OREGON STATE UNIVERSITY

college of engineering

Technology to improve rockfall analysis on cliffs could save money, lives

CORVALLIS, Ore. – Researchers in the Pacific Northwest have developed a new, automated technology to analyze the potential for rockfalls from cliffs onto roads and areas below, which should speed and improve this type of risk evaluation, help protect public safety and ultimately save money and lives.

Called a “rockfall activity index,” the system is based on the powerful abilities of light detection and ranging, or LIDAR technology. It should expedite and add precision to what’s now a somewhat subjective, time-consuming process to determine just how dangerous a cliff is to the people, vehicles, roads or structures below it.

This is a multi-million dollar global problem, experts say, of significant concern to transportation planners.

It’s a particular concern in the Pacific Northwest with its many mountain ranges, heavy precipitation, erosion of steep cliffs and unstable slopes, and thousands of roads that thread their way through that terrain. The evaluation system now most widely used around the world, in fact, was developed by the Oregon Department of Transportation more than 25 years ago.

The new technology should improve on that approach, according to scientists who developed it from the University of Washington, Oregon State University and the University of Alaska Fairbanks. Findings on it were just published in Engineering Geology.

“Rockfalls are a huge road maintenance issue,” said Michael Olsen, an associate professor of geomatics in the College of Engineering at Oregon State University, and co-author of the report.

“Pacific Northwest and Alaskan highways, in particular, are facing serious concerns for these hazards. A lot of our highways in mountainous regions were built in the 1950s and 60s, and the cliffs above them have been facing decades of erosion that in many places cause at least small rockfalls almost daily. At the same time traffic is getting heavier, along with increasing danger to the public and even people who monitor the problem.”

The new approach could replace the need to personally analyze small portions of a cliff at a time, looking for cracks and hazards, with analysts sometimes even rappelling down it to assess risks. LIDAR analysis can map large areas in a short period, and allow data to be analyzed by a computer.

“Transportation agencies and infrastructure providers are increasingly seeking ways to improve the reliability and safety of their systems, while at the same time reducing costs,” said Joe Wartman, associate professor of civil and environmental engineering at the University of Washington, and corresponding author of the study.

“As a low-cost, high-resolution landslide hazard assessment system, our rockfall activity index methodology makes a significant step toward improving both protection and efficiency.”

The study, based on some examples in southern Alaska, showed the new system could evaluate rockfalls in ways that very closely matched the dangers actually experienced. It produces data on the “energy release” to be expected from a given cliff, per year, that can be used to identify the cliffs and roads at highest risk and prioritize available mitigation budgets to most cost-effectively protect public safety.

“This should improve and speed assessments, reduce the risks to people doing them, and hopefully identify the most serious problems before we have a catastrophic failure,” Olsen said.

The technology is now complete and ready for use, researchers said, although they are continuing to develop its potential, possibly with the use of flying drones to expand the data that can be obtained.

Tens of millions of dollars are spent each year in the U.S. on rock slope maintenance and mitigation.

This research was supported by the Pacific Northwest Transportation Consortium, the National Science Foundation and the Alaska Department of Transportation and Public Facilities. Co-authors included Lisa Dunham, former civil and environmental engineering graduate student at the University of Washington; graduate assistant Matthew O’Banion at OSU; and Keith Cunningham, research assistant professor of remote sensing at the University of Alaska Fairbanks.

Story By: 
Source: 

Michael Olsen, 541-737-9327

michael.olsen@oregonstate.edu

Multimedia Downloads
Multimedia: 

A crumbling cliff
LIDAR image of cliff

Social media tools can reinforce stigma and stereotypes

CORVALLIS, Ore. – Researchers at Oregon State University have developed new software to analyze social media comments, and used this tool in a recent study to better understand attitudes that can cause emotional pain, stigmatize people and reinforce stereotypes.

In particular, the scientists studied comments and sentiments expressed about Alzheimer’s disease and other forms of dementia. It found that 51 percent of tweets by private users of Twitter accounts contained stigma, when making reference to this condition and the people who deal with it.

The new system may be applicable to a range of other social science research questions, the researchers said, and already shows that many people may not adequately appreciate the power of social media to greatly transcend the type of interpersonal, face-to-face communication humans are most accustomed to.

“As a society it’s like we’re learning a new skill of text communication, and we don’t fully understand or reflect on its power to affect so many people in ways that we may not have intended,” said Nels Oscar, an OSU graduate student in the College of Engineering and lead author on the study.

“Social media is instant, in some cases can reach millions of people at once, and can even instigate behaviors. We often don’t even know who might eventually read it and how it will affect them.”

What’s clear, the study showed, is that when it comes to Alzheimer’s disease, thoughtless or demeaning comments on a broad level via social media can take an already-serious problem and make it worse.

The particular topic studied, the scientists said, is of growing importance. A global tripling of individuals with some form of dementia is projected in coming decades, from 43 million today to 131 million by 2050.

“It was shocking to me how many people stigmatized Alzheimer’s disease and reinforced stereotypes that can further alienate people with this condition,” said Karen Hooker, holder of the Jo Anne Leonard Petersen Endowed Chair in Gerontology and Family Studies, in the OSU College of Public Health and Human Sciences. “This can create what we call ‘excess disability,’ when people with a stigmatized condition perform worse just because of the negative expectations that damaging stereotypes bring.

“This type of stigma can make it less likely that people will admit they have problems or seek treatment, when often they can still live satisfying, meaningful and productive lives. Our attitudes, the things we say affect others. And social media is now amplifying our ability to reach others with thoughtless or hurtful comments.”

The researchers noted a 2012 report which concluded that negative attitudes about Alzheimer’s disease and dementia can result in shame, guilt, hopelessness, and social exclusion among stigmatized individuals, leading to delay in diagnosis, inability to cope, and decreased quality of life. It also affects friends, family and caregivers of these individuals.

A comment a person might never make in a face-to-face conversation, Oscar said, is often transmitted via social media to dozens, hundreds or ultimately thousands of people that were not really intended. Some constraints that might reduce the impact, like clearly making a joke or using sarcasm in a personal conversation, can often get lost in translation to the printed word.

“A point many people don’t understand when using social media is that their intent is often irrelevant,” Oscar said. “All people eventually see is the comment, without any other context, and have to deal with the pain it can cause.”

This research was one part of a six-year, $2.3 million project funded by the National Science Foundation to train graduate students in aging sciences and to conduct cross-disciplinary studies on issues of importance to an aging society. The paper was recently published in the Journals of Gerontology: Psychological Sciences. The software created for the project is now freely available for other scientists to use, at http://bit.ly/2p5GmDC

In the research, the software was designed to recognize and interpret the use of various keywords associated with Alzheimer’s disease, such as dementia, memory loss or senile. The system was improved by comparing results to the same comment evaluated by human researchers, and ultimately achieved an accuracy of about 90 percent in determining whether a comment was meant to be informative, a joke, a metaphor, ridicule, or fit other dimensions.

The system was then used to analyze 33,000 tweets that made some reference to Alzheimer’s disease.

People concerned about these issues, the OSU researchers suggested, might be more conscious of their own comments on social media, and also more willing to engage with others who are using language that is insensitive or potentially hurtful.

“We should also consider ways to combat stigma and negative stereotypes by tweeting about the positive experiences of persons with dementia and people in their social networks,” Hooker said.

Story By: 
Source: 

Karen Hooker, 541-737-4336

hookerk@oregonstate.edu

Agility Robotics evolves from OSU research, aims to revolutionize robot mobility

CORVALLIS, Ore. – The rapidly expanding robotics program in the College of Engineering at Oregon State University has spun off one of its first businesses, a company focused on legged locomotion that may revolutionize robot mobility and enable robots to go anywhere people can go.

The firm, Agility Robotics, is based in Albany, Oregon, and Pittsburgh, Pennsylvania; already has several of its first customers; will license some technologies first developed at OSU, and plans to build on this scientific foundation in their product research and development.

A leading application for this type of mobility is package delivery, company officials say. In the long term, advanced mobility will enable shipping so automated and inexpensive that its cost becomes inconsequential, opening vast new possibilities in retail trade while lowering costs for manufacturing and production.

“This technology will simply explode at some point, when we create vehicles so automated and robots so efficient that deliveries and shipments are almost free,” said Jonathan Hurst, an associate professor of robotics in the OSU College of Engineering, chief technology officer at Agility Robotics and an international leader in the development of legged locomotion.

“Quite simply, robots with legs can go a lot of places that wheels cannot. This will be the key to deliveries that can be made 24 hours a day, 365 days a year, by a fleet of autonomous vans that pull up to your curb, and an onboard robot that delivers to your doorstep.

“This robot capability will free people from weekend shopping chores, reduce energy use, and give consumers more time to do the things they want to do. It effectively brings efficient automated logistics from state-of-the-art warehouses out and into the rest of the world.”

This long-term vision will take many steps, company officials said.

Some of Agility Robotics’ first sales will be to other academic and research institutions, to grow the research community and educate a new generation of engineers in this area, company officials said. What the firm now offers is a bipedal robot named “Cassie” – similar to the prototype version demonstrated Feb. 8 at OSU’s State of the University address in Portland, Oregon, by President Edward J. Ray.

Cassie the robot can stand, steer, and take a pretty good fall without breaking. It’s half the weight and much more capable than earlier robots developed at OSU.

“Our previous robot, ATRIAS, had motors that would work against either other, which was inefficient,” Hurst said. “With Cassie, we’ve fixed this problem and added steering, feet, and a sealed system, so it will work outdoors in the rain and snow as we continue with our controller testing.”

The particular issue of motors working against one another prompted some extensive theoretical research, to create the mathematical frameworks needed to solve the problem. The resulting leg configuration of Cassie looks much like an ostrich or other ground-running bird.

“We weren’t trying to duplicate the appearance of an animal, just the techniques it uses to be agile, efficient and robust in its movement,” Hurst said.

“We didn’t care what it looked like and were mostly just working to find out why Mother Nature did things a certain way. But even though we weren’t trying to mimic the form, what came out on the other end of our research looked remarkably like an animal leg.”

Cassie, built with a 16-month, $1 million grant from the Advanced Research Projects Agency of the U.S. Department of Defense, is already one of the leading innovations in the world of legged robotics.

Company officials say they plan to do all initial production in Oregon and will focus their business on the commercial applications of legged robots. Hiring is anticipated for research, production and development.

“The robotics revolution will bring with it enormous changes, perhaps sooner than many people realize,” Hurst said. “We hope for Agility Robotics to be a big part of that revolution. We want to change people’s lives and make them better.”

 

Company officials said that access to the research base and education of students at OSU will aid its growth, providing the needed expertise and trained work force. OSU has already been ranked by Grad School Hub as the best in the western United States and fourth leading program in the nation in robotics research and education.

Last month, OSU officials also announced that the university will be a founding academic partner in the newest Manufacturing USA Institute, the Advance Robotics Manufacturing Innovation Hub. This broad program with 14 institutes is a $3 billion federal and private company initiative designed to enhance U.S. competitiveness in advanced manufacturing.

Story By: 
Source: 

Jonathan Hurst, 541-737-7010

jonathan.hurst@oregonstate.edu

Multimedia Downloads
Multimedia: 

Cassie the robot
Cassie the robot

YouTube video:

http://bit.ly/2kwD5xV

 

 

Advance in intense pulsed light sintering opens door to improved electronics manufacturing

CORVALLIS, Ore. – Faster production of advanced, flexible electronics is among the potential benefits of a discovery by researchers at Oregon State University’s College of Engineering.

Taking a deeper look at photonic sintering of silver nanoparticle films – the use of intense pulsed light, or IPL, to rapidly fuse functional conductive nanoparticles – scientists uncovered a relationship between film temperature and densification. Densification in IPL increases the density of a nanoparticle thin-film or pattern, with greater density leading to functional improvements such as greater electrical conductivity.

The engineers found a temperature turning point in IPL despite no change in pulsing energy, and discovered that this turning point appears because densification during IPL reduces the nanoparticles’ ability to absorb further energy from the light.

This previously unknown interaction between optical absorption and densification creates a new understanding of why densification levels off after the temperature turning point in IPL, and further enables large-area, high-speed IPL to realize its full potential as a scalable and efficient manufacturing process.

Rajiv Malhotra, assistant professor of mechanical engineering at OSU, and graduate student Shalu Bansal conducted the research. The results were recently published in Nanotechnology.

“For some applications we want to have maximum density possible,” Malhotra said. “For some we don’t. Thus, it becomes important to control the densification of the material. Since densification in IPL depends significantly on the temperature, it is important to understand and control temperature evolution during the process. This research can lead to much better process control and equipment design in IPL.”

Intense pulsed light sintering allows for faster densification – in a matter of seconds – over larger areas compared to conventional sintering processes such as oven-based and laser-based. IPL can potentially be used to sinter nanoparticles for applications in printed electronics, solar cells, gas sensing and photocatalysis.

Earlier research showed that nanoparticle densification begins above a critical optical fluence per pulse but that it does not change significantly beyond a certain number of pulses.

This OSU study explains why, for a constant fluence, there is a critical number of pulses beyond which the densification levels off.

“The leveling off in density occurs even though there’s been no change in the optical energy and even though densification is not complete,” Malhotra said. “It occurs because of the temperature history of the nanoparticle film, i.e. the temperature turning point. The combination of fluence and pulses needs to be carefully considered to make sure you get the film density you want.”

A smaller number of high-fluence pulses quickly produces high density. For greater density control, a larger number of low-fluence pulses is required.

“We were sintering in around 20 seconds with a maximum temperature of around 250 degrees Celsius in this work,” Malhotra. “More recent work we have done can sinter within less than two seconds and at much lower temperatures, down to around 120 degrees Celsius. Lower temperature is critical to flexible electronics manufacturing. To lower costs, we want to print these flexible electronics on substrates like paper and plastic, which would burn or melt at higher temperatures. By using IPL, we should be able to create production processes that are both faster and cheaper, without a loss in product quality.”

Products that could evolve from the research, Malhotra said, are radiofrequency identification tags, a wide range of flexible electronics, wearable biomedical sensors, and sensing devices for environmental applications.

The advance in IPL resulted from a four-year, $1.5 million National Science Foundation Scalable Nanomanufacturing Grant in collaboration with OSU researchers Chih-hung Chang, Alan Wang and Greg Herman. The grant focuses on overcoming scientific barriers to industry-level nanomanufacturing. Support also came from the Murdock Charitable Trust and the Oregon Nanoscience and Microtechnologies Institute.

Media Contact: 

Steve Lundeberg, 541-737-4039

Source: 
Multimedia Downloads
Multimedia: 

unsintered and sintered

Unsintered, left, and sintered nanoparticles

Wave energy center receives $40 million to construct world’s premier test facility

NEWPORT, Ore. – Oregon State University’s Northwest National Marine Renewable Energy Center today was awarded up to $40 million from the U.S. Department of Energy, to create the world’s premier wave energy test facility in Newport.

The NNMREC facility, known as the Pacific Marine Energy Center South Energy Test Site, or PMEC-SETS, is planned to be operational by 2020. It will be able to test wave energy “converters” that harness the energy of ocean waves and turn it into electricity. Companies around the world are already anticipating construction of the new facility to test and perfect their technologies, OSU officials say.

“We anticipate this will be the world’s most advanced wave energy test facility,” said Belinda Batten, the director of NNMREC and a professor in the OSU College of Engineering.

“This is a tribute to the support we received from the state of Oregon, and the efforts of many other people who have worked for the past four years – in some cases since the mid-2000s – to see this facility become a reality. It will play an integral role in moving forward on the testing and refinement of wave energy technologies.”

Those technologies, Batten said, are complex and expensive.

“These devices have to perform in hostile ocean conditions; stand up to a 100-year storm; be energy efficient, durable, environmentally benign – and perhaps most important, cost-competitive with other energy sources,” Batten said. “This facility will help answer all of those questions, and is literally the last step before commercialization.”

The DOE award is subject to appropriations, federal officials said today, and will be used to design, permit, and construct an open-water, grid-connected national wave energy testing facility. It will include four grid-connected test berths.

“OSU researchers are already international leaders on several new sources of energy that will be dependable, cost-competitive and efficient,” said OSU President Edward J. Ray.

“This is another enormous step for alternative energy, especially for an energy resource that Oregon is so well-suited to pursue. In coming years this new facility, aided by the assistance of OSU experts, will provide great learning opportunities for our students and have repercussions for wave energy development around the world.”

In making the award, the agency noted that more than 50 percent of the U.S. population lives within 50 miles of coastlines, offering America the potential to develop a domestic wave energy industry that could help provide reliable power to coastal regions.

Investments in marine and hydrokinetic energy technology will encourage domestic manufacturing, create jobs, and advance this technology to help achieve the nation’s energy goals, DOE officials said in their announcement of this award. Studies have estimated that even if only a small portion of the energy available from waves is recovered, millions of homes could be powered.

The new facility and award also received support from a range of academic and political leaders:

Oregon U.S. Sen. Ron Wyden: “This is great news for OSU and its partners and will launch a new level of local job creation and clean energy innovation. Oregon will use this opportunity to build on its solid position nationally and internationally as a leader in renewable wave energy."

Oregon U.S. Sen. Jeff Merkley: "This is a huge success story for Oregon State University, and I thank the Department of Energy for helping us harness the enormous potential of wave energy off the Oregon coast. This test facility will make Oregon the leader in bringing wave energy to the United States, which will create good-paying local jobs, and strengthen our coastal economies."

Oregon U.S. Rep. Kurt Schrader: "Being able to tap into our rich marine energy resources will unleash the potential for billions of dollars in investment along our coastlines. The research that will be made possible through this grant is absolutely critical to the full and effective implementation of wave energy converters into the U.S. green energy portfolio. This federal support is terrific news for OSU and the entire local economy as it allows Oregonians to lead the pack here at home on wave energy."

Oregon U.S. Rep. Suzanne Bonamici: "OSU is at the forefront of wave energy research. Wave energy has tremendous potential as a renewable resource to put our country on a path to a clean energy future. This critical federal support will allow the university, researchers, and students to continue to investigate and test the potential of wave energy. With this investment we are one important step closer to harnessing the power of the ocean to meet our nation’s clean energy needs, create good-paying jobs, and spur economic growth in our communities.”

Oregon Gov. Kate Brown: “I commend the talented team of Oregon State University researchers, staff, and students who lead the nation in research and development of wave energy technology. This U.S. Department of Energy grant announcement of up to $40 million leverages years of work and partnership with our state. This innovative work will contribute to Oregon and the nation’s clean energy mix of the future.”

Oregon State Sen. Arnie Roblan: “After the work of the coastal caucus during the 2016 session to secure a state match for this grant, I am pleased by this news. This grant will enable cutting edge research that will bring a variety of individual innovators to the Oregon coast. We are uniquely positioned to help the nation determine the efficacy of their energy devices to Oregon.”

Cynthia Sagers, vice president for research at OSU: “This award is a major win for Dr. Batten and her team.  It comes after years of collaboration among OSU researchers, state and federal agencies, and industry partners. With it, we are one step closer to a clean, affordable and reliable energy future.”

Story By: 
Source: 

Belinda Batten, 541-737-9492

belinda.batten@oregonstate.edu

Multimedia Downloads
Multimedia: 

Wave energy test site
Wave energy test center

OSU, PNNL to lead part of a major national program in ‘chemical process intensification’

CORVALLIS, Ore. – Oregon State University and the Pacific Northwest National Laboratories will co-direct a key component of a new five-year, $70 million advanced manufacturing institute, with the goal of greater energy efficiency, increased manufacturing innovation, and more jobs in the nation’s chemical industries.  

The new institute, Rapid Advancement of Process Intensification Deployment, or RAPID, was announced last week by the U.S. Department of Energy. It will be coordinated by the American Institute of Chemical Engineers.

“Through matching grants and other support by state governments, private businesses and industry, this will encourage more than $140 million of technology development, education and training,” said Scott Ashford, the Kearney Professor and dean of the OSU College of Engineering.

“The emphasis will be on chemical process intensification, which is the development of chemical manufacturing equipment that is smaller, lighter-weight and more energy efficient. The result will be lower costs, and modular production of chemical plants that will help to boost the nation’s economic growth.”

OSU and PNNL, who have worked collaboratively for more than a decade to develop and commercialize process intensification technologies, will lead the Module Manufacturing Focus Area within the RAPID institute, and work with chemical equipment suppliers to advance lower-cost process intensification equipment. To date, RAPID consists of 75 companies, 34 academic institutions, seven national laboratories and other organizations.

“The selection of OSU and our colleagues at PNNL to lead this focus area is a tribute to 15 years of commitment by state leaders, Oregon businesses and our research universities,” said Brian Paul, the Tom and Carmen West Faculty Scholar of Manufacturing Engineering in the OSU College of Engineering, and leader of the new focus area.

“That long-term commitment is what it takes to become a national player that can advance technology with industry and create new job opportunities for Oregonians. Contract negotiations to finalize funding for the new institute are underway, and we hope to hit the ground running by next summer, launching some of the projects outlined in the original RAPID proposal.”

The new focus area, Paul said, is an outgrowth of the collaboration between OSU and PNNL through the Microproducts Breakthrough Institute which began in 2001. The success of that partnership has evolved into the Advanced Technology and Manufacturing Institute, located on the Hewlett Packard campus in Corvallis. It focuses on the research and commercialization of advanced materials and technologies being developed within OSU, in concert with research partners across Oregon and throughout the world.

The broader program approved last week will seek to improve domestic energy productivity, energy efficiency, cut operating costs and reduce waste in chemical industries as diverse as oil and gas, pulp and paper, and biofuel processing. Improved technologies, officials say, have the potential to save more than $9 billion annually just in process costs. Gains of 20 percent in efficiency and productivity within five years are being sought.

“In the module manufacturing focus area, we’ll work to create chemical equipment that is lighter, smaller and less expensive than existing equipment,” Paul said. “This will enable distributed chemical processing, like efforts to use solar energy to augment the energy content of natural gas. This could reduce greenhouse gas emissions, using solar thermal processes that are 70 percent solar-to-chemical efficient.”

The RAPID institute will work with downstream module manufactures and chemical companies to identify common intensified components that need to be mass produced.  By pooling resources and combining markets, these companies will encourage suppliers to make capital investments critical to reducing intensified component costs. And cheaper, lighter-weight equipment will enable module manufacturers to build chemical plants with greater efficiency and lower costs.

All of these steps, officials say, will improve the competitiveness of U.S. chemicals on the world stage.

The state of Oregon made significant cost share contributions to the RAPID institute, Paul said, which will help Oregon companies lead the way in creating new high-wage jobs and products to export from the Pacific Northwest.

This is the tenth institute aimed at improving the nation’s manufacturing competitiveness through a multi-agency network known as Manufacturing USA, supported with $700 million from the federal government. RAPID is one part of a commitment by the Obama administration to double U.S. energy productivity by 2030. The goal of all of these programs is to ultimately become self-supporting with heavy business and industry involvement.

OSU and Oregon expertise in microchannel manufacturing, 3D-inkjet printing, advanced materials, fine chemicals, microelectronics, food and beverage, advanced wood products, bio-refining, and carbon-free power generation - such as small modular nuclear reactors - are all part of the technological ecosystem that could benefit from RAPID investments in Oregon, officials say.

“The cumulative economic impact from these industries could one day mean billions of dollars and thousands of high-wage jobs for Oregonians,” Paul said. “We are creating the building blocks for an economy with staying power and the ability to export sustainable technologies to the world.”

Story By: 
Source: 

Brian Paul, 541-737-7320

brian.paul@oregonstate.edu

Multimedia Downloads
Multimedia: 

Chemical reactor
Chemical reactor

Precise nerve stimulation via electrode implants offers new hope for paralysis patients

CORVALLIS, Ore. – Patients with spinal cord injuries might one day regain use of paralyzed arms and legs thanks to research that demonstrates how limbs can be controlled via a tiny array of implanted electrodes.

The work focused on controlling electrical stimulation pulses delivered to peripheral nerve fibers. When a patient is paralyzed, one of the possible causes is damage to the spinal cord, which along with the brain makes up the central nervous system. The brain is working, and so are motor and sensory nerves in the peripheral nervous system, but electrical signals can’t flow between those nerves and the brain because of the spinal cord injury.

That communication problem is what researchers sought to address, through experiments that involved transmitting precisely controlled electrical pulses into nerves activating plantar-flexor muscles in an ankle of an anesthetized cat.

V John Mathews, professor of electrical engineering and computer science in the Oregon State University College of Engineering, lead researcher Mitch Frankel, then a Ph.D. student at the University of Utah, and three other researchers, all faculty members at Utah, conducted the study. Findings were recently published in the journal Frontiers in Neuroscience.

Researchers sent the pulses using an optimized PIV controller – proportional-integral-velocity – and the cat’s nerves received them via a 100-electrode array whose base measured just 16 square millimeters; it’s known as the Utah Slanted Electrode Array, named for where it was developed and the angled look produced by the electrode rows’ differing heights.

Thanks to specific electrodes being able to activate the right nerve fibers at the right times, the controller made the cat’s ankle muscles work in a smooth, fatigue-resistant way.

The results suggest that someday a paralyzed person might be equipped with a wearable, smartphone-sized control box that would deliver impulses to implanted electrodes in his or her peripheral nervous system, thus enabling at least some level of movement.

“Say someone is paralyzed and lies in bed all day and gets bed sores,” Mathews said. “Early versions of this technology could be used to help the person get up, use a walker and make a few steps. Even those kinds of things would have an enormous impact on someone’s life, and of course we’d like people to do more. My hope is in five or 10 years there will be at least elemental versions of this for paralyzed persons.”

While this particular study focused on helping the paralyzed, a related research area involves amputees: neuroprostheses that can be controlled by thought based on decoding what goes on electrically inside a person’s brain when he or she wants to, for example, move his or her arm or leg.

“We can learn from the brain what the intent is and then produce the signals to make the movement happen,” Mathews said. “Another way to get the control information is from the peripheral nerves,” via electromyography, a diagnostic procedure for evaluating muscle and nerve health.

Generally, Mathews said, an electromyogram can produce the necessary control information.

Putting sensors in a person’s brain, either by deep brain implant or just inside the cranium, is another way to crack the intent code. Electroencephalography – electrode plates attached to the scalp that upload the brain’s electrical activity to a computer – can be used as well.

“There are a lot of things going on right now in the prosthetic arena,” Mathews said. 

Media Contact: 

Steve Lundeberg, 541-737-4039

Source: 
Multimedia Downloads
Multimedia: 

usea

Utah Slanted Electrode Array

New ‘optofluidic’ technology taps power of diatoms to improve sensor performance

CORVALLIS, Ore. – Researchers at Oregon State University have combined one of nature’s tiny miracles, the diatom, with a version of inkjet printing and optical sensing to create an exceptional sensing device that may be up to 10 million times more sensitive than some other commonly used approaches.

A patent has been approved on the new “optofluidic” technology, and the findings published in the journal Nanoscale.

When implemented in working devices, this approach might improve biomedical sensing of cancer biomarkers; be used for extraordinarily precise forensics work; save the lives of military personnel in combat situations; detect illegal drugs; or help tell whether organic food is really pesticide free or not.

The enormous sensitivity and low cost of the technology may have endless applications, researchers say, ranging from health monitoring to environmental protection, biological experiments and other uses.

“Some existing sensors can detect compounds at levels of one part per billion, which sounds pretty good, but for many purposes that’s not good enough,” said Alan Wang, an OSU assistant professor of electrical engineering in the OSU College of Engineering, and corresponding author on the study.

“With this approach, we can detect some types of compounds at less than one part per trillion, about the level of a single molecule in a small sample. That’s really difficult. Aside from its sensitivity, the technology can also work with ultra-small samples, is fast, and should be very inexpensive to use.”

This system combines advanced optics with a fluidic system to identify compounds. With most conventional systems of this type, fluids must flow over a surface, and this limits the transport of specific molecules you might want to identify, Wang said.

The diatoms in this new technology, however, act as natural “photonic crystals.” They harness the forces of convection against diffusion to help accelerate and concentrate molecules in a space where photons from optical sensors can get trapped, interact with and identify the compound through optical signatures.

“A diatom is a natural, living type of phytoplankton that creates very precise, tiny structures,” Wang said. “When liquids are deposited on it with carefully controlled inkjet devices, the droplets evaporate quickly, but, in the process, carry the molecules of interest to the diatom surface. This is the key to increasing the sensitivity of the photonic measurements.”

The sensor technology, researchers say, can quickly and accurately identify what compounds are present, and approximately how much.

In one demonstration in this research, the scientists tried to identify trinitrotoluene, or TNT, one of the common ingredients in explosive devices – including the hidden mines that have caused numerous injuries and deaths in battle situations. TNT is a chemical with very low volatility, meaning it has limited evaporation, and comparatively few molecules escape that could allow detection. In a hidden bomb, it’s hard to find.

This new technology was one million more times sensitive at identifying TNT than other common approaches, Wang said. A monitor based on this approach, that could be fast and accurate in military situations, may one day help save lives, he said.

Collaborators on the research were from Washington State University, and the research was supported by the National Institutes of Health and the U.S. Department of Defense.

Commercial applications of the technology are already being explored, OSU officials said.

Story By: 
Source: 

Alan Wang, 541-737-4247

wang@eecs.oregonstate.edu


Multimedia Downloads
Multimedia: 

Optofluidic sensor
Optofluidic sensor

Glucose-monitoring contact lens would feature transparent sensor

CORVALLIS, Ore. – Type 1 diabetes patients may one day be able to monitor their blood glucose levels and even control their insulin infusions via a transparent sensor on a contact lens, a new Oregon State University study suggests.

The sensor uses a nanostructured transistor – specifically an amorphous indium gallium oxide field effect transistor, or IGZO FET – that can detect subtle glucose changes in physiological buffer solutions, such as the tear fluid in eyes.

Type 1 diabetes, formerly known as juvenile diabetes, can lead to serious health complications unless glucose levels are carefully controlled. Problems can include retinopathy, blindness, neuropathy, kidney and cardiac disease.

Researchers in the OSU College of Engineering say sensors they fabricated using the IGZO FET will be able to transmit real-time glucose information to a wearable pump that delivers the hormones needed to regulate blood sugar: insulin and glucagon.

The sensor and pump would, in effect, act as an artificial pancreas.

“We have fully transparent sensors that are working,” said Greg Herman, an OSU professor of chemical engineering and corresponding author on this study. “What we want to do next is fully develop the communication aspect, and we want to use the entire contact lens as real estate for sensing and communications electronics.

“We can integrate an array of sensors into the lens and also test for other things: stress hormones, uric acid, pressure sensing for glaucoma, and things like that. We can monitor many compounds in tears – and since the sensor is transparent, it doesn’t obstruct vision; more real estate is available for sensing on the contact lens.”

The FET’s closely packed, hexagonal, nanostructured network resulted from complimentary patterning techniques that have the potential for low-cost fabrication. Those techniques include colloidal nanolithography and electrohydrodynamic printing, or e-jet, which is somewhat like an inkjet printer that creates much finer drop sizes and works with biological materials instead of ink.

The findings by postdoctoral scholar Xiaosong Du, visiting scholar Yajuan Li and,Herman were recently published online in the journal Nanoscale. The Juvenile Diabetes Research Foundation provided primary funding for the research.

Google has been working on a glucose-monitoring contact lens but its version is not fully transparent.

“It’s an amperometric sensor and you can see the chips -- that means it has to be off to the side of the contact lens,” Herman said. “Another issue is the signal is dependent on the size of the sensor and you can only make it so small or you won’t be able to get a usable signal. With an FET sensor, you can actually make it smaller and enhance the output signal by doing this.”

This research builds on earlier work by Herman and other OSU engineers that developed a glucose sensor that could be wrapped around a catheter, such as one used to administer insulin from a pump.

“A lot of type 1 diabetics don’t wear a pump,” Herman said. “Many are still managing with blood droplets on glucose strips, then using self-injection. Even with the contact lens, someone could still manage their diabetes with self-injection. The sensor could communicate with your phone to warn you if your glucose was high or low.”

The transparent FET sensors, Herman said, might ultimately be used for cancer detection, by sensing characteristic biomarkers of cancer risk. Their high sensitivity could also measure things such as pulse rate, oxygen levels, and other aspects of health monitoring that require precise control.

Media Contact: 

Steve Lundeberg, 541-737-4039

Source: 
Multimedia Downloads
Multimedia: 

3D AFM

Transistor's nanostructure

Tsunami-safety panel to oversee construction of Marine Studies building

CORVALLIS, Ore. – Oregon State University President Ed Ray announced today the creation of an oversight committee to monitor construction of a Marine Studies Building and student housing in Newport, Ore.

“This committee will ensure that the design, engineering and construction of these buildings meet or exceed the earthquake and tsunami performance commitments the university has made to the public,” Ray said.

Ray also charged the committee with ensuring that the buildings are operated with the highest level of safety and evacuation procedures, preparation and training. The committee’s charge is available online.

The $50 million center for global marine studies research and education will be built at OSU’s Hatfield Marine Science Center in Newport. The 100,000-square-foot facility is an integral part of OSU’s ambitious Marine Studies Initiative, designed to educate students and conduct research on marine-related issues – from rising sea levels and ocean acidification to sustainable fisheries and economic stability.

Housing to accommodate Oregon State students at the campus will be located near Oregon Coast Community College and located out of the tsunami zone.

“Life safety for the occupants of these buildings, as well as the safety for all Hatfield Marine Science Center faculty, staff, students and visitors, is of the highest priority for OSU,” Ray said.

Scott Ashford, dean of Oregon State’s College of Engineering, will chair the committee, which will report to interim Provost and Executive Vice President Ron Adams. The committee will be made up of eight university leaders and will be advised by two seismic and structural engineers, one of whom will be externally employed and independent of the university.

Committee members include Michael Green, OSU interim vice president for finance and administration; Toni Doolen, dean of the university’s Honors College; Susie Brubaker-Cole, vice provost for Student Affairs; Jock Mills, government relations director; Steve Clark, vice president for University Relations and Marketing; and Roy Haggerty, associate vice president for research. OSU’s Office of General Counsel will serve in an advisory capacity.

The committee will be advised by Chris D. Poland, an independent, third party seismic resilience structural engineer, who is a member of the National Academy of Engineering; and Dan Cox, an OSU professor in civil and construction engineering with expertise in coastal resilience and tsunami impacts.

Ashford said the Marine Studies Building will meet or surpass the new “inundation zone” construction guidelines announced recently by the American Society of Civil Engineers. Faculty researchers within OSU’s College of Engineering and Oregon State’s O.H. Hinsdale Wave Research Laboratory aided in the standards’ formation.

In addition to design, engineering and construction matters, the committee will also oversee safety and evacuation planning, procedures and training for the Marine Studies Building, the HMSC campus and the student housing to be built in Newport.

The committee’s charge also includes keeping stakeholders informed; maintaining transparency of all the university’s work regarding design, engineering, construction and safety operations; and ensuring the buildings are completed within budget and on time.

Media Contact: 

Steve Lundeberg, 541-737-4039

Source: 
Multimedia Downloads
Multimedia: 

AerialFullSize18

Hatfield Marine Science Center