college of earth

Study: Dams provide resilience to Columbia from climate change impacts

CORVALLIS, Ore. – Dams have been vilified for detrimental effects to water quality and fish passage, but a new study suggests that these structures provide “ecological and engineering resilience” to climate change in the Columbia River basin.

The study, which was published in the Canadian journal Atmosphere-Ocean, looked at the effects of climate warming on stream flow in the headwaters and downstream reaches of seven sub-basins of the Columbia River from 1950 to 2010. The researchers found that the peak of the annual snowmelt runoff has shifted to a few days earlier, but the downstream impacts were negligible because reservoir management counteracts these effects.

“The dams are doing what they are supposed to do, which is to use engineering – and management – to buffer us from climate variability and climate warming,” said Julia Jones, an Oregon State University hydrologist and co-author on the study. “The climate change signals that people have expected in stream flow haven’t been evident in the Columbia River basin because of the dams and reservoir management. That may not be the case elsewhere, however.”

The study is one of several published in a special edition of the journal, which examines the iconic river as the United States and Canada begin a formal 10-year review of the Columbia River water management treaty in 2014. The treaty expires in 2024.

Jones said the net effect of reservoir management is to reduce amplitude of water flow variance by containing water upstream during peak flows for flood control, or augmenting low flows in late summer. While authorized primarily for flood control, reservoir management also considers water release strategies for fish migration, hydropower, ship navigation and recreation.

These social forces, as well as climate change impacts, have the potential to create more variability in river flow, but the decades-long hydrograph chart of the Columbia River is stable because of the dams, said Jones, who is on the faculty of the College of Earth, Ocean, and Atmospheric Sciences at OSU.

“The climate change signal on stream flow that we would expect to see is apparent in the headwaters,” she said, “but not downstream. Historically, flow management in the Columbia River basin has focused on the timing of water flows and so far, despite debates about reservoir management, water scarcity has not been as prominent an issue in the Columbia basin as it has elsewhere, such as the Klamath basin.”

The study, which was funded by the National Science Foundation’s support to the H.J. Andrews Experimental Forest, looked at seven sub-basins of the Columbia River, as well as the main stem of the Columbia. These river systems included the Bruneau, Entiat, Snake, Pend Oreille, Priest, Salmon and Willamette rivers.

“One of the advantages of having a long-term research programs like H.J. Andrews is that you have detailed measurements over long periods of time that can tell you a lot about how climate is changing,” Jones pointed out. “In the case of the Columbia River – especially downstream – the impacts haven’t been as daunting as some people initially feared because of the engineering component.

“Will that be the case in the future?” she added. “It’s possible, but hard to predict. Whether we see a strong climate change signal producing water shortages in the Columbia River will depend on the interplay of social forces and climate change over the next several decades.”

Also co-author on the study is Kendra Hatcher, a graduate student in the College of Earth, Ocean, and Atmospheric Sciences, who studied under Jones.

Media Contact: 

Julia Jones, 541-737-1224; jones@geo.oregonstate.edu

New study finds charred forests increase snowmelt rate

CORVALLIS, Ore. – When a major wildfire destroys a large forested area in the seasonal snow zone, snow tends to accumulate at a greater level in the burned area than in adjacent forests. But a new study found that the snowpack melts much quicker in these charred areas, potentially changing the seasonal runoff pattern of rivers and streams.

The study by Oregon State University researchers, which was funded by the National Science Foundation, documented a 40 percent reduction of albedo – or reflectivity – of snow in the burned forest during snowmelt, and a 60 percent increase in solar radiation reaching the snow surface.

The reason, the researchers say, is that fires burn away the forest canopy and later, the charred tree snags shed burned particles onto the snow, lowering its reflectivity and causing it to absorb more solar radiation.

Results of the study were published this week in the journal Geophysical Research Letters.

“As the snow accumulates in the winter, you don’t see much of a difference in albedo between a healthy, unburned forest and a charred forest,” said Kelly Gleason, an OSU doctoral student in geography and lead author on the study. “But when the snow begins to melt in the spring, large amounts of charred debris are left behind, darkening the snow to a surprising extent.”

In the study site, at an elevation of nearly 5,000 feet in the Oregon High Cascades near the headwaters of the McKenzie River, the researchers founded that the snowpack in the charred forest disappeared 23 days earlier and had twice the “ablation” or melting rate than an adjacent unburned forest in the same watershed.

Anne Nolin, who is Gleason’s major professor and a co-author on the study, said the researchers have not yet examined the hydrological effect of this earlier melting, but “logic suggests that it would contribute to what already is a problem under climate change – earlier seasonal runoff of winter snow.”

“The impact of these charred particles is significant,” said Nolin, a professor in OSU’s College of Earth, Ocean, and Atmospheric Sciences. “They are really dark – much darker than the needles, lichens and other naturally occurring materials that fall in a healthy, unburned forest.

“We know that the shedding of the charred particles lasts at least two years – and it might extend as long as eight to 10 years before the trees fall,” she added.  “It has a major impact on snowmelt that hasn’t fully been appreciated.”

The problem may be compounded in the future as climate change is expected to significantly increase the occurrence of wildfires in the western United States – and perhaps beyond.

“Most of the precipitation in the mountains of the western U.S. falls as snow and the accumulated snowpack acts as kind of a winter reservoir, holding back water until summer when the highest demand for it occurs,” Gleason pointed out. “Our findings could help resource managers better anticipate the availability of water in areas that have been affected by severe forest fires.”

Such areas are increasingly plentiful, according to Nolin. The OSU researchers conducted a spatial analysis of major forest fires from 2000 to 2012 and found that more than 80 percent of those fires in the western U.S. were in the seasonal snow zone, and were on average 4.4 times larger than fires outside the seasonal snow zone. Nearly half of those major fires were within the Columbia River basin, especially in Idaho and the northern Rockey Mountains.

Other areas are affected as well, including the southern Oregon/northern California mountain regions, and the high country of Arizona and New Mexico. The amount of burned area since 2000 that the OSU researchers examined in their spatial analysis of where forest fires occurred in the seasonal snow zone was roughly the size of Ohio.

“It’s a bit of a paradox,” Nolin said. “Other studies have shown that when you remove the dark forest canopy and expose the snow, the area gets brighter and acts as a negative forcing on atmospheric temperatures, slowing climate change. But hydrologically, the effect is the opposite – the increased solar radiation and decreased snow albedo causes much earlier snowmelt, potentially amplifying the effects of climate change.

“What does it mean for your water supply when headwater catchments burn, the snow melts faster and the spring runoff begins even earlier?” she added. “It is a provocative question for resource managers.”

Media Contact: 

Kelly Gleason, gleasoke@science.oregonstate.edu


Anne Nolin, 541-737-8051 (cell phone: 541-740-6804); nolina@geo.oregonstate.edu

Multimedia Downloads

The charred forest


Aftermath of fire


Burned debris


Charred bark

Researchers going public on quest to identify plankton species

NEWPORT, Ore. – Researchers using an innovative underwater imaging system have taken millions of photos of plankton ranging from tiny zooplankton to small jellyfish – and now they are seeking help from the public to identify the species.

The “Plankton Portal” project is a partnership between the University of Miami, Oregon State University and Zooniverse.org to engage volunteers in an online citizen science effort.

“One of the goals of the project is discovery,” said Robert Cowen, new director of OSU’s Hatfield Marine Science Center in Newport, Ore., who led the project to capture the images while at Miami’s Rosenstiel School of Marine and Atmospheric Sciences. “Computers can take pictures and even analyze images, but it takes humans to identify relationships to other organisms and recognize their behavior.

“Computers don’t really care about context – whether something is up or down in the water column and what else might be in the neighborhood,” he added. “People can do that. And we hope to have thousands of them look at the images.”

Interested persons may sign up for the project at www.planktonportal.org, which goes online this week (the official launch is Sept. 17).

Zooniverse.org is a popular citizen science website that engages millions of participants to study everything from far-away stars, to whale sounds, to cancer cells – and aid scientists with their observations. It works by training volunteers and validating their credibility by how often their observations are accurate.

“It is an increasingly popular pursuit for people interested in science and nature – from high school students to senior citizens,” said Jessica Luo, a University of Miami doctoral student working with Cowen.

“Each image is looked at by multiple users and identification is done by a weighting system,” said Luo, who is now working at OSU’s Hatfield center. “The system not only looks for consensus, but rapidity of conclusion. It works amazingly well and the data from this project will help us better begin to explore the thousands of species in the planktonic world.”

With funding from the National Science Foundation’s Directorate for Geosciences and the National Oceanic and Atmospheric Administration, Cowen developed the “In Situ Ichthyoplankton Imaging System,” or ISIIS, while at Miami – along with Cedric Guigand of UM and Charles Cousin of Bellamare, LLC.

ISIIS combines shadowgraph imaging with a high-resolution line-scan camera to record plankton at 17 images per second. Cowen and his colleagues have used the system to study larval fish, crustaceans and jellyfish in diverse marine systems, including the Gulf of Mexico, the mid-Atlantic Ocean, the California coast, and the Mediterranean Sea.

At the same time ISIIS is capturing images, he says, other instruments are recording oceanographic conditions, including temperature, salinity, dissolved oxygen and other measurements. These data, coupled with the images, are available to the public via Zooniverse.org.

“In three days, we can collect data that would take us more than three years to analyze,” Cowen said, “which is why we need the help of the public. With the volume ISIIS generates, it is impossible for a handful of scientists to classify every image by hand, which is why we are exploring different options for image analysis – from automatic image recognition software to crowd-sourcing to citizen scientists.”

Luo said the researchers hope to secure future funding to study plankton – which includes a variety of crustaceans and jellyfish in the water column – off the Pacific Northwest coast.

“Most images of plankton are taken in a laboratory, or collected from nets on a ship,” said Cowen, who is a professor in OSU’s College of Earth, Ocean, and Atmospheric Sciences. “ISIIS gives us the rare ability to see them in their natural environment, which is a unique perspective that will enable us to learn more about them and the critical role they play in the marine food web.”

Other researchers on the project include graduate student Adam Greer, and undergraduate students Dorothy Tang, Ben Grassian and Jenna Binstein – all at the University of Miami.

Media Contact: 

Jessica Luo, 650-387-5700; Jessica.luo@rsmas@miami.edu;


Bob Cowen, 541-867-0211; Robert.Cowen@oregonstate.edu

Multimedia Downloads

Plankton Portlal


Plankton Portal

Climate can grind mountains faster than they can be rebuilt, study indicates

CORVALLIS, Ore. – Researchers for the first time have attempted to measure all the material leaving and entering a mountain range over millions of years and discovered that glacial erosion can, under the right circumstances, wear down mountains faster than plate tectonics can build them. 

A study of the St. Elias Mountains on the Alaskan coast by researchers from The University of Texas at Austin, University of Florida, Oregon State University and elsewhere found that erosion accelerated sharply about one million years ago.

The study adds insight into a longstanding debate over the balance of climate and tectonic forces that influence mountain building, which defines how landscapes are shaped by and in turn influence climate. The findings will be published this week in the Proceedings of the National Academy of Sciences.

The international research team, working under the Integrated Ocean Drilling program, included Oregon State University Professors Alan Mix and Joe Stoner and postdoctoral researcher Maureen Walczak as well as other scientists from the U.S., Germany, Brazil, Norway, India, China, Japan, Canada, Australia and the United Kingdom.

The seagoing expedition was the culmination of more than a decade of field work. On a previous expedition, the researchers first mapped a huge submarine sediment fan in the Gulf of Alaska built by sediment eroded from the nearby mountains. Next, they recovered sediment cores to understand the fan environments and recent history. The cores are now archived in the national repository at Oregon State.

Most recently, the researchers collected and dated almost four kilometers of drill cores from the floor of the gulf and the Alaskan continental shelf, revealing millions of years of geologic history.

“It turned out most sediments were younger than we anticipated, implying that erosion was higher than we expected,” said lead author and co-chief scientist Sean Gulick of the University of Texas Institute for Geophysics.

Mountain ranges form when tectonic plates thrust into one another over millions of years and scrunch up the Earth’s outer crust. But even as mountains are built by these titanic forces, other agents work to wear them down.

“About a million years ago, short, 40,000-year climate oscillations jumped into a new mode with stronger, 100,000-year long glacial cycles, and erosion of the mountains accelerated under attack from the ice,” Gulick said. “In fact, more rock was eroded than tectonics has replaced.”

Co-chief scientist John Jaeger of the University of Florida added: “People often see mountain ranges as permanent, but they aren’t really. If more rock is pushed in, they grow, and if more rock is eroded away, they shrink.”

Since the mid-Pleistocene, erosion rates have beaten tectonic inputs by 50 to 80 percent, demonstrating that climatic processes that ultimately drive the glaciers can outstrip mountain building over a span of a million years. The findings highlight the pivotal role climate fluctuations play in shaping Earth’s landforms.

“We were pleasantly surprised by how well we could establish ages of the sediment sequences and the composition of the sediment gave clear evidence of when the glaciation started and then expanded, in sync with global climate trends,” said co-author Mix of OSU’s College of Earth, Ocean, and Atmospheric Sciences. “Only by drilling the sea floor where the sediment accumulates could we see these details in focus.” 

The study was funded by the U.S. National Science Foundation and the Integrated Ocean Drilling Program.

Media Contact: 

Alan Mix, 541-737-5212, mix@ceoas.oregonstate.edu

Low-oxygen ‘dead zones’ in North Pacific linked to past ocean-warming events

CORVALLIS, Ore. – A new study has found a link between abrupt ocean warming at the end of the last ice age and the sudden onset of low-oxygen, or hypoxic conditions that led to vast marine dead zones.

Results of the study, which was funded by the National Science Foundation, are being published this week in the journal Nature.

Large-scale warming events about 14,700 and again 11,500 years ago occurred rapidly and triggered loss of oxygen in the North Pacific, raising concern that low-oxygen areas will expand again as the ocean warms in the future. Anomalous warmth occurring recently in the Northeastern Pacific Ocean and the Bering Sea – dubbed “The Blob” – is of a scale similar to the events documented in the geologic record, the researchers say. If such warming is sustained, oxygen loss becomes more likely.

Although many scientists believe that a series of low-oxygen “dead zones” in the Pacific Ocean off Oregon and Washington during the last decade may be caused by ocean warming, evidence confirming that link has been sparse.

However, the new study found a clear connection between two prehistoric intervals of abrupt ocean warming that ended the last ice age with an increase in the flux of marine plankton sinking to the seafloor, ultimately leading to a sudden onset of low-oxygen conditions, or hypoxia.

“Our study reveals a strong link between ocean warming, loss of oxygen, and an ecological shift to favor diatom production,” said lead author Summer Praetorius, who conducted the research as part of her doctoral studies at Oregon State University and is now a postdoctoral researcher at Carnegie Institution for Science.

“During each warming event, the transition to hypoxia occurred abruptly and persisted for about 1,000 years, suggesting a feedback that sustained or amplified hypoxia.” Praetorius added.

Warmer water, by itself, is not sufficient to cause diatom blooms, nor hypoxia, the researchers note. Just as warming soda pop loses its fizzy gas, warmer seawater contains less dissolved oxygen, and this can start the oxygen decline. But it isn’t until there is accelerated blooming of microscopic diatoms – which have large shells and tend to sink more efficiently than other smaller types of plankton – that deoxygenation is amplified.

Diatoms are known to thrive in warm, stratified water, but they also require sources of nutrients and iron, according to Alan Mix, a professor in Oregon State’s College of Earth, Ocean, and Atmospheric Sciences and co-author on the Nature study.

Surface warming also reduces upward mixing of nutrients from the deep sea. “So there are some competing effects,” Mix said, “and the final story depends on which effect wins.”

“The high-latitude North Pacific is rich in the common nutrients such as nitrate and phosphate, but it is poor in iron and this seems to be the key,” Mix said. “A partial loss of oxygen causes a chemical reaction that releases iron previously trapped in continental margin sediments – and this iron then fuels the diatoms, which bloom, die, and sink toward the seafloor, consuming oxygen along the way.”

The concern is just how rapid the ocean can respond, the researchers say.

“Many people have assumed that climate change impacts will be gradual and predictable,” Mix said, “but this study shows that the ecological consequences of climate change can be massive and can occur pretty fast, with little warning.”

Because the competing effects of mixing and iron may happen on different timescales, the exact sequence of events may be confusing.  On the scale of a few years, mixing may win, but on the scale of decades to centuries, the bigger effects kick into gear.  The geologic record studied by Praetorius and colleagues emphasized these longer scales.

The new discovery was the result of a decades-long effort by numerous researchers at Oregon State to collect marine sediment cores from the North Pacific, creating comprehensive, high-resolution records of climate change in the region. The temperature records come from trace quantities of organic molecules, called biomarkers, produced by plankton. This method of temperature sensing from sedimentary records was developed and tested by Fred Prahl, a professor emeritus at OSU.

“We tested many different strategies for reconstructing past temperature and looked at the imperfections of the geologic record, but these temperature records emerged as the most precise available,” Prahl said.

In addition to “The Blob” – the unusually warm ocean temperatures seen across the North Pacific – this year has seen a record-breaking algal bloom dominated by a certain species of diatom, Praetorius noted.

“While it’s too soon to know how this event ties into the long-term climate patterns that will emerge in the future, the current conditions seem eerily reminiscent of the past conditions that gave way to extended periods of hypoxia,” she said.

Media Contact: 

Summer Praetorius, 510-648-5027, spraetorius@carnegiescience.edu; Alan Mix, 541-737-5212, mix@ceoas.oregonstate.edu

Future Cascadia earthquake to be discussed at Corvallis Science Pub

CORVALLIS, Ore. – When “The Really Big One” ran in The New Yorker in July, the potential for a catastrophic earthquake in the Pacific Northwest captured national attention.

At the Oct. 12 Corvallis Science Pub, Chris Goldfinger, a primary source for the story, will discuss the 13-year research effort that led him to conclude that the Pacific Northwest faces a 37 percent chance of a major break along the southern portion of the Cascadia Subduction Zone, from Northern California to about Newport, in the next 50 years. The probability of such a rupture is lower — about 10 to 15 percent — on the northern section, which extends to British Columbia.

Such a break could generate a quake and tsunami similar to those that struck Japan in 2011.

The Science Pub presentation begins at 6 pm and is free and open to the public. Normally held at the Old World Deli, this event will take place in a different location, the Majestic Theater, 115 S.W. 2nd St. in Corvallis.

Goldfinger, a professor in the OSU College of Earth, Ocean, and Atmospheric Sciences, has studied seafloor sediments off the Pacific Northwest coast and found patterns of disturbance that indicate when major quakes occurred. He has identified 19 major breaks along the Cascadia in the last 10,000 years.

In addition to this work, in 2007 he led a study of an Indian Ocean subduction zone near Indonesia, which had ruptured in 2004 in a 9.15 event, the third largest ever recorded. It generated tsunamis that killed an estimated 230,000 people in 14 countries.

Sponsors of Science Pub include Terra magazine at OSU, the Downtown Corvallis Association and the Oregon Museum of Science and Industry.

Media Contact: 

Chris Goldfinger, 541-737-2066

Two OSU faculty receive prestigious ‘early career’ awards

CORVALLIS, Ore. – Two Oregon State University faculty members have received prestigious early career awards from national entities. 

Both are in OSU’s College of Earth, Ocean, and Atmospheric Sciences.

Emily Shroyer received a 2015 Young Investigator Award from the Office of Naval Research. An expert in the physics of oceans and atmospheres, Shroyer received the award for her proposal to study the small-scale processes that control the movement and mixing of heat and fresh water within the ocean. Her work investigates “internal waves” that propagate beneath the ocean’s surface, redistributing energy and mass.

“Waves beneath the ocean's surface can break and mix water very effectively. They can transport mass, plankton, and larvae from one region to another. And, the large fluctuations in temperature that accompany these waves alter sound propagation through the local environment,” Shroyer said.

Angelicque “Angel” White has been named a 2015 recipient of the Ocean Sciences Early Career Award, which she will receive this December at the annual meeting of the American Geophysical Union. White, an ocean ecologist and biogeochemist, was cited for her contribution to the understanding of the relationship between microbial communities and surrounding seawater.

“Understanding the biological and physical relationships in the ocean is a daunting challenge,” White said. “We dunk bottles in the ocean, we send little drones into the seas, we tether moorings and launch drifters, we scan the surface with satellites, yet in the end, we see so very little of this immense, moving, alive and fluid ocean.”

Media Contact: 

Abby Metzger, 541-737-3295, ametzger@coas.oregonstate.edu 

Oregon State research reaches record, exceeds $308 million

CORVALLIS, Ore. — Oregon State University research funding reached $308.9 million, its highest level ever, in the fiscal year that ended on June 30. A near doubling of revenues from licensing patented technologies and an 8.5 percent increase in competitive federal funding fueled OSU research on a range of projects including advanced ocean-going research vessels, the health impacts of pollution and sustainable materials for high-speed computing.

“This is a phenomenal achievement. I've seen how OSU research is solving global problems and providing innovations that mean economic growth for Oregon and the nation,” said Cynthia Sagers, OSU’s vice president for research who undertook her duties on August 31. “OSU’s research performance in the last year is amazing, given that federal funds are so restricted right now.”

The overall economic and societal impact of OSU’s research enterprise exceeds $670 million, based on an analysis of OSU’s research contributions to the state and global economy that followed a recent economic study of OSU’s fiscal impact conducted by ECONorthwest.

Technology licensing almost doubled in the last year alone, from just under $6 million in 2014 to more than $10 million this year. Leading investments from business and industry were patented Oregon State innovations in agriculture, advanced materials and nuclear technologies.

OSU researchers exceeded the previous record of $288 million, which the university achieved in 2010. Although federal agencies provided the bulk of funding, most of the growth in OSU research revenues over the past five years stems from nonprofit organizations and industry.

Since 2010, total private-sector funding from sponsored contracts, research cooperatives and other sources has risen 60 percent — from $25 million to more than $40 million in 2015. Oregon State conducts research with multinationals such as HP, Nike and Boeing as well as with local firms such as Benchmade Knife of Oregon City, Sheldon Manufacturing of Cornelius and NuScale Power of Corvallis.

By contrast, federal research grants in 2015 were only 0.2 percent higher than those received in 2010, a year in which American Reinvestment and Recovery Act funds gave university research a one-time shot in the arm across the country. According to the National Science Foundation, federal agency obligations for research have dropped from a high of $36 billion in 2009 to $29 billion in 2013, the last year for which cumulative figures are available. The Department of Health and Human Services accounted for more than half of that spending.

“We’ve worked hard to diversify our research portfolio,” said Ron Adams, who retired as interim vice president for research at the end of August. “But it’s remarkable that our researchers have succeeded in competing for an increase in federal funding. This speaks to the success of our strategic initiatives and our focus on clusters of excellence.”

Economic impact stems in part from new businesses launched this year through the Oregon State University Advantage program. Among them are:

  •  OnBoard Dynamics, a Bend company designing a natural-gas powered vehicle engine that can be fueled from home
  •  Valliscor, a Corvallis company that manufactures ultra-pure chemicals
  • eChemion, a Corvallis company that develops and markets technology to extend battery life

Altogether, 15 new companies have received mentoring assistance from Oregon State’s Advantage Accelerator program, part of the state-funded Regional Accelerator and Innovation Network, or RAIN. Six new companies are working with the Advantage program this fall.

Additional economic impact stems from the employment of students, post-doctoral researchers and faculty. According to the OSU Research Office, about a quarter of OSU undergraduates participate in research projects, many with stipends paid by grant funds. In addition, grants support a total of 843 graduate research positions and 165 post-doctoral researchers.

The College of Agricultural Sciences received the largest share of research grants at Oregon State with $49.4 million last year, followed by the College of Earth, Ocean, and Atmospheric Sciences at $39 million and the College of Engineering at $37 million. The College of Science saw a 170 percent increase in research funding to $26.7 million, its largest total ever and the biggest rise among OSU colleges. Among the largest grants received in FY15 were:

  •  $8 million from the NSF to the Center for Sustainable Materials Chemistry (College of Science) for new high-speed information technologies
  •  $4 million from the Department of Energy to reduce barriers to the deployment of ocean energy systems (College of Engineering)
  •  $4 million from US Agency for International Development to the AquaFish Innovation Lab (College of Agricultural Sciences) for global food security
  •  $3.5 million from the USDA for experiential learning to reduce obesity (College of Public Health and Human Sciences)
  •  $2.3 million from the NSF for the ocean observing initiative (College of Earth, Ocean, and Atmospheric Sciences)
  •  $1.5 million from the U.S. Department of Education for school readiness in early childhood (OSU Cascades)


Editor’s Note: FY15 research totals for OSU colleges and OSU-Cascades are posted online.

College of Agricultural Sciences: http://agsci.oregonstate.edu/story/osu%E2%80%99s-college-agricultural-sciences-receives-494-million-research-grants 

College of Earth, Ocean, and Atmospheric Sciences: http://ceoas.oregonstate.edu/features/funding/

College of Education: http://education.oregonstate.edu/research-and-outreach 

College of Engineering:  http://engineering.oregonstate.edu/fy15-research-funding-highlights

College of Forestry: http://www.forestry.oregonstate.edu/research/college-forestry-receives-near-record-grant-awards-fy-2015

College of Liberal Arts: http://liberalarts.oregonstate.edu/cla-research/2015-research-summary

College of Pharmacy: http://pharmacy.oregonstate.edu/grant_information

College of Public Health and Human Sciences: http://health.oregonstate.edu/research 

College of Science: http://impact.oregonstate.edu/2015/08/record-year-for-research-funding/

College of Veterinary Medicine: http://vetmed.oregonstate.edu/research-highlights

OSU-Cascades: http://osucascades.edu/research-and-scholarship 

Media Contact: 

Cynthia Sagers, vice president for research, 541-737-0664; Rich Holdren on OSU research trends, 541-737-8390; Brian Wall on business spinoffs and commercialization, 541-737-9058

Multimedia Downloads

Surface chemistry research

Masters students at OSU worked to improve the performance of thin-film transistors used in liquid crystal displays. (Photo courtesy of Oregon State University)

OOI mooring

The Oregon shelf surface mooring is lowered to the water using the R/V Oceanus ship's crane. (photo courtesy of Oregon State University). Wave Energy

The Ocean Sentinel, a wave energy testing device, rides gentle swells near Newport, Ore. (Photo courtesy of Oregon State University) Hernandez3-2

An undergraduate student at the Autonomous Juarez University of Tabasco, Mexico, is working with cage culture of cichlids in an educational partnership with the AquaFish collaborative Support Program. (Photo: Tiffany Woods)

New unmanned aircraft center should spur research, growth in evolving technology

CORVALLIS, Ore. – Oregon State University was named this month by the Federal Aviation Administration to be part of the nation’s Center of Excellence for Unmanned Aircraft Systems, and university officials are now making plans for the roles it will play in this new initiative.

OSU is one of 15 of the nation’s leading universities in this field, in a team that will be led by Mississippi State University. An initial $5 million in funding was granted to support a diverse agenda of research, training and certification of unmanned aircraft, with additional funding expected during the five-year agreement.

“This further puts OSU and Oregon on the map of leaders in unmanned aircraft systems,” said Michael Wing, director of the Aerial Information System Lab at OSU. “It will help us form ties with multiple institutions and partnerships, stimulate both public and private funding, and build on some of our historic strengths in fields such as remote sensing.”

Representatives of the new center will meet in early June in Washington, D.C., to begin plans for the program, Wing said. Some of the initial areas of emphasis will include detect and avoid technology; low-altitude operations safety; control and communications; spectrum management; human factors; compatibility with air traffic control operations; and training and certification of pilots and crew members.

Some of OSU’s early contributions, Wing said, may be in the area of low-altitude operations safety; detection and avoidance; human factors; and certification of flight operations.

“We envision some early work in Oregon being done with things such as wildfire monitoring and low-altitude, precision monitoring for agriculture or wildlife operations,” Wing said.

Some of that is already taking place. OSU has now gained 30 FAA agreements for locations to use unmanned aircraft throughout Oregon and the U.S. Applications include fire surveys, vineyard health, and identifying salmon spawning beds in rivers and streams. The salmon spawning bed identification work was highly successful, and the data quality exceeded what could be obtained by far more expensive and manned helicopters, Wing said.

The Center of Excellence of which OSU is a part already has 113 corporate partners nationally, Wing said, and more will be added. It was formed in competition with other applicants, and it’s expected that a complete research agenda will be developed by next year.

Two years ago, OSU was also selected as part of the Pan-Pacific Test Site, one of six test sites around the nation designed to help develop the use of unmanned aerial systems for civilian use. It will collaborate with the University of Alaska and Hawaii on that initiative, and offer some of the most unique land forms in the nation on which to test new technologies.

The three states have an extraordinary range of terrain in which to test new systems: mountains, rivers, valleys, high desert, Arctic tundra, volcanoes, many types of forest and agricultural areas, and tropical islands.

University, business and state leaders have said that the production, testing, research and use of unmanned aerial systems should be able to play an important role in Oregon’s future economic growth, employment and career opportunities.

Media Contact: 

Michael Wing, 541-737-4009

Multimedia Downloads

Unmanned aircraft

Ocean acidification discussion on tap at Corvallis Science Pub

CORVALLIS, Ore. – It’s been called the “evil twin” of climate change. As the oceans absorb carbon dioxide from the atmosphere and surface waters become more acidic, changes to marine ecosystems are likely to follow. Coral reefs, shell-forming organisms and the fish and marine mammals that depend on them are at risk.

At the May 11 Corvallis Science Pub, George Waldbusser will describe what scientists know about the biological effects of ocean acidification. The Science Pub presentation is free and open to the public. It begins at 6 p.m. at the Old World Deli, 341 S.W. 2nd St. in Corvallis.

On average, the oceans are about 30 percent more acidic today than they were a century ago, and impacts are already being seen along the West Coast. Waldbusser and his students have turned their attention to the region’s oyster industry, which had $73 million in sales in 2009.

Oyster larvae are sensitive to acidification and Waldbusser, an assistant professor in Oregon State’s College of Earth, Ocean, and Atmospheric Sciences, is working to understand why.

“With larval oysters, what we see are developmental issues,” he said. “From the time eggs are fertilized, Pacific oyster larvae will precipitate roughly 90 percent of their body weight as a calcium carbonate shell within 48 hours.”

His research has been supported by the National Oceanic and Atmospheric Administration, the U.S. Department of Agriculture, Oregon Sea Grant and other agencies.

Waldbusser received his Ph.D. in biological oceanography at the University of Maryland in 2008. In addition to professional publications, his research has appeared in the New York Times, CBS and NBC News, Oregon Public Broadcasting, Mother Jones magazine and Forbes.

Sponsors of Science Pub include Terra magazine at OSU, the Downtown Corvallis Association and the Oregon Museum of Science and Industry.

Media Contact: 

George Waldbusser, 541-737-8964

Multimedia Downloads