OREGON STATE UNIVERSITY

college of agricultural sciences

New compounds discovered that are hundreds of times more mutagenic

CORVALLIS, Ore. – Researchers at Oregon State University have discovered novel compounds produced by certain types of chemical reactions – such as those found in vehicle exhaust or grilling meat - that are hundreds of times more mutagenic than their parent compounds which are known carcinogens.

These compounds were not previously known to exist, and raise additional concerns about the health impacts of heavily-polluted urban air or dietary exposure. It’s not yet been determined in what level the compounds might be present, and no health standards now exist for them.

The findings were published in December in Environmental Science and Technology, a professional journal.

The compounds were identified in laboratory experiments that mimic the type of conditions which might be found from the combustion and exhaust in cars and trucks, or the grilling of meat over a flame.

“Some of the compounds that we’ve discovered are far more mutagenic than we previously understood, and may exist in the environment as a result of heavy air pollution from vehicles or some types of food preparation,” said Staci Simonich, a professor of chemistry and toxicology in the OSU College of Agricultural Sciences.

“We don’t know at this point what levels may be present, and will explore that in continued research,” she said.

The parent compounds involved in this research are polycyclic aromatic hydrocarbons, or PAHs, formed naturally as the result of almost any type of combustion, from a wood stove to an automobile engine, cigarette or a coal-fired power plant. Many PAHs, such as benzopyrene, are known to be carcinogenic, believed to be more of a health concern that has been appreciated in the past, and are the subject of extensive research at OSU and elsewhere around the world.

The PAHs can become even more of a problem when they chemically interact with nitrogen to become “nitrated,” or NPAHs, scientists say. The newly-discovered compounds are NPAHs that were unknown to this point.

This study found that the direct mutagenicity of the NPAHs with one nitrogen group can increase 6 to 432 times more than the parent compound. NPAHs based on two nitrogen groups can be 272 to 467 times more mutagenic. Mutagens are chemicals that can cause DNA damage in cells that in turn can cause cancer.

For technical reasons based on how the mutagenic assays are conducted, the researchers said these numbers may actually understate the increase in toxicity – it could be even higher.

These discoveries are an outgrowth of research on PAHs that was done by Simonich at the Beijing Summer Olympic Games in 2008, when extensive studies of urban air quality were conducted, in part, based on concerns about impacts on athletes and visitors to the games.

Beijing, like some other cities in Asia, has significant problems with air quality, and may be 10-50 times more polluted than some major urban areas in the U.S. with air concerns, such as the Los Angeles basin.

An agency of the World Health Organization announced last fall that it now considers outdoor air pollution, especially particulate matter, to be carcinogenic, and cause other health problems as well. PAHs are one of the types of pollutants found on particulate matter in air pollution that are of special concern.

Concerns about the heavy levels of air pollution from some Asian cities are sufficient that Simonich is doing monitoring on Oregon’s Mount Bachelor, a 9,065-foot mountain in the central Oregon Cascade Range. Researchers want to determine what levels of air pollution may be found there after traveling thousands of miles across the Pacific Ocean.

This work was supported by the National Institute of Environmental Health Sciences and the National Science Foundation. It’s also an outgrowth of the Superfund Research Program at OSU, funded by the NIEHS, that focuses efforts on PAH pollution. Researchers from the OSU College of Science, the University of California-Riverside, Texas A&M University, and Peking University collaborated on the study.

Media Contact: 
Source: 

Staci Simonich, 541-737-9194

Multimedia Downloads
Multimedia: 

Grilled meat

Grilled meat

Urban areas tough on fish – but Portland leads way on mitigation

CORVALLIS, Ore. – The restoration of salmon and steelhead habitat in the Pacific Northwest has focused largely on rural areas dominated by agricultural and forested lands, but researchers increasingly are looking at the impact of urban areas on the well-being of these fish.

Metropolitan areas – and even small towns – can have a major impact on the waterways carrying fish, researchers say, but many progressive cities are taking steps to mitigate these effects. The issues, policies and impacts of urban areas on salmon, steelhead and trout are the focus of a new book, “Wild Salmonids in the Urbanizing Pacific Northwest,” published by Springer.

The influx of contaminants and toxic chemicals are two of the most obvious impacts, researchers say, but urban areas can heat rivers, alter stream flows and have a number of impacts, according to Carl Schreck, a professor of fisheries and wildlife at Oregon State University and a contributing author on the book.

“One of the biggest issues with cities and towns is that they have huge areas of compacted surfaces,” Schreck pointed out. “Instead of gradually being absorbed into the water table where the ground can act as a sponge and a filter, precipitation is funneled directly into drains and then quickly finds its way into river systems.

“But urban areas can do something about it,” Schreck added, “and Portland is very avant-garde. They’ve put in permeable substrate in many areas, they’ve used pavers instead of pavement, and the city boasts a number of rain gardens, roof eco-gardens and bioswales. When it comes to looking for positive ways to improve water conditions, Portland is one of the greenest cities in the world.”

The origin of the “Wild Salmonids” book began in 1997, when the Oregon Legislature established the Independent Multidisciplinary Science Team (IMST) to address natural resource issues. In 2010, the group – co-chaired by Schreck – created a report for Oregon Gov. John Kitzhaber and the legislature that provided an in-depth look at the issues and policies affecting salmonid success in Oregon and the influence of urban areas. That report was so well-accepted by Oregon communities, the researchers wrote a book aimed at the public.

The new book, “Wild Salmonids in the Urbanizing Pacific Northwest,” is available from Springer at: http://bit.ly/J5Dn8x. Dozens of scientists contributed to the book, which was edited by Kathleen Maas-Hebner and Robert Hughes of OSU’s Department of Fisheries and Wildlife, and Alan Yeakley of Portland State University, who was senior editor.

“One of the things we’re trying to do is add the social dimension to the science,” said Kathleen Maas-Hebner, a senior research scientist and one of the editors of the book. “The science is important, but the policies and the restoration efforts of communities are a huge part of improving conditions for fish.”

Many Northwest residents are unaware of some of the everyday ways in which human activities can affect water quality and conditions, and thus fish survivability. Products from lawn fertilizers to shampoos eventually make their way into rivers and can trigger algal blooms. Even septic tanks can leach into the groundwater and contribute the byproducts of our lives.

“Fish can get caffeine, perfume and sunblock from our groundwater,” Schreck said. “The water that flows from our cities has traces of birth control pills, radiation from medical practice, medical waste, deodorants and disinfectants. We could go on all day. Suffice it to say these things are not usually good for fish.”

The most effective strategy to combat the problem may be to reduce the use of contaminants through education and awareness, and ban problematic ingredients, Maas-Hebner said.

“Phosphates, for example, are no longer used in laundry detergents,” she said. “Fertilizer and pesticide users can reduce the amounts that get into rivers simply by following application instructions; many homeowners over-apply them.”

Another hazard of urban areas is blocking fish passage through small, natural waterways. Many streams that once meandered are channeled into pipe-like waterways, and some culverts funnel water in ways that prevent fish from passing through, Schreck said.

“If the water velocity becomes too high, some fish simply can’t or won’t go through the culvert,” said Schreck, who in 2007 received the Presidential Meritorious Rank Award from the White House for his fish research.  “Some cities, including Salem, Ore., are beginning to use new and improved culverts to aid fish passage.”

Other tactics can also help. Smaller communities, including Florence, Ore., offer incentives to developers for maintaining natural vegetation along waterways, the researchers say.

Despite the mitigation efforts of many Northwest cities and towns, urban hazards are increasing for fish. One of the biggest problems, according to researchers, is that no one knows what effects the increasing number of chemicals humans create may have on fish.

“There are literally thousands of new chemical compounds being produced every year and while we may know the singular effects of a few of them, many are unknown,” Schreck said. “The mixture of these different compounds can result in a ‘chemical cocktail’ of contaminants that may have impacts beyond those that singular compounds may offer. We just don’t know.

“The research is well behind the production of these new chemicals,” Schreck added, “and that is a concern.”

Media Contact: 
Source: 

Carl Schreck, 541-737-1961; carl.schreck@oregonstate.edu; Kathy Maas-Hebner, 541-737-6105; kathleen.maas-hebner@oregonstate.edu

Multimedia Downloads
Multimedia: 

DeltapondsEugene Delta Ponds, Eugene

riparianCorvallis Corvallis wetland

 

urban pollution sources

New study identifies five distinct humpback populations in North Pacific

NEWPORT, Ore. – The first comprehensive genetic study of humpback whale populations in the North Pacific Ocean has identified five distinct populations – at the same time a proposal to designate North Pacific humpbacks as a single “distinct population segment” is being considered under the Endangered Species Act.

Results of the study are being published this week in the journal Marine Ecology – Progress Series. It was supported by the National Fisheries and Wildlife Foundation, the Office of Naval Research, and the Marine Mammal Endowment at Oregon State University.

The scientists examined nearly 2,200 tissue biopsy samples collected from humpback whales in 10 feeding regions and eight winter breeding regions during a three-year international study, known as SPLASH (Structure of Populations, Levels of Abundance and Status of Humpbacks).  They used sequences of maternally inherited mitochondrial DNA and “microsatellite genotypes,” or DNA profiles, to both describe the genetic differences and outline migratory connections between both breeding and feeding grounds.

“Though humpback whales are found in all oceans of the world, the North Pacific humpback whales should probably be considered a sub-species at an ocean-basin level – based on genetic isolation of these populations on an evolutionary time scale,” said Scott Baker, associate director of the Marine Mammal Institute at Oregon State University’s Hatfield Marine Science Center and lead author on the paper.

“Within this North Pacific sub-species, however, our results support the recognition of multiple distinct populations,” Baker added. “They differ based on geographic distribution and with genetic differentiations as well, and they have strong fidelity to their own breeding and feeding areas.”

Humpback whales are listed as endangered in the United States under the Endangered Species Act, but had recently been downlisted by the International Union for the Conservation of Nature (IUCN) on a global level. However, two population segments recently were added as endangered by the IUCN – one in the Sea of Arabia, the other in Oceania – and it is likely that one or more of the newly identified populations in the North Pacific may be considered endangered, Baker said.

How management authorities respond to the study identifying the distinct North Pacific humpback populations remains to be seen, Baker said, but the situation “underscores the complexity of studying and managing marine mammals on a global scale.”

The five populations identified in the study are:  Okinawa and the Philippines; a second West Pacific population with unknown breeding grounds; Hawaii, Mexico and Central America.

“Even within these five populations there are nuances,” noted Baker, who frequently serves as a member of the scientific committee of the International Whaling Commission. “The Mexico population, for example, has ‘discrete’ sub-populations off the mainland and near the Revillagigedo Islands, but because their genetic differentiation is not that strong, these are not considered ‘distinct’ populations.”

The SPLASH program has used photo identification records to estimate humpback whale populations. The researchers estimate that there are approximately 22,000 humpbacks throughout the North Pacific – about the same as before whaling reduced their numbers. Although recovery strategies have been successful on a broad scale, recovery is variable among different populations.

“Each of the five distinct populations has its own history of exploitation and recovery that would need to be part of an assessment of its status,” said Baker, who is a professor of fisheries and wildlife at OSU. “Unlike most terrestrial species, populations of whales within oceans are not isolated by geographic barriers. Instead, migration routes, feeding grounds and breeding areas are thought to be passed down from mother to calf, persisting throughout a lifetime and from one generation to the next.

“We think this fidelity to migratory destinations is cultural, not genetic,” he added. “It is this culture that isolates whales, leading to genetic differentiation – and ultimately, the five distinct populations identified in the North Pacific.”

Media Contact: 
Source: 

Scott Baker, 541-867-0255 (cell phone: 541-272-0560), scott.baker@oregonstate.edu

Multimedia Downloads
Multimedia: 

humpbacks

OSU Press publishes book on salmon by acclaimed biologist

CORVALLIS, Ore. – For more than 40 years, Jim Lichatowich worked with Pacific salmon as a researcher, resource manager and scientific adviser, and he has seen first-hand the decline of Northwest salmon populations during that time.

In a new book published by the Oregon State University Press, Lichatowich outlines a plan for salmon recovery based on the lessons he has learned during his long career.

His book, “Salmon, People, and Place: A Biologist’s Search for Salmon Recovery,” points out many misconceptions about salmon that have hampered management and limited recovery programs. These programs will continue to fail, he argues, as long as they look at salmon as “products” and ignore their essential relationship with the environment.

Among his suggestions for reforming salmon management and recovery:

  • Holding salmon managers and administrators accountable;
  • Requiring agencies to do more “institutional learning”;
  • Not relying on shifting baselines of data;
  • Undertaking hatchery reform;
  • Returning to place-based salmon management.

John Larison, author of “The Complete Steelheader,” praised the OSU Press book written by Lichatowich. “Part science, part anthropology, part philosophy, this is a revelatory book and essential reading for anyone hoping to understand salmon in the Northwest,” Larison said.

Lichatowich served for years on the Independent Scientific Advisory board for the Columbia River restoration program, as well as on Oregon’s Independent Multidisciplinary Science Team and other science groups in British Columbia and California. He is author of the award-winning book, “Salmon without Rivers: A History of the Pacific Salmon Crisis.”

In his newest book, Lichatowich writes: “We enthusiastically accepted the gift of salmon, but failed to treat it with the respect it deserves. We failed to meet our obligation to return the gift in the way that only humans can. We failed to return the gift of salmon with the gift of stewardship.”

Lichatowich is a graduate of OSU’s Department of Fisheries and Wildlife. He will return to his alma mater in January to present a seminar on his work.

“Salmon, People, and Place” is available in bookstores, online at http://osupress.oregonstate.edu, or can be ordered by calling 1-800-621-2736.

Media Contact: 
Source: 

Micki Reaman, 541-737-4620; Micki.reaman@oregonstate.edu

Multimedia Downloads
Multimedia: 

OSU Press book on salmon

OSU researchers helping China’s rarest seabird rebound from near-extinction

CORVALLIS, Ore. – A collaborative project between researchers in Asia and Oregon has helped establish a new breeding colony for one of the world’s most endangered seabirds – the Chinese crested tern, which has a global population estimated at no more than 50 birds.

Until this year, there were only two known breeding colonies for the critically endangered species (Thalasseus bernsteini) – both in island archipelagos close to the east coast of the People’s Republic of China. Once thought to be extinct, there were no recorded sightings of Chinese crested terns from the 1930s until 2000, when a few birds were rediscovered on the Matsu Islands.

This summer an innovative tern colony restoration began, with assistance from students and faculty in the Department of Fisheries and Wildlife at Oregon State University. Dan Roby, a professor of wildlife ecology at OSU, had previously led efforts to relocate populations of Caspian terns from locations along the Columbia River in Oregon, where the birds were consuming significant quantities of juvenile salmon.

“The problem was different in Oregon than it is in China, but the goal was the same – to alter the habitat in a good location in hopes of creating a breeding colony,” Roby said. “The methods also were similar and based on tern restoration techniques developed by Steve Kress of the National Audubon Society. You have to partially clear an island of vegetation, place decoys there, and attract birds using sound.”

In early May of 2013, an international team did just that on a small island in the Jiushan Islands called Tiedun Dao. Chinese crested terns used to breed on the archipelago a decade ago, increasing the chances that restoration could be successful there, Roby said.

The project team included members from the Xiangshan Ocean and Fishery Bureau, the Jiushan Islands National Nature Reserve, the Zhejiang Museum of Natural History, and OSU’s Department of Fisheries and Wildlife. The team members cleared brush off Tiedun Dao, place 300 tern decoys on the island, and used solar-powered playback systems to broadcast recorded vocalizations of both greater crested terns and Chinese crested terns.

“Greater crested terns are not endangered and when they establish colonies, it sometimes attracts the endangered Chinese crested tern,” Roby pointed out. “We thought if we could get them in to colonize the island, their numbers would eventually grow and the Chinese crested terns might follow.

“We just didn’t expect it to happen that quickly,” Roby added.

The researchers thought it might take years – but by July, a handful of greater crested terns were spotted flying over the decoys. By the end of that month, 2,600 greater crested terns had been documented and hundreds of pairs had laid eggs and begun incubating them. To the surprise of the restoration team, 19 adult Chinese crested terns were spotted on the island and at least two pairs laid eggs.

It was the highest single count of the endangered seabird in one location since the species’ rediscovery in 2000.

By late September – despite typhoons and a late start to the breeding season – more than 600 greater crested tern chicks, and at least one Chinese crested tern chick had successfully fledged.

Local officials say they are committed to the protection of the emerging colony.

“We will do our best to ensure good management of the Jiushan Islands National Nature Reserve and we also hope to receive more support for the conservation of the tern colony here in Xiangshan,” said Yu Mingquan, deputy director of the provincial Xiangshan Ocean and Fishery Bureau.

The success of the colony on Tiedun Dao is a “landmark for contemporary conservation in the region,” said Simba Chan, the senior Asia conservation officer for Birdlife. “No one dared imagine that the first year of such a challenging restoration project would be so successful.”

Funding for the project was provided by numerous sources internationally.

Media Contact: 
Source: 

Dan Roby, 541-737-1955; Daniel.Roby@oregonstate.edu

Multimedia Downloads
Multimedia: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CCT_3696.Roby

 

Sample-0002

OSU’s Seed to Supper program teaches low-budget vegetable gardening

CORVALLIS, Ore. – For many people a sweet carrot pulled from the soil or a spicy pepper picked fresh from the garden isn’t how they get their vegetables, if they get them at all.

The Seed to Supper program, a partnership between Oregon State University’s Extension Service and the Oregon Food Bank, is working to change that. The free, five-week course teaches adults from low-income families how to grow and enjoy their own vegetables, said Pami Opfer, a coordinator for Extension’s Master Gardener Program.

More than 800 people have completed the program, taught in large part by Master Gardeners, in 55 classes since 2013, according to Opfer. This year Seed to Supper has expanded to include Jackson, Josephine, Klamath, Lane, Marion, Polk, Hood River, Tillamook, Umatilla, Morrow, Deschutes, Jefferson and Crook counties.

On a recent evening in Corvallis, a group of 13 people gathered around a table, pulling apart tiny starts of marjoram, parsley and thyme, then picking up bamboo chopsticks to gently tuck them into plastic containers filled with potting soil. Jennifer Klammer, an OSU Extension Master Gardener since 2011, and volunteer Donna Durbin led them through the process.

The two women, who founded a garden at their church that donates more than 2,000 pounds of produce a year to assist local residents in need, took it upon themselves to start the program in Linn and Benton counties in the winter of 2013 after Klammer saw information about Seed to Supper on the food bank’s website.

“Working in the garden and donating food, it seemed like there was a missing link,” Klammer said. “This gives people a sense of control over their food source. It’s especially hard for low-income folks to get high-quality produce. It’s expensive. But if you can grow a salad bowl on your deck and it’s easy, why not?”

Class participant Cindel Mikesell agreed.

“I tell people I know who have balconies and say they can’t garden, ‘Yes, you can,’ Mikesell said.  “I’ve read about a woman in England that grew $5,000 worth of food on her balcony. I’d like to do that.”

Breanne and Bobby Taylor, who brought along their new baby, said they came to the class so they could help Bobby’s aging father manage his garden and to learn time-saving tips that would help them as new parents, who both work full-time and manage a community garden plot.

To help, they’ll receive a 96-page handbook, seeds and starts.

“They have the booklet, which is always a reference,” Durbin said. “And they can always contact the Master Gardeners. People end up feeling connected. Their response has been overwhelmingly positive.”

Participants learn the basics in classes that include lessons in how to build healthy soil and plan, plant, care for and harvest a garden.

Brittney Fry, who enthusiastically jotted notes as the class went on, said she’d shown up because she’s motivated to garden but has never done it before.

“I have a weed patch now,” she said. “I have three small kids, and I’m really excited getting them into it – growing things they’ll love and enjoy.”

Upcoming classes are being held in the following locations:

Linn and Benton counties

Albany: March 19 to April 16

Lebanon: March 10 to April 7

Portland metro area

Portland: March 1-29; April 12 to May 17

Sandy: March 7 to April 4

In other counties, check with your local Master Gardener program.

Media Contact: 
Source: 

Pami Opfer, 541-766-6750

Multimedia Downloads
Multimedia: 

Vegetables

Low-income adults learn to grow their own vegetables in Oregon State University Extension Service’s Seed to Supper program. Photo by Lynn Ketchum.

OSU to host small farms conference Feb. 28

CORVALLIS, Ore. – The 15th annual Oregon Small Farms Conference, which drew 800 people last year, takes place Feb. 28 at Oregon State University.

The event, one of the flagship educational offerings of OSU Extension Service’s Small Farms Program, is geared toward farmers, agriculture professionals, food policy advocates, students, restaurant owners, food retailers and managers of farmers markets. Over the years, participants have learned how to harvest rainwater, market meat products, develop a business plan, sell products to schools, graft vegetables and lease land.

This year, presenters will include farmers, OSU faculty and representatives of agribusiness and government agencies. Five of the speakers, including Jean-Martin Fortier, will conduct full-day sessions.

Fortier founded the organic farm Jardins de la Grelinette near Quebec, which is recognized internationally for its high productivity and profitability using low-tech, high-yield methods of production. A graduate of the McGill School of Environment in Montreal, Fortier is a passionate advocate for strengthening local food systems and has facilitated more than 50 workshops and conferences in Canada, France, Belgium and the United States promoting the idea of micro-scale farming. His session covers Six Figure Farming for Small Plots.

In addition, the Oregon Small Farms Conference will feature 24 workshops, including three in Spanish, on topics that include:

  • Healthier animals, healthier profits;
  • Diversification of orchards and markets;
  • Climate change and perennial fruit and nut production;
  • Marketing farmers markets;
  • Crunching numbers to determine greenhouse costs;
  • Exploring the small farm dream;
  • Advanced plant disease management on organic vegetable farms;
  • New grant opportunities for farmers markets;
  • Impacts of organic certification.

The cost, which includes lunch, is $65 per person or $100 at the door. Registration is open until midnight on Feb. 18. The conference will take place from 7:30 a.m. to 5 p.m. at the LaSells Stewart Center. To register, go to the Small Farms Conference website.

OSU will host a free screening of the documentary “Dryland” at 7 p.m. Friday, Feb. 27 at the conference center.

An after-conference hootenanny with dinner, local beer and cider, and dancing to live music will start at 5 p.m. Tickets are $15 through Feb. 15, and then $20.

Media Contact: 
Source: 

Chrissy Lucas, 541-766-3556

Multimedia Downloads
Multimedia: 

Oregon Small Farms Conference

Everything from how to market farmers markets to the impacts of organic certification will be covered at the Oregon Small Farms Conference at OSU. Photo by Tiffany Woods.

Another reason to drink wine: it could help you burn fat

CORVALLIS, Ore. – Drinking red grape juice or wine – in moderation – could improve the health of overweight people by helping them burn fat better, according to a new study coauthored by an Oregon State University researcher.

The findings suggest that consuming dark-colored grapes, whether eating them or drinking juice or wine, might help people better manage obesity and related metabolic disorders such as fatty liver.

Neil Shay, a biochemist and molecular biologist in OSU’s College of Agricultural Sciences, was part of a study team that exposed human liver and fat cells grown in the lab to extracts of four natural chemicals found in Muscadine grapes, a dark-red variety native to the southeastern United States.

One of the chemicals, ellagic acid, proved particularly potent: It dramatically slowed the growth of existing fat cells and formation of new ones, and it boosted metabolism of fatty acids in liver cells.

These plant chemicals are not a weight-loss miracle, cautions Shay. “We didn’t find, and we didn’t expect to, that these compounds would improve body weight,” he said. But by boosting the burning of fat, especially in the liver, they may improve liver function in overweight people.

“If we could develop a dietary strategy for reducing the harmful accumulation of fat in the liver, using common foods like grapes,” Shay said, “that would be good news.”

The study, which Shay conducted with colleagues at the University of Florida and University of Nebraska, complements work with mice he leads at his OSU laboratory. In one 2013 trial, he and his graduate students supplemented the diets of overweight mice with extracts from Pinot noir grapes harvested from Corvallis-area vineyards.

Some of the mice were fed a normal diet of “mouse chow,” as Shay calls it, containing 10 percent fat. The rest were fed a diet of 60 percent fat – the sort of unhealthy diet that would pile excess pounds on a human frame.

“Our mice like that high-fat diet,” said Shay, “and they overconsume it. So they’re a good model for the sedentary person who eats too much snack food and doesn’t get enough exercise.”

The grape extracts, scaled down to a mouse’s nutritional needs, were about the equivalent of one and a half cups of grapes a day for a person. “The portions are reasonable,” said Shay, “which makes our results more applicable to the human diet.”

Over a 10-week trial, the high-fat-fed mice developed fatty liver and diabetic symptoms – “the same metabolic consequences we see in many overweight, sedentary people,” Shay said.

But the chubby mice that got the extracts accumulated less fat in their livers, and they had lower blood sugar, than those that consumed the high-fat diet alone. Ellagic acid proved to be a powerhouse in this experiment, too, lowering the high-fat-fed mice’s blood sugar to nearly the levels of the lean, normally fed mice.  

When Shay and his colleagues analyzed the tissues of the fat mice that ate the supplements, they noted higher activity levels of PPAR-alpha and PPAR-gamma, two proteins that work within cells to metabolize fat and sugar.

Shay hypothesizes that the ellagic acid and other chemicals bind to these PPAR-alpha and PPAR-gamma nuclear hormone receptors, causing them to switch on the genes that trigger the metabolism of dietary fat and glucose. Commonly prescribed drugs for lowering blood sugar and triglycerides act in this way, Shay said.

The goal of his work, he added, is not to replace needed medications but to guide people in choosing common, widely available foods that have particular health benefits, including boosting metabolic function.

“We are trying to validate the specific contributions of certain foods for health benefits,” he said. “If you’re out food shopping, and if you know a certain kind of fruit is good for a health condition you have, wouldn’t you want to buy that fruit?”

The research was supported by the Institute of Food and Agricultural Science at the University of Florida and Florida Department of Agriculture and Consumer Services. The study appears in the January issue of the Journal of Nutritional Biochemistry.

Shay’s research with mice was supported by the Blue Mountain Horticultural Society, the Erath Family Foundation, and the OSU College of Agricultural Sciences.

Media Contact: 
Source: 

Neil Shay, 541-737-0685

Multimedia Downloads
Multimedia: 

Neil Shay 1

Neil Shay, biochemist and food researcher at Oregon State University, at the university’s research vineyard near Alpine, Oregon. Photo by Lynn Ketchum

OSU to host Willamette Valley Bird Symposium on Jan. 24

CORVALLIS, Ore. – Oregon State University and the American Ornithologists’ Union will host the Willamette Valley Bird Symposium, a one-day event focusing on research and careers in avian biology, on Saturday, Jan. 24, at the Linus Pauling Science Center on the OSU campus.

The symposium is aimed at high school students, teachers and undergraduates. It is also supported by The Audubon Society of Corvallis and the U.S. Geological Survey Forest and Rangeland Ecosystem Science Center. More information is available at: http://www.audubon.corvallis.or.us/wbs.shtml

Eric Forsman, a bird expert from the U.S. Forest Service in Corvallis, will give the keynote talk: “A Thirty-Year Study of Spotted Owls in the Old-Growth Forests of Western Oregon.”

The symposium will feature more than 20 short talks on bird research. Among the topics:

  • Mercury in Willamette Valley riparian songbirds;
  • Snowy plover survival, population and management in Oregon;
  • Effectiveness of backyard wildlife habitats;
  • The Oregon 2020 project of citizen scientists contributing to Oregon bird surveys;
  • New research on Adelie penguins.

Other talks will cover a variety of bird species, including swallows, Aphelocoma jays, Pfrimer’s parakeet, songbirds, seabirds, Caspian terns, bald eagles and common murres. Monitoring technology will be covered in talks on solar-powered cameras, use of drones in ornithology, archival GPS tags on diving seabirds, and other topics.

The symposium runs from 9 a.m. to 4 p.m. It also will feature a live bird exhibition from Chintimini Wildlife Center, demonstrations of ornithological research techniques, and a panel discussion on careers in ornithology.

Media Contact: 
Source: 

Sue Haig, 541-750-0981; willamettebirds15@gmail.com

Why do plankton bloom? The answer could force rethinking of ocean’s food web

CORVALLIS, Ore. – A new study at Oregon State University could overturn conventional wisdom about the role of phytoplankton in the Earth’s carbon cycle, potentially changing scientists’ understanding of how global warming will alter the environment for marine life.

OSU researcher Michael Behrenfeld, an expert in marine plants, is leading a $30 million NASA-funded study of a phytoplankton “hot spot” in a triangle of ocean stretching from Woods Hole, Massachusetts to the Azores and north to Greenland’s southern tip.

Behrenfeld’s team will gather shipboard and in-ocean data from four sea cruises over the course of the five-year study. The two spring cruises will catch the North Atlantic plankton bloom – one of the biggest on the planet – in its most southerly latitude and follow it as it progresses north with the warming weather.

Simultaneously, aircraft will fly near the ship and take measurements of tiny airborne particles called aerosols, which are linked to plankton activity and which also play a big role in the Earth’s energy cycle.  

Phytoplankton – which are an assortment of single-celled plants dwelling in the ocean’s upper layer – are the foundation of the marine food web.

“They are tiny, but they’re extremely abundant,” said Behrenfeld. “If you look at the photosynthesis of all these microscopic plants on a global basis, it’s the equivalent of the photosynthesis of all the plants on land.” 

As they capture sunlight and turn it into sugar, they become food for zooplankton (the animal variety of plankton), which are eaten in turn by other organisms, and so on up the chain.

Phytoplankton are present throughout the world’s oceans and are most abundant in the high latitudes of the northern and southern hemispheres. In these cold, nutrient-rich waters, they typically undergo seasonal population explosions, or blooms.

For decades, scientists have attributed these blooms to springtime increases in sunlight and warming temperatures – much the same seasonal pattern that makes gardens bloom on land. This explanation is based on a limited number of measurements from ships in the early 20th century.

Under this traditional scenario, warmer oceans should produce bigger blooms, which should produce more food for ocean-dwelling life.

Yet satellite images suggest a different story, Behrenfeld said. Sophisticated instruments continuously monitor global plankton populations year-round by measuring shifts in light-wave frequencies that capture changes in phytoplankton abundance. Studying these images a few years ago, Behrenfeld noticed phytoplankton blooming when they shouldn’t have been.

“In the middle of winter, in the worst conditions for growth, we saw that the pigment concentrations actually started to increase,” he said. “That alone tells us that the old hypothesis is incorrect.”

Behrenfeld proposes a different explanation: The blooms are born in early winter, when the ocean’s upper waters – the so-called mixed layer – are agitated by strong winds. They also are churned by a process called thermal convection, in which the top tier of water gets cold and sinks, causing the warmer waters beneath to well up to the surface.

These physical forces cause a deepening of the mixed layer, and this, Behrenfeld believes, gives the phytoplankton room to spread out, making it easier for them to escape being eaten by zooplankton.

“You can think of phytoplankton as the grass and the zooplankton as the grazers – the cows, if you will,” Behrenfeld explained. “The idea is that these strong physical processes deepen the mixing layer and dilute the phytoplankton to such low levels that the zooplankton can’t effectively feed on them.”

He hypothesizes that the phytoplankton take advantage of their competitive edge to out-multiply their grazers and begin a population increase that culminates in a spring bloom.

If the winter turbulence of the ocean is what triggers a plankton bloom, as Behrenfeld believes, and not spring warming, then a warming ocean should produce smaller blooms, reducing photosynthesis and potentially limiting the ocean’s food supply.

The new study will provide the measurements needed to test this hypothesis and compare it to the traditional explanation.

“Our investigation will address two basic questions,” Behrenfeld said. “First, what processes allow the bloom to be recreated each year? And second, how do blooms impact atmospheric aerosols and clouds? By answering these questions, we will be able to make better predictions on how marine ecosystems, including fisheries, will be affected.”

The NASA team includes four other researchers from OSU’s College of Agricultural Sciences (Stephen Giovannoni, Kimberly Halsey, Allen Milligan and Toby Westberry) and scientists from NASA, the Woods Hole Oceanographic Institute and six other U.S. universities. Almost $4 million of the grant funds will go to the OSU team.

Media Contact: 
Source: 

Michael Behrenfeld, 541-737-5289

Multimedia Downloads
Multimedia: 

Michael Behrenfeld

Scientist Michael Behrenfeld is leading a major study that may overturn the accepted theory about plankton blooms. Behrenfeld is a marine botanist at Oregon State University. (Photo by Gail Wells)