OREGON STATE UNIVERSITY

college of agricultural sciences

Oregon Hatchery Research Center to host open house, festival

CORVALLIS, Ore – The Oregon Hatchery Research Center will hold its annual Fall Creek Festival on Saturday, Nov. 1, from 10 a.m. to 4 p.m.

The center, which is jointly operated by the Oregon Department of Fish and Wildlife and the Oregon State University Department of Fisheries and Wildlife, is located 13 miles west of Alsea on Highway 34. The event is free and open to the public.

The center is an important research site for studying similarities and differences between hatchery-raised and wild salmon and steelhead. It is located on Fall Creek, a tributary of the Alsea River.

“There has been a strong run of salmon this year throughout the Northwest, and festival participants should have an opportunity to view a number of fish,” said David Noakes, a professor of fisheries at OSU and science director for the center.

A free lunch will be provided during the festival, which also includes a number of children’s activities and workshops. Workshops begin at both 10:30 a.m. and 2 p.m., with topics including fish printing, water color painting, wire wrap jewelry-making, salmon cycle jewelry, bird house building, and stamping.

Registration for the festival is required since space is limited. Call 541-487-5512, or email oregonhatchery.researchcenter@state.or.us

Media Contact: 
Source: 

David Noakes, 541-737-1953, david.noakes@oregonstate.edu

OSU names Jay Noller new head of crop and soil science

CORVALLIS, Ore. – Oregon State University has selected Jay Noller as the new department head of crop and soil science in the College of Agricultural Sciences.

Noller, a longtime landscape soils professor in the department, starts his new position on Oct. 1. He succeeds Russ Karow, who is retiring and served as department head since 2001.

 “Our research into soil and crops will continue to have a common theme: food. Improving food, creating sustainable conditions to produce food and supporting stakeholders in agriculture and natural resources,” said Noller, who previously served as associate department head under Karow.

“We’re also all about terroir—how food carries its place of origin with it through taste, nutrition and other qualities. We want people to say, ‘This came from Oregon,’” he added.

As department head, Noller has set his sights on increasing the number of undergraduate students, noting the department could double its current enrollment. Students with crop and soil expertise are enjoying increased employment opportunities in farming, conservation, forestry and agricultural support, he said.

“There are jobs in these areas. We can prepare students to immediately launch into the positions and be effective.” Noller said. “There is a crying need for the knowledge and training we provide, especially in agronomic circles.”

Noller will also continue an effort to combine the department’s faculty and labs into a single cohesive unit under the same roof—an ongoing effort since the separate departments of crop and soil science merged in 1990.

Before becoming department head, Noller studied the co-evolution of landscapes and culture, such as soil erosion in relationship with ancient land use in Cyprus and Greece. Digging deep into the soils under Rome recently, Noller concluded the ancient city began as a grain terminal for exporting food around the Mediterranean, Middle East and beyond.

“Jay truly thinks across the broad spectrum in academia – from the liberal arts to the depths of science,” said Karow. “He uses new technologies and knowledge of the environment and plant communities to predict what soil will be—and see what could have been."

Noller is also an accomplished artist, painting the often hidden beauty of underground landscapes. He incorporates soils from around the world into his paintings to add texture and unique colors. To see his artwork, visit http://soilscapestudio.com.

Media Contact: 
Source: 

Jay Noller, 541-737-2821

Multimedia Downloads
Multimedia: 

Jay Noller

Jay Noller incorporates his landscape research and soils from around the world into his celebrated artwork.

Organic and conventional dairies show few differences in cow health and milk

CORVALLIS, Ore. – Cows raised on organic and conventional dairy farms in three regions of the United States show no significant differences in health or in the nutritional content of their milk, according to a new study by Oregon State University researchers and their collaborators.

Many organic and conventional dairies in the study also did not meet standards set by three commonly used cattle welfare programs.

"While there are differences in how cows are treated on organic farms, health outcomes are similar to conventional dairies," said Mike Gamroth, co-author of the study and professor emeritus in OSU's College of Agricultural Sciences. "Few dairies in this study performed well in formal criteria used to measure the health and well-being of cows."

Nearly 300 small dairy farms—192 organic and 100 conventional—in New York, Oregon and Wisconsin participated in the study, which was funded by a $1 million grant from the National Institute of Food and Agriculture in the U.S. Department of Agriculture (USDA).

The five-year project looked at many aspects of dairy cow health, including nutrition, lameness, udder cleanliness, and other conditions. Milk samples were screened for bacteria and common diseases, and farmers were asked about their operations, including the use of veterinarians and pain relief when removing horns from cattle.

Researchers found the following:

  • One in five herds met standards for hygiene, a measure of animal cleanliness;
  • 30 percent of herds met criteria for body condition, which measures size and weight of cows;
  • Only 26 percent of organic and 18 percent of conventional farms met recommendations for pain relief during dehorning;
  • Four percent of farms fed calves recommended doses of colostrum, which helps boost their limited immune systems after birth;
  • 88 percent of farms did not have an integrated plan to control mastitis, a common disease in dairy cattle;
  • 42 percent of conventional farms met standards for treating lameness;
  • Cows on organic farms produced 43 percent less milk per day than conventional non-grazing cattle, the study found, and 25 percent less than conventional grazing herds.

Milk from organic and non-organic herds also showed few nutritional differences, researchers found. Organic milk can occasionally contain more omega-3 fatty acids, which may improve heart health. However, those increases come from seasonal grazing and are not present when cattle are fed stored forage, according to Gamroth.

To become USDA-certified, organic dairy farms must allow cows access to grazing, and the grain cows consume must be grown on land free of pesticides and fertilizers. Organic farmers are not allowed the use of antibiotics, hormones or synthetic reproductive drugs.

"Nearly seven in 10 organic farms previously operated conventional herds, which explains the lack of differences between them," said Gamroth. "Many organic farmers operate in a similar fashion to when they raised conventional herds, from milking procedures, to using the same facilities, to caring for sick cattle."

The study also found more conventional farms (69 percent) used veterinarians than organic dairies (36 percent). Organic dairy farmers often perform their own veterinary work, Gamroth said, because they feel vets do not always know or follow organic standards for care.

Some organic herds in the study also showed a strain of bacteria, commonly known as Strep. ag., that conventional herds eliminated long ago, by using antibiotics.

Organic farms did perform better in some areas of health: cows had fewer hock lesions—injuries to the legs that often form from being housed for long periods. Calves on organic farms were also fed a greater volume of milk and were weaned at an older age than on conventional farms.

Results were based on criteria from three commonly used cattle welfare programs: the American Humane Association's Animal Welfare Standards for Dairy Cattle, Farmers Assuring Responsible Management, and the Canadian Codes of Practice. However, the dairies surveyed for the study were not committed to these standards, said Gamroth.

"Our data shows there is room for improvement in dairies and sets a benchmark to measure progress in the industry," said Gamroth. "We believe adopting animal welfare standards is part of the solution, as are increases to educational efforts to improve the care of cows."

Milk is Oregon’s official state beverage and its fourth-largest agricultural commodity, with dairy farmers grossing $528 million in sales in 2013. The state's dairy industry contributes more than $1 billion to Oregon's economy each year thanks to its approximately 350 dairy farms and 123,000 dairy cows. The study included 24 organic and 24 conventional dairies in Oregon.

Articles from the study have been published in the Journal of Dairy Science and the Journal of the American Veterinary Medical Association.

Other project collaborators include Pamela Ruegg of the University of Wisconsin-Madison, Linda Tikofsky and Ynte Schukken of Cornell University, and Charles Benbrook of the Organic Centre in Oregon.

Media Contact: 
Source: 

Michael Gamroth, 541-231-0928

Multimedia Downloads
Multimedia: 

Organic dairy cow

A Jersey cow heads back to the pasture after evening milking at an organic dairy farm in western Oregon. (Photo by Tiffany Woods.)

Land policy changes would sequester more carbon and conserve habitat

CORVALLIS, Ore. – Rewarding landowners for converting farmland into forest will be key to sequestering carbon and providing wildlife habitat, according to a new study by Oregon State University and collaborators.

Current land-use trends in the United States will significantly increase urban land development by mid-century, along with a greater than 10 percent reduction in habitat of nearly 50 at-risk species, including amphibians, large predators and birds, said David Lewis, co-author of the study and an environmental economist in OSU's College of Agricultural Sciences.

"One of the great challenges of our time is providing food, timber and housing, while also preserving the environment," said Lewis. "Our simulations show our growing appetite for resources could have cascading effects on wildlife and other vital services provided by nature."

"Policymakers have tools to increase tree cover and limit urban sprawl, such as targeted taxes, incentives and zoning," he added.

Paying landowners $100 an acre per year to convert land into forest would increase forestland by an estimated 14 percent and carbon storage by 8 percent by mid-century, the researchers say. Timber production would increase by nearly 20 percent and some key wildlife species would gain at least 10 percent more habitat, they added.

Yet this subsidy program would also shrink food production by 10 percent and comes with an annual $7.5 billion price tag, said Lewis.

Another policy option – charging landowners $100 per acre of land that is deforested for urban development, cropland or pasture – would generate $1.8 billion a year in revenue. More than 30 percent of vital species would gain habitat. Yet carbon storage and food production would shrink slightly, according to the study.

"Price drives how most landowners decide what to do with their property,” Lewis said. “Some choices have market values – such as selling food and timber – and yet others, like sequestering carbon, do not earn money for landowners, who then have less incentive to provide them."

"To reverse loss of habitat and boost carbon storage, the government could provide compensation for services the free market does not currently offer," added Lewis.

However, researchers found neither the tax nor subsidy plan would limit the growth of urban sprawl. Instead, they simulated a prohibition on new urban development – such as building new housing and commercial properties – in rural and non-metropolitan areas.

By 2051, the policy would decrease urban growth by 24 percent in the researchers' simulation, but it would result in smaller gains in habitat and carbon storage than the tax and subsidy.

"There are inherent tradeoffs involved in any policy,” Lewis pointed out. “More urban land comes at the expense of wildlife habitat, and more carbon storage could reduce food production. Understanding these choices can help us prepare for the different shapes our landscapes may take in the future."

Co-authors of the study include researchers from the University of Wisconsin-Madison, University of Washington, University of Minnesota, University of California-Santa Barbara, Bowdoin College, Florida International University, and the World Wildlife Fund.

The study (http://www.pnas.org/content/111/20/7492.full) was published in the Proceedings of the National Academy of Sciences. Funding was provided by grants from the National Science Foundation, and the U.S. Forest Service Pacific Northwest Research Station.

Media Contact: 
Source: 

David Lewis, 541-737-1334

Multimedia Downloads
Multimedia: 

Exurban landscape

Prohibiting new development in certain areas limits urban growth more effectively than targeted taxes and incentives, say OSU researchers. (Photo by Bob Rost.)

Grant to improve STEM success among underrepresented students

CORVALLIS, Ore. – Oregon State University has received a five-year, $1.5 million grant from the National Science Foundation to improve the retention and graduation rates of underrepresented students in science, technology, engineering and mathematics, or STEM fields.

The program will benefit underrepresented minorities, women, and economically disadvantaged individuals, and help address a growing national need for workers trained in STEM disciplines.

Targeted at students in the colleges of science, engineering, and agricultural sciences, the OSU program will use methods proven to increase STEM success, such as small, cohort-based orientation courses; mentoring by student peers; and workshops given by upper-class STEM students.

Faculty-directed undergraduate research in the freshman and early sophomore years, and the immediate post-transfer year for community college students, will also help provide students with enriching experiences that increase learning and provide economic support to help disadvantaged students remain in school.

The program is designed to benefit 276 student participants over its five-year span, and will be evaluated and communicated to other universities, for them to benefit by replicating its successes.

“This should also help build a structure, design and institutional culture of support for STEM students that will be retained long after the funding has ended,” said Kevin Ahern, principal investigator on the grant and a leader in university efforts to get more undergraduate students involved in experiential learning.

Source: 

Kevin Ahern, 541-737-2305

Multimedia Downloads
Multimedia: 

Student research

Student research

Fungi that changed the world featured at Corvallis Science Pub

If you eat bread, drink beer or take antibiotics, thank the fungi that make these things possible. At the Sept. 8 Corvallis Science Pub, Joey Spatafora, a leading fungal biologist, will share the often-bizarre tales of this kingdom of life and reveal how human civilization would be so much poorer without it.

The Science Pub presentation is free and open to the public. It begins at 6 p.m. at the Old World Deli, 341 SW 2nd St. in Corvallis.

“Without fungi, human life would be very different — no beer or cheese; no penicillin or cyclosporin antibiotics,” said Spatafora, professor of botany and plant pathology at Oregon State University. “Our forests would be far less resilient and productive. And we’d be swimming in every manner of waste product.”

Spatafora specializes in fungal evolution and leads an international effort funded by the U.S. Department of Energy to sequence the genomes for 1,000 fungal species. He also led a 10-year study called Assembling the Fungal Tree of Life. Out of the estimated 1.5 million species of fungi, scientists have described only about 100,000.

Sponsors of Science Pub include Terra magazine at OSU, the Downtown Corvallis Association and the Oregon Museum of Science and Industry.

 

Media Contact: 
Source: 

Joey Spatafora, 541-737-5304

Chemistry professors named ACS Fellows

CORVALLIS, Ore.  -  Two professors at Oregon State University have been named as fellows of the American Chemical Society.

Kevin P. Gable,  a professor of chemistry, was honored for the study of chemical processes important to industrial manufacturers of antifreeze, plastics precursors and the pharmaceutical industry. An expert in reaction processes involved in metal-catalyzed oxidations, Gable received his doctorate from Cornell University and has been on the OSU chemistry faculty since 1988. He has also been active in both academic and administrative leadership at OSU and with the ACS.

Robert J. McGorrin, the Jacobs-Root Professor and head of the Department of Food Science and Technology at OSU, was honored for his contributions to food chemistry and more than 35 years of leadership in ACS.  McGorrin, who is a national expert on flavor chemistry and trace volatile analysis, received his doctorate from the University of Illinois and has been on the OSU faculty since 2000. He worked in private industry for 23 years, and while at OSU has helped to greatly expand food science educational and research programs, along with student enrollment.

With more than 161,000 members, the ACS is the world’s largest scientific society and one of the world’s leading sources of authoritative scientific information. The 2014 ACS fellows will be inducted at the national meeting of the organization in San Francisco in August.

Source: 

Debbie Farris, 541-737-862

Multimedia Downloads
Multimedia: 

Robert McGorrin
Robert McGorrin


Kevin Gable

Kevin Gable

OSU joins NASA mission to measure carbon in ocean plants and ecosystems

CORVALLIS, Ore. – As part of a NASA air and sea mission, Oregon State University researchers will measure ocean plants to see how changes in carbon levels could affect the future of fisheries and marine life.

Setting sail from Rhode Island on July 18, the Ship-Aircraft Bio-Optical Research (SABOR) campaign will use new optical instruments to pinpoint carbon levels in phytoplankton – tiny plants that play a critical role in carbon cycling. Phytoplankton absorb carbon dioxide during photosynthesis, distribute it when eaten by fish and other marine life, and then act as a carbon sink when they die and drift into the deep sea.

"Phytoplankton are the base of the marine food web and critical to the overall health of the Earth," said Mike Behrenfeld, one of the SABOR project scientists and a botany and plant pathology professor in OSU's College of Agricultural Sciences. “Changes to these microscopic plants – including the carbon they absorb – can affect an entire ocean, from sardine populations, to the location of native birds, and even to decreases in the survival of marine mammals.

"Understanding changes to phytoplankton biomass and photosynthesis are critical for projecting how oceans will fare in the future and how much of it is related to climate change," added Behrenfeld, who specializes in marine algae research.

The 20-day study has the team sailing and flying around the continental shelf off the East Coast of the United States. SABOR is unique among NASA projects because scientists will measure the ocean from both the air and water and try to find relationships between the two datasets. NASA will use the information to guide future satellite missions for understanding how the ocean and atmosphere are affected by climate.

The expedition will feature a state-of-the-art instrument that Behrenfeld's research team is using to separate phytoplankton from other particles in ocean water, such as bacteria, dead mass, and other types of plankton. The device, known as a sorting flow cytometer, uses a laser to detect phytoplankton in small streams of seawater. It then separates out the tiny plants to be analyzed for carbon. The technique is providing the first direct measurements of organic carbon in phytoplankton, said Behrenfeld.

While the Behrenfeld team is making measurements on the ship, an airplane will be collecting additional data, using an advanced laser system that can penetrate the ocean and measure phytoplankton levels in the upper depths of the water.

“By taking measurements using both the air and water instruments, scientists can gather a more accurate dataset than if they just used one or the other method," said Behrenfeld. "These relationships are the first step toward satellite technology that can provide an improved understanding of ocean ecology and its role in the carbon cycle.

"Eventually, new satellite missions will determine how and why ocean ecosystems are changing and the consequences to fish and the climate," Behrenfeld added.

The Behrenfeld research group is teaming with Kimberly Halsey, a microbiology professor with a joint appointment in OSU's College of Science and the College of Agricultural Sciences, to further understand how changes in phytoplankton numbers are related to their photosynthesis and general health. The two OSU teams include Allen Milligan, Jason Graff, Nerissa Fisher, and Matthew Brown.

SABOR is funded by the Ocean Biology and Biogeochemistry Program at NASA Headquarters, Washington. Project management and support will be provided by the Earth Science Project Office at NASA. Other mission scientists hail from the University of Maine; NASA's Langley Research Center; NASA's Goddard Institute for Space Studies; the City College of New York and others.

Media Contact: 
Source: 

Mike Behrenfeld, 541-737-5289;

Kimberly Halsey, 541-737-1831;

NASA contact: Steve Cole, 202-358-0918

Multimedia Downloads
Multimedia: 

NASA's Endeavor research vessel

NASA's Endeavor will be a floating laboratory for OSU scientists collecting data on carbon in tiny ocean plants. (Photo by Tom Glennon/University of Rhode Island)

NASA's SABOR flight and ship paths

The expected path of the Endeavor (red) and NASA's aircraft (yellow) show how researchers will coordinate measurements from the ocean and air. (Photo by NASA/Goddard Space Flight Center Scientific Visualization Studio)

Questions and answers on pest management from OSU experts

CORVALLIS, Ore. – What to do about garden pests, including insects, plant diseases and weeds, can be a challenge for gardeners who want to effectively manage the pests without damage to the environment and human health.

The question-and-answer series below illustrates a strategy called Integrated Pest Management, a systematic approach to identify pests and use tactics that are cultural, physical, biological or chemical.

The least toxic and effective methods are always considered first, according to Oregon State University researchers Andy Hulting, a weed control specialist, and Gail Langellotto, an entomologist.

Q: How do I know if I have pest problems in my garden?

A: Check your plants regularly for pest damage such as missing leaves, flowers or fruit or changes in color, texture or size. Most plant problems in home gardens are caused by poor growing conditions, temperature extremes, poor water management or compacted soil. Look under leaves and use a flashlight after dark, which is when many insects are active.

Q: How do I identify what is causing the problem?

A: Often it's not a pest, but another problem such as sun scald or nutrient deficiencies. "Don't apply pesticides without understanding the problem you are trying to solve," Langellotto advised. "Many insects are beneficial and actually help gardens grow better. Others do no damage." Some insect pests can be dislodged with simple methods such as shaking the plant or spraying with a high-pressure stream of water.

Your local OSU Extension office and its Master Gardeners can help correctly identify the culprit and at what point in the pest's life cycle it is most susceptible to control measures.

Q: What pest management tool should I use?

A: Integrated Pest Management utilizes a combination of methods to keep pest populations at an acceptable level, with the least toxic and effective first.

  • Cultural methods: Choose healthy plants that are not prone to pest problems, plant them where they will grow well and rotate where annuals are planted to avoid buildup of disease populations.
  • Physical methods: Pull or dig weeds and hand-pick or trap insect pests off of plants. Row covers designed to extend the gardening season have been found to also keep insect pests away from plants.
  • Biological methods: Garden plants can attract beneficial insects, such as parasitic wasps and green lacewings, to help keep pests at bay. Some of the more common ones are alyssum, coreopsis and sunflower.  The flowers of plants in the Apiaceae family (including carrots, parsnips, celery, parsnip, cilantro and dill) are known to be especially good at attracting parasitic wasps and other beneficial insects.

Q: When and how should I use chemical methods?

A: Some pest problems are difficult to manage without chemical pesticides.  However, chemicals can affect human health and be toxic to other organisms. Thus, use them judiciously and only after you are confident you have identified the pest, have chosen an appropriate pesticide, and that other methods are not likely to provide acceptable levels of control.  Read all label directions before choosing and using pesticides in the garden. 

"If you want to utilize biological controls in the garden, avoid broad-spectrum insecticides whenever possible," Langellotto said. "They may help you manage your insect pests, but they also kill other insects they contact, including beneficial ones."

Q: What precautions should I take with chemical pesticides?

A: If you decide to use a chemical, check the label to make sure your intended use or site is included on the label. Then choose one that is least harmful to the environment and to the applicator, specific to the pest and least harmful to beneficial organisms.

Pesticides labeled "Caution" are the least toxic to humans, "Warning" are more toxic, and "Danger-Poison" (with a skull and crossbones), are the most toxic. The law requires that you read the label. Be sure to wear protective clothing, especially eye protection, gloves and long pants.

Pesticides are more concentrated than they used to be, according to Hulting, and are made for very specific uses. "You might need only a fraction of an ounce to treat a large area or number of plants, perhaps less than in previous years," he said. "Don't use more product than the label specifies. More is not better."

Q: Where can I get more specific information?

A: For fact sheets, frequently asked questions and podcasts on pesticide use, check online at http://npic.orst.edu/ or call the National Pesticide Information Center at OSU at 1-800-858-7378.

Media Contact: 
Source: 

Gail Langellotto, 541-737-5175;

Andy Hulting, 541-737-5098

Multimedia Downloads
Multimedia: 

Green lacewing

As green lacewing larvae grow, they benefit gardens by eating immature pests. (Photo by Lynn Ketchum.)

Artisan cheese startups face six-digit costs, finds OSU study

CORVALLIS, Ore. – Aspiring artisan cheese makers should be prepared to shell out at least $250,000 to set up operations, according to an Oregon State University study.

OSU researchers developed a tool for predicting artisan cheese startup and operating costs based on a number of factors, including types of milk (like goat, cow and sheep), cheese types (such as cheddar, blue and mozzarella), labor expenses, creamery location, marketing; and even the fuel needed to transport products to farmers markets.

"We wanted to give cheese entrepreneurs a realistic idea about what they're getting into," said Lisbeth Goddik, a food science and technology professor in OSU's College of Agricultural Sciences and co-author of the study. “In this industry, lack of economic data has sometimes made it difficult to craft a business plan, obtain financing and plan for the future.”

OSU's study is the first to estimate costs for Oregon artisan cheese makers, Goddik pointed out. OSU researchers interviewed large- and small-scale cheese companies in Oregon and studied their expenses.

They found that a large-scale artisan cheese company producing 60,000 pounds a year faces startup costs of $623,874, assuming the company purchases its own processing and aging facilities. First-year operation costs are an additional $620,094, the researchers estimated.

A smaller operation producing 7,500 pounds a year would spend about $267,248 to set up processing and aging operations, with a first-year production cost of $65,245.

"Since profits are unlikely in the first few years, access to sufficient capital is critical to survival," said Cathy Durham, an applied economics professor at OSU who works at OSU's Food Innovation Center in Portland. She also is a co-author of the study.

"Despite the challenges,” Goddik added, “the industry is active.”

In Oregon, the number of artisan cheese manufacturers jumped from three in 1999 to 20 in 2014, according to dairy plant licenses with the Oregon Department of Agriculture (ODA).

OSU's economic model is adaptable so cheese makers around the world can tailor it to their location and account for other attributes that affect cost. OSU researchers have used the tool in consulting with Oregon cheese startups, as well as artisan cheese entrepreneurs from Canada, Europe and New Zealand.

Goddik provides training for all levels of artisan cheese makers, including improvements in product quality, shelf life and safety. She consults closely with them to solve specific challenges and serves as a technical liaison with the ODA's Food Safety Division.

Goddik, Durham and former OSU graduate student Andrea Bouma co-authored the study, which was published in the Journal of Dairy Science. The study was funded by the Eckelman Endowment at OSU.

Media Contact: 
Source: 

Lisbeth Goddik, 541-737-8322; Cathy Durham, 503-872-6671

Multimedia Downloads
Multimedia: 

Artisan cheese

Five-pound rounds of "Sublimity" cheese sit in an aging facility at the Oregon Gourmet cheese plant in Albany, Oregon. (Photo by Lynn Ketchum.)

Artisan cheese

Cheese ages at Goldin Artisan Goat Cheese in Molalla. Oregon is home to 20 artisan cheese manufacturers. (Photo by Tiffany Woods.)