be powerful, but that’s not the same thing as saying they will develop superpowers.”

More immediate and real risks, he said, will be to identify how mistakes might occur, and how to create systems that can help deal with, minimize or accommodate them.

Some of the most imminent threats computers will pose in a malicious sense, Dietterich said, will probably emerge as a result of cyber attacks. Humans with malicious intent using artificial intelligence and powerful computers to attack other computer systems are a real threat, he pointed out, and thus it would be a good place to focus some of the first work in this field.

That work should receive a significant boost from the recent grant, Dietterich said, which will facilitate research around the world via an open grants competition.

Media Contact: 
Source: 

Thomas Dietterich, 541-737-5559