OREGON STATE UNIVERSITY

college of earth

72 scientists ink letter to U.S. presidential candidates urging leadership on clean energy

CORVALLIS, Ore. – A group of 72 leading climate change scientists have written a letter to major United States presidential candidates urging strong American leadership on clean energy – and calling for a “vibrant economy free from carbon pollution by mid-century.”

The effort began as a letter from nine scientists from Harvard University, Stanford University, University of California at Berkeley, Tufts and elsewhere – part of the Union of Concerned Scientists. Other scientists, including Philip Mote of Oregon State University, recently joined the initiative.

Mote, who directs the Oregon Climate Change Research Institute at Oregon State, and also provides leadership on two joint federal climate change centers at the university, said focusing on clean, renewable sources of energy is not a choice between a strong economy and a healthy environment.

“These are not mutually exclusive,” said Mote, a professor in OSU’s College of Earth, Ocean, and Atmospheric Sciences. “Many of the largest and most influential companies in the world are using energy from renewable sources, including Apple, Google and others. It’s not just a good environmental strategy – they see it as a good business strategy.”

“Oregon’s emission of greenhouse gases peaked in 1999 and has been declining, showing that we can grow the economy and reduce emissions,” Mote added.

In their letter, the climate scientists point to the gradual shift away from non-sustainable fossil fuels to solar and wind power – in part because of rapidly advancing technology. The next U.S. president “will be uniquely positioned to ensure that our nation sustains and accelerates this transition,” they wrote. “The dangers of inaction are also increasingly apparent and lend great urgency to this appeal.”

The letter is being released this week as policy-makers and others convene in Paris for the annual international climate summit.  Limiting carbon emissions from fossil fuels is critical in slowing the rate of warming the Earth is experiencing, the scientists note, and the effects are being seen world-wide – from rapidly warming and acidifying oceans to melting glaciers.

Yet much of the public – and many political leaders – has been slow to accept what many scientists say is overwhelming evidence that our planet is in peril, Mote said.

“This week, as some of Oregon’s rivers are rising, we are reminded that a warming climate accentuates existing risks like flooding,” Mote said.  “Additional risks for the region include increased wildfires and coastal inundation. Limiting emissions will reduce the size of future changes."

The scientists call for the next president to pursue key goals, including:

  • Following through on the U.S. commitment to reduce carbon emissions by 26 to 28 percent below 2005 levels by the year 2025;
  • Phasing out fossil energy subsidies and putting a price on carbon to “ensure a level playing field” for renewable energy, nuclear power and other low- or zero-carbon technologies;
  • Modernizing antiquated energy transmission, distribution and transportation systems;
  • Increasing investment in clean energy research.

Mote was a lead author on the 2007 Intergovernmental Panel on Climate Change report, which led to a Nobel Prize, and a lead author for the fifth IPCC report in 2013 in a chapter focusing on the cryosphere.

Story By: 
Source: 

Phil Mote, 541-737-5692, pmote@coas.oregonstate.edu

Report: Willamette Valley water future mostly bright, though gaps may need to be addressed

CORVALLIS, Ore. – During the next 85 years, temperatures in Oregon’s Willamette River basin are expected to rise significantly, mountain snowpack levels will shrink dramatically, and the population of the region and urban water use may double – but there should be enough water to meet human needs, a new report concludes.

Fish may not be so lucky. Although ample water may be available throughout most of the year, the Willamette Valley and its tributaries likely will become sufficiently warm as to threaten cold-water fish species, including salmon and steelhead, the scientists say.

These are among the key findings of the Willamette Water 2100 Project, a five-year, $4.3 million study funded by the National Science Foundation and led by Oregon State University, in partnership with researchers from the University of Oregon, Portland State University and University of California at Santa Barbara.

“The Willamette River basin today is characterized by abundant annual water and sometime seasonal shortages,” said Anne Nolin, an OSU professor of environmental sciences and principal investigator on the study. “That should continue into 2100, despite much warmer temperatures, more people and a substantial loss of snowpack.

“The reason for optimism is the region’s 11 storage reservoirs coordinated by the Army Corps of Engineers that act as a valve for seasonal differences and preserve water for times of need,” Nolin added. “Without them, the picture would look quite a bit different.”

Analysis of global circulation models suggest that the Willamette River basin will warm between two and 13 degrees (Fahrenheit) by the year 2100, thus scientists used three separate scenarios to look at potential impacts based on low, medium and high rates of temperature increase. These temperature increases will result in a dramatic decline in snowpack – from 63 to 95 percent lower than average – changing seasonal water flow patterns.

Scientists also explored results from a range of population, economic and policy scenarios that allowed them to ask “what if?” questions for different human changes and interactions with climate changes. Much of the climate modeling for the project was developed through a regional integrated sciences and assessments (RISA) program at Oregon State, which is funded by NOAA and led by OSU Professor Philip Mote.

There is little doubt that temperatures will increase, the report notes, but there is less certainty about the impact of a changing climate on precipitation. Winters may actually be slightly wetter, though more of the precipitation will fall as rain instead of snow. Summers should be drier, necessitating more reliance on water held behind the region’s 11 storage reservoirs.

“Although there are a number of government entities – federal and state – involved in regulating water use from those reservoirs, there appears to be enough flexibility in the system to adequately adapt for changing conditions in the future,” said Nolin, a professor in OSU’s College of Earth, Ocean, and Atmospheric Sciences.

The report notes that warmer temperatures, less snowpack and drier summers will greatly increase the danger of wildfire in the mountains feeding the Willamette River basin – by about 200 to 900 percent. Their simulations show that fire will open up lands to new forest types and reduce the availability of forestland for timber harvest.

Increasing urban use of water from a population that could double will involve costly expansions in infrastructure. As the population grows, more agricultural land near urban areas will be developed for housing and other needs, according to Samuel Chan, a watershed health specialist with Oregon Sea Grant and the broader impacts outreach lead for the Willamette Water 2100 Project.

However, the report shows that in some cases where urban areas are expanding into what are now irrigated farmlands, these locations may see a net decline in water use.

“The report notes the difference between water ‘diversions’ and water ‘consumptive use,’” Chan noted. “As the population grows, the need for water will increase, but much of it will be used, and then treated in wastewater plants and returned to the system. Other uses, like forests and agriculture, consume the water through evaporation and transpiration to the atmosphere.”

“The downside, though, is that treated water that is returned to the river is often warmer, increasing the impact on cold-water fish species,” he added.

The main drivers for changing water needs, the report concludes, are climate change, and growth in population and income.

“The dams built above the Willamette Valley were engineered for reducing the risk of floods, but they also do a valuable job in storing water for use during summer,” Nolin said. “They can store large amounts of water in the summer, when they are not kept empty for flood prevention and there is existing flexibility in water allocation policies that could help western Oregon adapt to a climate that may be quite different in the future.”

“Unlike many parts of the country, those of us who live in the Willamette Valley are lucky because we have abundant water for human use, and we have institutional capacity to help mitigate water scarcity,” she added. “However, the biggest negative impacts are likely to be for native cold-water fish and we will likely be facing a significant challenge in managing stream temperature for fish.”

Story By: 
Source: 

Anne Nolin, 541-737-8051, nolina@geo.oregonstate.edu;

Sam Chan, (cell: 503-679-4828), Samuel.chan@oregonstate.edu

Blue whales use efficient foraging to maintain massive body size

CORVALLIS, Ore. – As the largest animals to have ever lived on Earth, blue whales maintain their enormous body size through efficient foraging strategies that optimize the energy they gain from the krill they eat, while also conserving oxygen when diving and holding their breath, a new study has found.

Large, filter-feeding whales have long been thought of as indiscriminate grazers that gradually consume copious amounts of tiny krill throughout the day – regardless of how prey is distributed in the ocean. But tagged blue whales in the new study revealed sophisticated foraging behavior that targets the densest, highest-quality prey, maximizing their energy gain.

Understanding blue whale feeding behavior will help inform protections for the endangered species and its recovery needs, the scientists say. The study, by researchers from NOAA Fisheries, Oregon State University and Stanford University, was published this week in Science Advances.

“For blue whales, one of our main questions has been: How do they eat efficiently to support that massive body size,” said Elliott Hazen, a research ecologist with NOAA Fisheries’ Southwest Fisheries Science Center and lead author of the research. “Now we know that optimizing their feeding behavior is another specialization that makes the most of the food available.”

Adult blue whales can grow to the length of a basketball court and weigh as much as 25 large elephants combined, but they operate on an “energetic knife-edge,” the researchers point out.  They feed through the extreme mechanism of engulfing as much prey-laden water as they weigh and then filtering out the tiny krill it contains.

But feeding expends tremendous amounts of energy and the dense krill patches they need to replenish that energy are often deep and difficult to find.

In their study, the researchers compared the foraging of 14 tagged blue whales to 41 previously tagged blue whales off the coast of California, combining the data with acoustic surveys that measured the density of their sole prey, krill – tiny (less than one inch) crustaceans found throughout the world’s oceans.

The researchers found that when the krill were spread out, or less dense, blue whales fed infrequently to conserve their oxygen and energy use for future dives. When krill density increased, they began “lunge-feeding” more frequently, consuming more per dive to obtain as much energy from the krill as possible.

“Blue whales don’t live in a world of excess and the decisions these animals make are critical to their survival,” said Ari Friedlaender, a principal investigator with the Marine Mammal Institute at Oregon State University’s Hatfield Marine Science Center and co-author on the study. “If you stick your hand into a full bag of pretzels, you’re likely to grab more than if you put your hand into a bag that only had a few pretzels.”

The feeding pattern that focuses more effort on the densest krill patches provides a new example of blue whale foraging specializations that support the animals’ tremendous size.

This kind of lunge-feeding takes a lot more effort, but “the increase in the amount of energy they get from increased krill consumption more than makes up for it,” noted Jeremy Goldbogen, a marine biologist from Stanford University and co-author on the study.

“Lunge-feeding is a unique form of ‘ram-feeding’ that involves acceleration to high speed and the engulfment of large volumes of prey-laden water, which they filter,” Goldbogen noted. “But we now know they don’t take in that water indiscriminately. They have a strategy that aims to focus feeding effort on the densest, highest-quality krill patches.”

In their study, the researchers found a threshold for krill that determined how intensively the blue whales fed.

“The magic number for krill seems to be about 100 to 200 individuals in a cubic meter of water,” Hazen said. “If it’s below that range, blue whales use a strategy to conserve oxygen and feed less frequently. If it’s above that, they’ll feed at very high rates and invest more effort.”

The researchers say this insight into blue whale feeding will help determine how best to protect the species, which is listed as endangered by the International Union for Conservation of Nature.

“If they are disturbed during the intense, deep-water feeding, it may not have consequences today, or this week, but it could over a period of months,” Friedlaender said. “There can be impacts on their overall health, as well as on their fitness and viability for reproduction.”

The study was funded by the U.S. Office of Naval Research.

Story By: 
Source: 

Ari Friedlaender, 919-672-0103

Multimedia Downloads
Multimedia: 

ariwhale


Tagging whale


whaletail
Blue whale

Impacts of El Niño, La Niña on Pacific Ocean communities, beaches could expand in 21st century

CORVALLIS, Ore. – A coastal hazards analysis of 48 Pacific Ocean beaches in three continents, using data from 1979 to 2012, found the biggest factor influencing communities and beaches in all regions was the impact of El Niño and La Niña events.

The study also found their influence had alternate impacts in different parts of the Pacific basin. When one side of the Pacific experienced extreme coastal erosion and flooding because of El Niño the other side often experienced these hazards during La Niña. Some climate projections suggest that these events may occur more frequently in the 21st century, meaning that populated regions could experience more severe flooding or erosion.

Results of the study, which was funded by a variety of organizations, are being published this week in Nature Geoscience.

“There are many factors that can influence coastal vulnerability yet many future projections of coastal hazards focus only on sea level rise and  neglect the influence of seasonal water level anomalies, storm surges, wave-driven processes and other factors,” said Peter Ruggiero, an Oregon State University coastal hazards expert and co-author on the study.

“We knew that climate cycles play a major role in what happens to our coastlines, but the fact that El Niño and La Niña significantly affect coastal hazards throughout the Pacific in a fairly coherent manner was a bit of a surprise,” added Ruggiero, who is an associate professor of geology and geophysics in OSU’s College of Earth, Ocean and Atmospheric Sciences.

The analysis also confirmed what scientists had suspected – the most dominant impacts on beaches and communities through climate cycles takes place in the boreal (northern) winter. Some projections suggest that the worst-case scenarios for sea level rise could displace up to 187 million people by the end of the 21st century, with flood losses exceeding $1 trillion (in U.S. dollars) for the world’s major coastal cities.

More frequent, and potentially more severe, El Niño and La Niña events could worsen the situation.

The researchers also looked specifically at the Pacific Northwest of the United States, which experiences extreme water level anomalies during major El Niño events – on the order of tens of centimeters, and changes in both wave height and direction. Storms reaching the coast from more steep southern approach angles cause significant “hotspots” of erosion, Ruggiero pointed out.

“The El Niño winters of 1982-83 and 1997-98 resulted in the most extreme coastal flooding and erosion hazards along the Oregon and Washington coast in recent decades – oftentimes taking many years to recovery, if at all,” the authors wrote in their analysis.

In 2013, Ruggiero led a study of Pacific Northwest beaches that found Washington’s beaches, on average, were more stable than those in Oregon, which had experienced an increase in erosion hazards in recent decades. His study found that since the 1960s, 13 of the 17 Oregon beach “littoral cells” – stretches of beach between rocky headlands and major inlets – have either experienced an increase in erosion, or less of a buildup in sand during beach-building months.

Some of the hardest hit areas along the coast include the Neskowin littoral cell between Cascade Head and Pacific City, and the Beverly Beach littoral cell between Yaquina Head and Otter Rock, where shoreline change rates have averaged more than one meter of erosion a year since the 1960s.

“We’re in the midst of a strengthening El Niño right now,” Ruggiero said, “and we already seeing some significant water level anomalies through tide gauge readings. Some people project that this 2015-16 El Niño could match those significant events of 1982-83 and 1997-98.

“If we get significant storms this winter during times of elevated water levels, the region could experience erosion and hazards not seen in some years.”

 


Story By: 
Source: 

Peter Ruggiero, 541-737-1239; ruggierp@science.oregonstate.edu

Multimedia Downloads
Multimedia: 

 

 

 

 

Erosion at the central Oregon coast.

OSU names Haggerty interim dean of college

CORVALLIS, Ore. – Roy Haggerty, the Hollis M. Dole Professor of Environmental Geology at Oregon State University, has been named interim dean of OSU’s College of Earth, Ocean, and Atmospheric Sciences.

He succeeds Mark Abbott, who earlier this summer accepted a position as president and director of Woods Hole Oceanographic Institution, effective Oct. 1. Oregon State will launch a national search for a new dean in September, according to Sabah Randhawa, OSU provost and executive vice president.

“I am delighted that Roy has agreed to serve as interim dean,” Randhawa said. “He is known as a leader with integrity and as a bridge builder, and his candidacy generated a great sense of enthusiasm across the College of Earth, Ocean, and Atmospheric Sciences.”

Haggerty has been on the OSU faculty since 1996 and served as head of the geology program from 2003-06 in the Department of Geosciences, before it was merged with the College of Oceanic and Atmospheric Sciences. With more than 100 faculty members and nearly a thousand graduate and undergraduate students the College of Earth, Ocean, and Atmospheric Sciences is one of the largest and strongest programs of its kind in North America.

An expert in hydrology, Haggerty’s research has addressed transport of nutrients, carbon and heat in streams, nuclear waste disposal issues in the United States and Sweden, and other forms of groundwater contamination.

In his two decades at OSU, his work has been supported by more than $9 million in grants and contracts from the National Science Foundation, the Department of Energy, the U.S. Environmental Protection Agency, the U.S.D.A. Forest Service and other organizations. He has taught at all levels, from introductory earth sciences to advanced classes in hydrology.

He is the principal investigator for the Willamette Water 2100 project, sponsored by the NSF, and involving 20 faculty members at OSU, University of Oregon, Portland State University and the University of California, Santa Barbara. The project seeks to understand how climate change, population growth and human activity may affect water scarcity in the Willamette Basin throughout the 21st century.

Haggerty is a graduate of the University of Alberta and has master’s and doctoral degrees in hydrogeology from Stanford University.

Story By: 
Source: 

Sabah Randhawa, 541-737-2111, Sabah.Randhawa@oregonstate.edu;

Roy Haggerty, 541-737-1210, roy.haggerty@oregonstate.edu

Multimedia Downloads
Multimedia: 

 

haggerty

    Interim dean Roy Haggerty

Survey: Oyster industry more sold on ocean acidification impacts than public

CORVALLIS, Ore. – Although some people in the general public remain skeptical about the impacts of ocean acidification, a growing number of professionals who make their living off the ocean have become believers.

A newly published survey found that more than 80 percent of respondents from the United States shellfish industry on the West Coast are convinced that acidification is having consequences – a figure more than four times higher than that of public perception, researchers say. About half of the people in the industry report having already experienced some impact from acidification.

Results of the study, led by researchers at Oregon State University, are being published this week in the Journal of Shellfish Research. It was funded by Oregon Sea Grant.

“The shellfish industry recognizes the consequences of ocean acidification for people today, people in this lifetime, and for future generations – to a far greater extent than the U.S. public,” said Rebecca Mabardy, a former OSU graduate student and lead author on the study. “The good news is that more than half of the respondents expressed optimism – at least, guarded optimism – for the industry’s ability to adapt to acidification.”

The mechanisms causing ocean acidification are complex and few in the shellfish industry initially understood the science behind the issue, noted George Waldbusser, an OSU marine ecologist who has worked with Northwest oyster growers on mitigating the effects of ocean acidification. However, he added, many have developed a rather sophisticated understanding of the basic concepts of carbon dioxide impacts on the ocean and understand the risks to their enterprise.

“Many have seen the negative effects of acidified water on the survival of their juvenile oysters – and those who have experienced a direct impact obviously have a higher degree of concern about the issue,” Waldbusser pointed out. “Others are anticipating the effects of acidification and want to know just what will happen, and how long the impacts may last.”

“Because of some of the success we’ve had in helping some hatcheries adapt to changing conditions, there is a degree of optimism that the industry can adapt,” added Waldbusser, who was Mabardy’s mentor in the College of Earth, Ocean, and Atmospheric Sciences at OSU.

Waldbusser’s colleague Burke Hales has worked with the Whiskey Creek Shellfish Hatchery and others to create a chemical monitoring and treatment regimen for seawater. Waldbusser’s research has shown there is a fine line in how quickly larval oysters must develop their shell at a stage when they are most vulnerable to the corrosiveness of acidified water.

Shellfish industry leaders were asked who should take the lead in responding to the challenges of acidification and their strong preference was the shellfish industry itself, followed by academic researchers. A majority said that any governmental regulations should be led by federal agencies, followed by the state and then local government.

“As a whole, the industry felt that they should be working closely with the academic community on acidification issues,” Waldbusser said. “In the spirit of full disclosure, there were some people who reported a distrust of academics – though without any specifics – so we clearly have some work to do to establish credibility with that subset of the industry.”

Among the other findings:

  • Of those respondents who said they have been affected by ocean acidification, 97 percent reported financial damage, while 68 percent cited emotional stress.
  • The level of concern reported by industry was: 36 percent, extremely concerned; 39 percent, very concerned; 20 percent, somewhat concerned; 4 percent, not too concerned; and 1 percent, not at all concerned.
  • Most respondents felt that ocean acidification was happening globally (85 percent), along the U.S. West Coast (86 percent), and in their local estuary (84 percent).

“One thing that came out of this survey is that we learned that not only is the shellfish industry experiencing and acknowledging ocean acidification,” Mabardy said, “they are committed to learning about the issue and its implications for their business. They want to share their insights as they are forced into action.”

“The next step is to continue shifting conversations about ocean acidification from acknowledgement of the problem, toward solution-oriented strategies,” she added.

Since graduating from OSU, Mabardy has worked at Taylor Creek Shellfish Hatchery in Washington and is now beginning a position as the outreach and project coordinator for the Pacific Coast Shellfish Growers Association.

Story By: 
Source: 

George Waldbusser, 541-737-8964, waldbuss@coas.oregonstate.edu;

Becky Mabardy, beckymabardy@gmail.com

Multimedia Downloads
Multimedia: 

 

 

 

George Waldbusser (near) and Burke Hales of OSU work with the oyster industry on acidification monitoring and mitigation. Photo link: https://flic.kr/p/xn83LK

 

 

 

 

 

 

 

IMG_9452

George Waldbusser (left) and Burke Hales.

 

IMG_9455

Industry leaders are concerned about the impact of ocean acidification on oysters.

Greenhouse gases caused glacial retreat during last Ice Age

CORVALLIS, Ore. – A recalculation of the dates at which boulders were uncovered by melting glaciers at the end of the last Ice Age has conclusively shown that the glacial retreat was due to rising levels of carbon dioxide and other greenhouse gases, as opposed to other types of forces.

Carbon dioxide levels are now significantly higher than they were at that time, as a result of the Industrial Revolution and other human activities since then. Because of that, the study confirms predictions of future glacial retreat, and that most of the world’s glaciers may disappear in the next few centuries.

The findings were published today in Nature Communications by researchers from Oregon State University, Boston College and other institutions. They erase some of the uncertainties about glacial melting that had been due to a misinterpretation of data from some of these boulders, which were exposed to the atmosphere more than 11,500 years ago.

“This shows that at the end of the last Ice Age, it was only the increase in carbon dioxide and other greenhouse gases that could have caused the loss of glaciers around the world at the same time,” said Peter Clark, a professor in the OSU College of Earth, Ocean and Atmospheric Sciences, and co-author on the study.

“This study validates predictions that future glacial loss will occur due to the ongoing increase in greenhouse gas levels from human activities,” Clark said. “We could lose 80-90 percent of the world’s glaciers in the next several centuries if greenhouse gases continue to rise at the current rate.”

Glacial loss in the future will contribute to rising sea levels and, in some cases, have impacts on local water supplies.

As the last Ice Age ended during a period of about 7,000 years, starting around 19,000 years ago, the levels of carbon dioxide in the atmosphere increased from 180 parts per million to 280 parts per million. But just in the past 150 years, they have surged from 280 to about 400 parts per million, far higher than what was required to put an end to the last Ice Age.

The new findings, Clark said, were based on a recalculation of the ages at which more than 1,100 glacial boulders from 159 glacial moraines around the world were exposed to the atmosphere after being buried for thousands of years under ice.

The exposure of the boulders to cosmic rays produced cosmogenic nuclides, which had been previously measured and used to date the event. But advances have been made in how to calibrate ages based on that data. Based on the new calculations, the rise in carbon dioxide levels - determined from ancient ice cores -matches up nicely with the time at which glacial retreat took place.

“There had been a long-standing mystery about why these boulders were uncovered at the time they were, because it didn’t properly match the increase in greenhouse gases,” said Jeremy Shakun, a professor at Boston College and lead author on the study. “We found that the previous ages assigned to this event were inaccurate. The data now show that as soon as the greenhouse gas levels began to rise, the glaciers began to melt and retreat.”

There are other forces that can also cause glacial melting on a local or regional scale, the researchers noted, such as changes in the Earth’s orbit around the sun, or shifts in ocean heat distribution. These factors probably did have localized effects. But the scientists determined that only the change in greenhouse gas levels could have explained the broader global retreat of glaciers all at the same time.

In the study of climate change, glaciers have always been of considerable interest, because their long-term behavior is a more reliable barometer that helps sort out the ups-and-downs caused by year-to-year weather variability, including short-term shifts in temperature and precipitation.

Other collaborators on this research were from the University of Wisconsin, Purdue University, and the National Center for Atmospheric Research. The work was supported by the National Oceanic and Atmospheric Administration and the National Science Foundation.

Story By: 
Source: 

Peter Clark, 541-737-1247

Multimedia Downloads
Multimedia: 

Moraine

Alpine moraine


Exit Glacier
Glacial melting

OSU ranked third nationally in best places to study natural resources

CORVALLIS, Ore. – Oregon State University is ranked third by College Factual in its ranking of “Best Places to Study Natural Resources and Conservation.”

OSU is the only Northwest school on the list. Virginia Tech is ranked No. 1 nationally, followed by the University of Florida at No. 2. Fellow Pacific-12 Conference institution University of California is ranked seventh, while nearby University of California-Davis is eighth.

Oregon State has a national reputation for it natural resource programs. In recent years, it was ranked No. 1 in the nation in conservation biology by the journal, Conservation Biology. The Chronicle of Higher Education recently has ranked the university’s wildlife science program at tops in the nation, and its fisheries science program, second nationally.

The university also has been ranked ninth in the world by QS World University Rankings for its agriculture and forestry programs, which are a significant part of OSU’s natural resources curriculum.

College Factual is a ranking service begun in 2013 that uses outcomes-based data to help guide students in their college selection process. It uses data from the Department of Education and elsewhere to rank programs on overall excellence, affordability, graduation rates, and success of graduates finding jobs.

“Being ranked so highly at a national level is validation for the strong programs we have across the university that educate students and conduct research in the natural resources and conservation areas,” said Selina Heppell, interim head of OSU’s Department of Fisheries and Wildlife in the College of Agricultural Sciences.

“It’s important to recognize the numerous partners we have – on campus and at our Hatfield Marine Science Center in Newport,” she added. “Many of the scientists from state and federal agencies teach and mentor OSU students, providing invaluable experiential learning that really separates Oregon State from many other universities.”

 

Story By: 
Source: 

Selina Heppell, 541-737-9039

Northwest residents should channel fear of earthquake into pragmatic action

CORVALLIS, Ore. – A national news article suggesting that everything in Oregon west of Interstate-5 “would be toast” in a major Cascadia Subduction Zone earthquake certainly drew attention to the seismic reality facing the Pacific Northwest.

The concern, though, is that people are focusing on the most draconian or extreme scenarios, experts say, which can lead to a sense of fatalism. The reaction illustrates the state of earthquake and tsunami preparedness – or lack thereof – in the United States, said Patrick Corcoran, a Sea Grant education and outreach specialist at Oregon State University who works with coastal communities on disaster preparedness.

It’s a matter of feast or famine.

“The Cascadia Subduction Zone has shifted from a science project to a social studies project,” Corcoran said. “We need to find a sweet spot between fear and action. What I try to do is temper the tendency of people to toggle between the poles of ‘it won’t happen here’ and ‘it will be so bad that there’s no use worrying about it.’”

Oregon has been taking some of the first serious steps toward earthquake mitigation, said Scott Ashford, dean of OSU’s College of Engineering and chair of governor-appointed task force on preparation. Recent legislation has resulted in a large increase in funding for K-12 and emergency facility seismic retro-fitting, as well as the creation of a new position – the state’s first Chief Resilience Officer.

Oregon is also working on some of the first tsunami building codes, which likely will be implemented over the next few years.

Oregon State University scientists have been warning Pacific Northwest citizens for more than a quarter of a century about the potential of a major earthquake in the Cascadia Subduction Zone. The subduction of a tectonic plate beneath North America has the potential to trigger an earthquake ranging from  magnitude 8.0, as happened in Chile in 2010, to 9.0 (or greater), which took place in Japan in 2011.

Scientists believe that a magnitude 9.0-plus earthquake, which Corcoran calls “the largest of the large,” would likely trigger a tsunami that could devastate coastal communities, while the earthquake could destroy infrastructure throughout western Oregon and Washington, including roads, bridges, water and sewer lines, and the power grid.

However, he added, the more probable scenario is an earthquake on “the average side of large,” where the damage is less. The best response isn’t necessarily to flee the region, Corcoran said, but to become pro-active in preparing for a disaster.

As residents in Japan, Nepal, Chile and other countries have done, Northwesterners need to learn to live with the realistic threat of an earthquake and tsunami – not ignore the threat and hope they don’t happen.

The best approach, Corcoran says, is to prepare for the “most likely next event” – and that doesn’t necessarily mean the destruction of western Oregon as we know it.

“We don’t insist on the worst-case scenario with driving vehicles,” Corcoran said. “We don’t have a zero-tolerance for car fatalities. We try to do our best to identify and mitigate the risks, but we assume a great deal of risk. We don’t require that all cars be able to hit a brick wall at 100 miles per hour and have passengers unharmed. That’s impractical. We need to consider a similar approach with earthquakes.”

Chris Goldfinger, a professor in OSU’s College of Earth, Ocean, and Atmospheric Sciences and a leading expert on the Cascadia Subduction Zone, estimates that the chances of a major earthquake off the coast from northern California to just south of Astoria are about 24 percent in the next 50 years. “South of Cape Blanco, Ore., the chances increase to about 37 percent,” he added.

Goldfinger said the furor in news reports and on social media about western Oregon becoming “toast” have been misconstrued. The Federal Emergency Management Agency has to prepare for a worst-case scenario as the starting point for its planning, he said, but that doesn’t mean that experts think western Oregon will be destroyed.

So, how big will the next Northwest earthquake be? No one knows. Thus outreach specialists like Corcoran say the prudent thing to do is plan for a range of events. “Discussing the range and likelihood of the next event can bring some air into the room.”

Corcoran said preparation helped save 90 percent of the 200,000 people in the inundation zone during Japan’s 2011 earthquake and tsunami. The Northwest has a much smaller coastal population, he added. On the other hand, Japan was much more prepared for disaster.

“We have to prepare commensurate with the risk,” Corcoran said. “Our society tends to be dismissive of preparation, especially evacuation drills. They are silly, they are embarrassing and it’s usually raining. The only people who actually do drills are high schools and hospitals because they are required to. But drills save lives, as they learned in Japan.”

Communities and individuals can prepare for natural disasters by understanding that they eventually will happen. Once you accept that and actually expect it, Corcoran said, preparation becomes second nature. Strap down water heaters, learn where the shutoff valve for natural gas may be in your house, and have several days of food and water available, he added.

People on the coast living in inundation zones should identify areas of high ground near their homes, work and recreation areas. “Work locally to make them accessible,” Corcoran said, “then conduct practice drills on how to get to them.”

OSU engineering dean Ashford is spearheading an initiative called the Cascadia Lifeline Project that is organizing public utilities, transportation agencies, and others to begin work on how to prepare for life after a major earthquake. Communities need to think about restoring vital services after an earthquake, including power, water, sewer and others.

Ashford testified to Congress in May about the need for public agencies, private businesses and individuals to develop the resilience to withstand an earthquake. He urged Congress to support three federal initiatives:

  • Invest in more resilient transportation networks that will be critical to rescue, relief and recovery efforts following a natural disaster;
  • Partner with states to require seismic resilience of federally regulated utilities that transport liquid fuel through pipelines and supply the majority of a state’s population, such as in Oregon;
  • Invest in applied research to improve earthquake resilience.

“It will take 50 years for us to fully prepare for this impending earthquake,” Ashford said. “We can’t simply go out and replace all of our existing infrastructure. But we can start now, and we can begin to find ways to better retro-fit, replace or repair things after an earthquake.”

Corcoran said most people are not tuned into long-term threats like300-year earthquake cycles. Since people in the Pacific Northwest only recently learned about this major recurring natural disaster, it is natural for some to feel blindsided by the knowledge and not fully embrace it, he added.

Recent media attention has wakened some people to the idea of an earthquake, but it is critical to channel that awareness into positive action, he said.

“As good as our local emergency officials are, they will be overwhelmed by the sheer magnitude of the circumstances when a major earthquake takes place,” Corcoran said. “Preparation must begin with the individual, then focus on mutual aid among neighbors, and finally on public aid and assistance. Businesses, too, must support the safety of their employees and customers.”

Story By: 
Source: 

Pat Corcoran, 503-325- 8573, Patrick.corcoran@oregonstate.edu;

Chris Goldfinger, 541-737-5214, gold@coas.oregonstate.edu;

Scott Ashford, 541-737-5232, scott.ashford@oregonstate.edu

Multimedia Downloads
Multimedia: 













ashford2

Scott Ashford measures ground upheaval in Japan.

 

Toppled building in Concepcion

An earthquake-toppled building in Chile.

 

 

Corcoran_002LK
Patrick Corcoran works with coastal communities.

 

 

Study: Global sea levels have risen six meters or more with just slight global warming

CORVALLIS, Ore. – A new review analyzing three decades of research on the historic effects of melting polar ice sheets found that global sea levels have risen at least six meters, or about 20 feet, above present levels on multiple occasions over the past three million years.

What is most concerning, scientists say, is that amount of melting was caused by an increase of only 1-2 degrees (Celsius) in global mean temperatures.

Results of the study are being published this week in the journal Science.

“Studies have shown that both the Greenland and Antarctic ice sheets contributed significantly to this sea level rise above modern levels,” said Anders Carlson, an Oregon State University glacial geologist and paleoclimatologist, and co-author on the study. “Modern atmospheric carbon dioxide levels are today equivalent to those about three million years ago, when sea level was at least six meters higher because the ice sheets were greatly reduced.

“It takes time for the warming to whittle down the ice sheets,” added Carlson, who is in OSU’s College of Earth, Ocean and Atmospheric Sciences, “but it doesn’t take forever. There is evidence that we are likely seeing that transformation begin to take place now.”

Co-author Peter Clark, an OSU paleoclimatologist, said that because current carbon dioxide, or CO2, levels are as high as they were 3 million years ago, “we are already committed to a certain amount of sea level rise.”

“The ominous aspect to this is that CO2 levels are continuing to rise, so we are entering uncharted territory,” Clark said. “What is not as certain is the time frame, which is less well-constrained. We could be talking many centuries to a few millennia to see the full impact of melting ice sheets.”

The review, which was led by Andrea Dutton of the University of Florida, summarized more than 30 years of research on past changes in ice sheets and sea level. It shows that changes in Earth’s climate and sea level are closely linked, with only small amounts of warming needed to have a significant effect on seal levels. Those impacts can be significant.

Six meters (or about 20 feet) of sea level rise does not sound like a lot. However, coastal cities worldwide have experienced enormous growth in population and infrastructure over the past couple of centuries – and a global mean sea level rise of 10 to 20 feet could be catastrophic to the hundreds of millions of people living in these coastal zones.

Much of the state of Florida, for example, has an elevation of 50 feet or less, and the city of Miami has an average elevation of six feet. Parts of New Orleans and other areas of Louisiana were overcome by Hurricane Katrina – by a surging Gulf of Mexico that could be 10 to 20 feet higher in the future. Dhaka in Bangladesh is one of the world’s 10 most populous cities with 14.4 million inhabitants, all living in low-lying areas. Tokyo and Singapore also have been singled out as extremely vulnerable to sea level rise.

“The influence of rising oceans is even greater than the overall amount of sea level rise because of storm surge, erosion and inundation,” said Carlson, who studies the interaction of ice sheets, oceans and the climate system on centennial time scales. “The impact could be enormous.”

The Science review is part of the larger Past Global Changes, or PAGES, international science team. A working group known as PALSEA2 (Paleo constraints on sea level rise) used past records of local change in sea level and converted them to a global mean sea level by predicting how the surface of the Earth deforms due to changes in ice-ocean loading of the crust, along with changes in gravitational attraction on the ocean surface.

Independently, Greenland and Antarctic ice sheet volumes were estimated by observations from adjacent ocean sediment records and by ice sheet models.

“The two approaches are independent of one another, giving us high confidence in the estimates of past changes in sea level,” Carlson said.  The past climates that forced these changes in ice volume and sea level were reconstructed mainly from temperature-sensitive measurements in ocean cores from around the globe, and from ice cores.

The National Science Foundation supported the research.

Story By: 
Source: 

Anders Carlson, 541-737-3625, acarlson@coas.oregonstate.edu;

Peter Clark, 541-737-1247, clarkp@geo.oregonstate.edu