OREGON STATE UNIVERSITY

college of agricultural sciences

OSU scientists part of national APLU report outlining research challenges

CORVALLIS, Ore. – The national Association of Public and Land-grant Universities released a report today outlining six “grand challenges” facing the United States over the next decade in the areas of sustainability water, climate change, agriculture, energy and education.

The APLU project was co-chaired by W. Daniel Edge, head of the Department of Fisheries and Wildlife at Oregon State University. The report is available online at: http://bit.ly/1ksH2ud

The “Science, Education, and Outreach Roadmap for Natural Resources” is the first comprehensive, nationwide report on research, education and outreach needs for natural resources the country’s university community has ever attempted, Edge said.

“The report identifies critical natural resources issues that interdisciplinary research programs need to focus on over the next 5-10 years in order to address emerging challenges,” Edge noted. “We hope that policy-makers and federal agencies will adopt recommendations in the roadmap when developing near-term research priorities and strategies.”

The six grand challenges addressed in the report are: 

  • Sustainability: The need to conserve and manage natural landscapes and maintain environmental quality while optimizing renewable resource productivity to meet increasing human demands for natural resources, particularly with respect to increasing water, food, and energy demands.
  • Water: The need to restore, protect and conserve watersheds for biodiversity, water resources, pollution reduction and water security.
  • Climate Change: The need to understand the impacts of climate change on our environment, including such aspects as disease transmission, air quality, water supply, ecosystems, fire, species survival, and pest risk. Further, a comprehensive strategy is needed for managing natural resources to adapt to climate change.
  • Agriculture: The need to develop a sustainable, profitable, and environmentally responsible agriculture industry.
  • Energy: The need to identify new and alternative renewable energy sources and improve the efficiency of existing renewable resource-based energy to meet increasing energy demands while reducing the ecological footprint of energy production and consumption.
  • Education: The need to maintain and strengthen natural resources education at our schools at all levels in order to have the informed citizenry, civic leaders, and practicing professionals needed to sustain the natural resources of the United States.

 

Three other OSU researchers were co-authors on the report, including Hal Salwasser, a professor and former dean of the College of Forestry; JunJie Wu, the Emery N. Castle Endowed Chair in Resource and Rural Economics; and George Boehlert, former director of OSU’s Hatfield Marine Science Center.

Wu played a key role in the climate change chapter in identifying the need to better understand the tradeoffs between investing now in climate change adaptation measures versus the long-term risk of not adopting new policies.

Edge and Boehlert contributed to the energy chapter, which focuses primarily on renewable energy.

“The natural resources issues with traditional sources of energy already are well-understood,” Boehlert said, “with the possible exception of fracking. As the country moves more into renewable energy areas, there are many more uncertainties with respect to natural resources that need to be understood and addressed. There are no energy sources that do not have some environmental issues.”

Salwasser was an author on the sustainability chapter that identifies many issues associated with natural resource use, including rangelands, forestry, fisheries and wildlife and biodiversity. The authors contend the challenge is to use these resources in a sustainable manner meeting both human and ecosystem needs.

The project was sponsored by a grant from the U.S. Department of Agriculture to Oregon State University, which partnered with APLU and authors from numerous institutions.

-30-

Media Contact: 
Source: 

Dan Edge, 541-737-2810; Daniel.edge@oregonstate.edu

Scientists use DNA to identify species killed during early whaling days

NEWPORT, Ore. – For more than a hundred years, piles of whale bones have littered the beaches of South Georgia Island in the South Atlantic Ocean – remnants of a vast and deadly whaling industry in the early 20th century that reduced many populations of Southern Hemisphere whales to near-extinction.

This week, scientists announced they have used DNA from the bones to identify the species of whales killed at South Georgia, and to link the collection to a likely time period in the catch records. Their findings are being published in the journal Marine Mammal Science.

The study represents the most comprehensive investigation of historic genetic diversity in whales from around the Antarctic region prior to commercial whaling. The researchers attempted to extract DNA from 281 whale bones and were successful in 82 percent of the cases.

Of the 231 samples they identified, the majority (158) were humpback whales. They also documented 51 fin whales, 18 blue whales, two sei whales, and one southern right whale. One of the bones turned out to be from an elephant seal.

“From a preliminary look at the DNA sequences, it appears that there was a high level of genetic diversity in these whales, which is what we’d expect from pre-exploitation samples,” said Angela Sremba, a doctoral student in the Department of Fisheries and Wildlife at Oregon State University and lead author on the study.

“The DNA from the bones has been surprisingly well-preserved, but it is important to capture this information now because the bones are susceptible to further degradation and contamination with age.”

The first commercial whaling station was established on South Georgia in 1904 and more than 175,000 whales were killed during the ensuing 60 years. During the first 10 years of whaling on the island, floating factories – large converted ships anchored in the harbors – were used to process the whales and workers discarded the carcasses into harbors. Many of the bones drifted ashore and remain there today.

Beginning in 1913, the processing of whales caught from the surrounding area shifted primarily to land and became so efficient that even the bones were destroyed. Sremba believes most of the whale bones in the study are from the early period of whaling on the island, from 1904-13.

“The species composition of the bone collection is quite similar to catch records during that time,” she said.

Scott Baker, associate director of Oregon State’s Marine Mammal Institute and co-author on the paper, said whale populations still have not recovered in the Southern Ocean despite an abundance of food.

“The waters around South Georgia Island were productive feeding grounds for great whales before whaling,” Baker said, “yet they have not returned here in any numbers despite nearly 50 years of protection. That suggests the possibility that the local population was extirpated, resulting in the loss of some cultural knowledge about the habitat.”

Sremba, who is based at OSU’s Hatfield Marine Science Center in Newport with Baker, said knowledge of the whales’ genetic diversity captured from these bones is invaluable.

“This unique resource will allow us to compare historical genetic diversity to contemporary populations to assess the potential impact of the 20th-century commercial whaling industry,” she said.

Sremba’s study was supported by a Mamie Markham Research Award through the Hatfield Marine Science Center.

Media Contact: 
Source: 

Angela Sremba, 541-867-0384; Scott Baker, 541-272-0560

Multimedia Downloads
Multimedia: 

Antarctic blue whale ((Photo courtesy of Paul Ensor, with assistance from Canon NZ Community Sponsorship Programme))

Rubber wristbands show pollution in air, water and food

CORVALLIS, Ore. – Oregon State University scientists have created a fashion accessory that doubles as a pollution detector.

Similar in style to the popular wristbands supporting various charitable causes, OSU's new silicone bracelets have a porous surface that mimics a cell, absorbing chemicals that people are exposed to through their environment.

"The wristbands show us the broad range of chemicals we encounter but often don’t know about and may be harming us," said Kim Anderson, a professor in OSU's College of Agricultural Sciences. “Eventually, these bracelets may help us link possible health effects to chemicals in our environment.”

In an OSU experiment, 30 volunteers wore the bracelets for a month. The bracelets soaked up nearly 50 chemical compounds, including traces of fragrances and other personal care products. They also detected flame-retardants, pesticides, caffeine, nicotine, and chemicals from pet flea medicines.

Roofers also wore the wristbands, showing exposure to polycyclic aromatic hydrocarbons, 12 of which are on the Environmental Protection Agency's priority list. The bracelets, however, cannot detect some metals, like lead and chromium, or gases like carbon monoxide.

To extract the pollutants, the users send the bracelets to OSU where they are soaked and shaken in a mix of solvents, which pull chemical compounds into a liquid that can be tested in a lab. Researchers can screen for 1,200 chemicals that may accumulate in the wristbands.

To create the wristbands, OSU scientists modified widely available silicone bracelets – similar to the yellow "Livestrong" bands – by washing them in chemical solvents. The university can make 400 wristbands a week.

The bracelets are not yet available to the public. Anderson's lab is recruiting participants for upcoming studies with the bracelets. Citizen scientists – or nonprofessional scientists – can also propose projects to Anderson's lab at http://citizen.science.oregonstate.edu. The bracelets and testing come with a customized fee. Eventually, OSU researchers may license the bracelets to a company or start their own.

OSU's research was published in the article “Silicone Wristbands as Personal Passive Samplers” in the journal Environmental Science and Technology. The full study, which is available at http://bit.ly/OSU_WristbandStudy, was funded by the National Institute of Environmental Health Sciences, the OSU Food Safety and Environmental Stewardship Program, and the National Institutes of Health.

OSU is also using the bracelets in an ongoing study in New York City to measure the chemical exposure of pregnant women in their last trimester and how that affects their children after birth. The volunteers are wearing the bracelets as well as a traditional air sampling unit, which consists of a 5-pound backpack with a fan and battery.

Test participants prefer the lightweight wristbands, Anderson said, because they don't require energy or maintenance and are easy to wear.

"People are more likely to wear bracelets that are not bulky, expensive or require a lot of preparation,” she said. “The wristbands are small and easy to wear.”

OSU scientists are also using the technology to study pesticide risks in West Africa by placing samplers in irrigation canals and adjacent rivers and recently published a study in the Philosophical Transactions of the Royal Society, available at http://bit.ly/OSU_WAStudy.

Later this year, OSU will hand out the bracelets to West African farmers so they can learn how to reduce their exposure to agricultural chemicals.

Media Contact: 
Source: 

Kim Anderson, 541-737-8501

Multimedia Downloads
Multimedia: 

OSU scientist Kim Anderson

OSU scientist Kim Anderson discovered common silicone wristbands absorb chemicals from air, water and food. (Photo by Stephen Ward.)

Pollution-measuring wristbands

In an OSU experiment, rubber wristbands absorbed almost 50 chemical compounds, including pesticides and caffeine. (Photo by Stephen Ward.)

Researchers find evidence of bighorn sheep on island – now what?

CORVALLIS, Ore. – A research team has found evidence that bighorn sheep inhabited Tiburón Island in the Gulf of California some 1,500 years ago – a surprising find that calls into question just how to manage the population of bighorns that were introduced to the island in 1975.

The experimental introduction almost 40 years ago of what was thought to be a non-native species was intended to create a large breeding population of bighorn sheep at a site safe from predators that could be used to restock bighorn populations on the mainland. The discovery that bighorn sheep previously had lived on the island raises philosophical questions, the researchers say.

They report on the dilemma, which they call “unintentional rewilding,” this week in the journal PLOS ONE.

“This is a microcosm for situations in which animals regarded as non-natives are introduced into an area where they actually lived in the past,” said Clinton Epps, a wildlife ecologist at Oregon State University and co-author on the PLOS ONE article. “There are some interesting implications.

“If, for example, one goal was to restore native habitat and it looked like the introduced animals were having an impact on the flora, the solution might be to remove the animals,” Epps pointed out. “But now you’d have to say, ‘not so fast.’ What is the right thing to do? Does it matter if the animals lived there 10, a hundred, or a thousand years ago?”

The development first began to unfold with the incidental discovery by lead author Ben Wilder of the University of California, Riverside, of a dung mat on the floor of a small cave in the Sierra Kumkaak, a rugged mountain range on the east side of Tiburón Island. Samples of the sheep pellets were sent for DNA sequencing to Oregon State.

“The first thing we had to do was eliminate the possibility that the material had come from deer, mountain goats, domestic sheep or cows, or some other animals,” said Rachel Crowhurst, a faculty research assistant in OSU’s Department of Fisheries and Wildlife. “It closely matched bighorn sheep. Then we used a second genetic marker to compare it to the modern population of bighorns on the island – and it was completely different.”

The OSU researchers determined that the sequences from the bighorn sheep that lived on the island some 1,500 years ago exactly matched sequences from desert bighorn sheep living today in Arizona.

In 1975, 16 female and four male bighorn sheep were introduced to Tiburón Island, which is a large, mostly uninhabited island just off the coast of Sonora Mexico. On the mainland, historical land use had decimated populations of wild bighorn sheep. By the mid-1990s, the Tiburon herd had grown to some 500 animals and was considered one of the most successful large mammal introductions in the world.

As it turns out, this supposed introduction was actually an “unintentional rewilding” – a phrase coined by the authors and a concept that has implications for future research, according to Julio Betancourt, a paleo-ecologist with the United State Geological Survey and co-author on the paper.

“Molecular studies will become more than an afterthought in paleo-ecological studies to address previously unanswerable questions about evolutionary responses to climate change,” Betancourt said.

The research by Epps and Crowhurst was supported by Oregon State University.

Media Contact: 
Source: 

Clint Epps, 541-737-2478; Clinton.Epps@oregonstate.edu

Cows witnessing wolf attacks suffer symptoms similar to PTSD

BURNS, Ore. – Unlike cows that haven't ever had a run-in with wolves, ones that have can experience stress-related illnesses and have a harder time getting pregnant – meaning decreased profits for ranchers, according to a new study by Oregon State University.

"When wolves kill or injure livestock, ranchers can document the financial loss," said Reinaldo Cooke, an animal scientist in OSU's College of Agricultural Sciences. “But wolf attacks also create bad memories in the herd and cause a stress response known to result in decreased pregnancy rates, lighter calves and a greater likelihood of getting sick. It’s much like post-traumatic stress disorder – PTSD – for cows."

After a reintroduction to Yellowstone National Park in the last two decades, grey wolves have dispersed through the West and have hunted in livestock grazing areas. Since then, OSU researchers have heard anecdotes from ranchers that cows that have come in contact with wolves are more aggressive, sickly and eat less.

To measure the stress of a wolf attack on cows – and estimate its lingering effects – researchers simulated a wolf encounter with 100 cows. Half of them had never seen a wolf, and the other half had been part of a herd that was previously attacked on the range.

Cows were gathered in a pen scented with wolf urine while pre-recorded wolf howls played over a stereo. Three trained dogs – German Shepherds closely resembling wolves – walked outside the pen.

Researchers found that cortisol, a stress hormone, increased by 30 percent in cows that had previously been exposed to wolves. They bunched up in a corner, formed a protective circle and acted agitated. Their body temperatures also increased rapidly, another indicator of stress. Yet the cows previously unfamiliar with wolves were curious about the dogs and did not show signs of stress.

Multiple studies from Cooke and other researchers have established a link between cow stress and poor performance traits that can cost ranchers.

A 2010 OSU economic analysis estimated that wolves in northeastern Oregon could cost ranchers up to $261 per head of cattle, including $55 for weight loss and $67 for lower pregnancy rates, according to John Williams, an OSU extension agent in Wallowa County who conducted that study. It can be read online at: http://bit.ly/OSU_WolfCowReport.

"In a herd, if you are not raising calves, your cows are not making you money," said David Bohnert, an expert in ruminant nutrition at OSU's Eastern Oregon Agriculture Research Center in Burns. “With stress likely decreasing the proportion of those getting pregnant and causing lighter calves from those that do, a wolf attack can have negative financial ripple effects for some time.”

Both researchers call for further research into ways of successfully managing both wolves and livestock so they can co-exist.

The wolf-cow simulated encounter study, which was funded by the Oregon Beef Council, was published in the Journal of Animal Science and co-authored by Cooke and Bohnert. The text is available at http://bit.ly/OSU_CowWolfStudy.

Media Contact: 
Source: 

Reinaldo Cooke, 541-573-4083;

David Bohnert, 541-573-8910

Multimedia Downloads
Multimedia: 

Wolf/ cow study

Oregon State University researchers simulated a wolf encounter with German Shepherds to measure stress levels in beef cows. (Photo by Reinaldo Cooke.)

OSU scientist David Bohnert

David Bohnert works with beef cattle at Oregon State University's Eastern Oregon Agriculture Research Center in Burns, Ore. (Photo by Lynn Ketchum.)

Study confirms link between salmon migration and magnetic field

CORVALLIS, Ore. – A team of scientists last year presented evidence of a correlation between the migration patterns of ocean salmon and the Earth’s magnetic field, suggesting it may help explain how the fish can navigate across thousands of miles of water to find their river of origin.

This week, scientists confirmed the connection between salmon and the magnetic field following a series of experiments at the Oregon Hatchery Research Center in the Alsea River basin. Researchers exposed hundreds of juvenile Chinook salmon to different magnetic fields that exist at the latitudinal extremes of their oceanic range. Fish responded to these “simulated magnetic displacements” by swimming in the direction that would bring that toward the center of their marine feeding grounds.

The study, which was funded by Oregon Sea Grant and the Oregon Department of Fish and Wildlife, will be published this month in the forthcoming issue of Current Biology.

“What is particularly exciting about these experiments is that the fish we tested had never left the hatchery and thus we know that their responses were not learned or based on experience, but rather they were inherited,” said Nathan Putman, a postdoctoral researcher in Oregon State University’s Department of Fisheries and Wildlife and lead author on the study.

“These fish are programmed to know what to do before they ever reach the ocean,” he added.

To test the hypothesis, the researchers constructed a large platform with copper wires running horizontally and vertically around the perimeter. By running electrical current through the wires, the scientists could create a magnetic field and control both the intensity and inclination angle of the field. They then placed 2-inch juvenile salmon called “parr” in 5-gallon buckets and, after an acclimation period, monitored and photographed the direction in which they were swimming.

Fish presented with a magnetic field characteristic of the northern limits of the oceanic range of Chinook salmon were more likely to swim in a southerly direction, while fish encountering a far southern field tended to swim north. In essence, fish possess a “map sense” determining where they are and which way to swim based on the magnetic fields they encounter.

“The evidence is irrefutable,” said co-author David Noakes of OSU, senior scientist at the Oregon Hatchery Research Center and the 2012 recipient of the American Fisheries Society’s Award of Excellence. “I tell people: The fish can detect and respond to the Earth’s magnetic field. There can be no doubt of that.”

Not all of the more than 1,000 fish swam in the same direction, Putman said. But there was a clear preference by the fish for swimming in the direction away from the magnetic field that was “wrong” for them. Fish that remained in the magnetic field of the testing site – near Alsea, Ore. – were randomly oriented, indicating that orientation of fish subjected to magnetic displacements could only be attributable to change in the magnetic field.

“What is really surprising is that these fish were only exposed to the magnetic field we created for about eight minutes,” Putman pointed out. “And the field was not even strong enough to deflect a compass needle.”

Putman said that salmon must be particularly sensitive because the Earth’s magnetic field is relatively weak. Because of that, it may not take much to interfere with their navigational abilities. Many structures contain electrical wires or reinforcing iron that could potentially affect the orientation of fish early in their life cycle, the researchers say.

“Fish are raised in hatcheries where there are electrical and magnetic influences,” Noakes said, “and some will encounter electrical fields while passing through power dams. When they reach the ocean, they may swim by structures or cables that could interfere with navigation. Do these have an impact? We don’t yet know.”

Putman said natural disruptions could include chunks of iron in the Earth’s crust, though “salmon have been dealing with that for thousands of years.”

“Juvenile salmon face their highest mortality during the period when the first enter the ocean,” Putman said, “because they have to adapt to a saltwater environment, find food, avoid predation, and begin their journey. Anything that makes them navigate less efficiently is a concern because if they take a wrong turn and end up in a barren part of the ocean, they are going to starve.”

The magnetic field is likely not the only tool salmon use to navigate, however, Putman noted.

“They likely have a whole suite of navigational aids that help them get where they are going, perhaps including orientation to the sun, sense of smell and others,” Putman said.

The Oregon Hatchery Research Center is funded by the Oregon Department of Fish and Wildlife and jointly run by ODFW and Oregon State University.

Media Contact: 
Source: 

Nathan Putman, 205-218-5276; Nathan.putman@oregonstate.edu

David Noakes, 541-737-1953; david.noakes@oregonstate.edu

Multimedia Downloads
Multimedia: 

Putman_Graphical_Abstract

Orientation of

salmon to field

New compounds discovered that are hundreds of times more mutagenic

CORVALLIS, Ore. – Researchers at Oregon State University have discovered novel compounds produced by certain types of chemical reactions – such as those found in vehicle exhaust or grilling meat - that are hundreds of times more mutagenic than their parent compounds which are known carcinogens.

These compounds were not previously known to exist, and raise additional concerns about the health impacts of heavily-polluted urban air or dietary exposure. It’s not yet been determined in what level the compounds might be present, and no health standards now exist for them.

The findings were published in December in Environmental Science and Technology, a professional journal.

The compounds were identified in laboratory experiments that mimic the type of conditions which might be found from the combustion and exhaust in cars and trucks, or the grilling of meat over a flame.

“Some of the compounds that we’ve discovered are far more mutagenic than we previously understood, and may exist in the environment as a result of heavy air pollution from vehicles or some types of food preparation,” said Staci Simonich, a professor of chemistry and toxicology in the OSU College of Agricultural Sciences.

“We don’t know at this point what levels may be present, and will explore that in continued research,” she said.

The parent compounds involved in this research are polycyclic aromatic hydrocarbons, or PAHs, formed naturally as the result of almost any type of combustion, from a wood stove to an automobile engine, cigarette or a coal-fired power plant. Many PAHs, such as benzopyrene, are known to be carcinogenic, believed to be more of a health concern that has been appreciated in the past, and are the subject of extensive research at OSU and elsewhere around the world.

The PAHs can become even more of a problem when they chemically interact with nitrogen to become “nitrated,” or NPAHs, scientists say. The newly-discovered compounds are NPAHs that were unknown to this point.

This study found that the direct mutagenicity of the NPAHs with one nitrogen group can increase 6 to 432 times more than the parent compound. NPAHs based on two nitrogen groups can be 272 to 467 times more mutagenic. Mutagens are chemicals that can cause DNA damage in cells that in turn can cause cancer.

For technical reasons based on how the mutagenic assays are conducted, the researchers said these numbers may actually understate the increase in toxicity – it could be even higher.

These discoveries are an outgrowth of research on PAHs that was done by Simonich at the Beijing Summer Olympic Games in 2008, when extensive studies of urban air quality were conducted, in part, based on concerns about impacts on athletes and visitors to the games.

Beijing, like some other cities in Asia, has significant problems with air quality, and may be 10-50 times more polluted than some major urban areas in the U.S. with air concerns, such as the Los Angeles basin.

An agency of the World Health Organization announced last fall that it now considers outdoor air pollution, especially particulate matter, to be carcinogenic, and cause other health problems as well. PAHs are one of the types of pollutants found on particulate matter in air pollution that are of special concern.

Concerns about the heavy levels of air pollution from some Asian cities are sufficient that Simonich is doing monitoring on Oregon’s Mount Bachelor, a 9,065-foot mountain in the central Oregon Cascade Range. Researchers want to determine what levels of air pollution may be found there after traveling thousands of miles across the Pacific Ocean.

This work was supported by the National Institute of Environmental Health Sciences and the National Science Foundation. It’s also an outgrowth of the Superfund Research Program at OSU, funded by the NIEHS, that focuses efforts on PAH pollution. Researchers from the OSU College of Science, the University of California-Riverside, Texas A&M University, and Peking University collaborated on the study.

Media Contact: 
Source: 

Staci Simonich, 541-737-9194

Multimedia Downloads
Multimedia: 

Grilled meat

Grilled meat

Urban areas tough on fish – but Portland leads way on mitigation

CORVALLIS, Ore. – The restoration of salmon and steelhead habitat in the Pacific Northwest has focused largely on rural areas dominated by agricultural and forested lands, but researchers increasingly are looking at the impact of urban areas on the well-being of these fish.

Metropolitan areas – and even small towns – can have a major impact on the waterways carrying fish, researchers say, but many progressive cities are taking steps to mitigate these effects. The issues, policies and impacts of urban areas on salmon, steelhead and trout are the focus of a new book, “Wild Salmonids in the Urbanizing Pacific Northwest,” published by Springer.

The influx of contaminants and toxic chemicals are two of the most obvious impacts, researchers say, but urban areas can heat rivers, alter stream flows and have a number of impacts, according to Carl Schreck, a professor of fisheries and wildlife at Oregon State University and a contributing author on the book.

“One of the biggest issues with cities and towns is that they have huge areas of compacted surfaces,” Schreck pointed out. “Instead of gradually being absorbed into the water table where the ground can act as a sponge and a filter, precipitation is funneled directly into drains and then quickly finds its way into river systems.

“But urban areas can do something about it,” Schreck added, “and Portland is very avant-garde. They’ve put in permeable substrate in many areas, they’ve used pavers instead of pavement, and the city boasts a number of rain gardens, roof eco-gardens and bioswales. When it comes to looking for positive ways to improve water conditions, Portland is one of the greenest cities in the world.”

The origin of the “Wild Salmonids” book began in 1997, when the Oregon Legislature established the Independent Multidisciplinary Science Team (IMST) to address natural resource issues. In 2010, the group – co-chaired by Schreck – created a report for Oregon Gov. John Kitzhaber and the legislature that provided an in-depth look at the issues and policies affecting salmonid success in Oregon and the influence of urban areas. That report was so well-accepted by Oregon communities, the researchers wrote a book aimed at the public.

The new book, “Wild Salmonids in the Urbanizing Pacific Northwest,” is available from Springer at: http://bit.ly/J5Dn8x. Dozens of scientists contributed to the book, which was edited by Kathleen Maas-Hebner and Robert Hughes of OSU’s Department of Fisheries and Wildlife, and Alan Yeakley of Portland State University, who was senior editor.

“One of the things we’re trying to do is add the social dimension to the science,” said Kathleen Maas-Hebner, a senior research scientist and one of the editors of the book. “The science is important, but the policies and the restoration efforts of communities are a huge part of improving conditions for fish.”

Many Northwest residents are unaware of some of the everyday ways in which human activities can affect water quality and conditions, and thus fish survivability. Products from lawn fertilizers to shampoos eventually make their way into rivers and can trigger algal blooms. Even septic tanks can leach into the groundwater and contribute the byproducts of our lives.

“Fish can get caffeine, perfume and sunblock from our groundwater,” Schreck said. “The water that flows from our cities has traces of birth control pills, radiation from medical practice, medical waste, deodorants and disinfectants. We could go on all day. Suffice it to say these things are not usually good for fish.”

The most effective strategy to combat the problem may be to reduce the use of contaminants through education and awareness, and ban problematic ingredients, Maas-Hebner said.

“Phosphates, for example, are no longer used in laundry detergents,” she said. “Fertilizer and pesticide users can reduce the amounts that get into rivers simply by following application instructions; many homeowners over-apply them.”

Another hazard of urban areas is blocking fish passage through small, natural waterways. Many streams that once meandered are channeled into pipe-like waterways, and some culverts funnel water in ways that prevent fish from passing through, Schreck said.

“If the water velocity becomes too high, some fish simply can’t or won’t go through the culvert,” said Schreck, who in 2007 received the Presidential Meritorious Rank Award from the White House for his fish research.  “Some cities, including Salem, Ore., are beginning to use new and improved culverts to aid fish passage.”

Other tactics can also help. Smaller communities, including Florence, Ore., offer incentives to developers for maintaining natural vegetation along waterways, the researchers say.

Despite the mitigation efforts of many Northwest cities and towns, urban hazards are increasing for fish. One of the biggest problems, according to researchers, is that no one knows what effects the increasing number of chemicals humans create may have on fish.

“There are literally thousands of new chemical compounds being produced every year and while we may know the singular effects of a few of them, many are unknown,” Schreck said. “The mixture of these different compounds can result in a ‘chemical cocktail’ of contaminants that may have impacts beyond those that singular compounds may offer. We just don’t know.

“The research is well behind the production of these new chemicals,” Schreck added, “and that is a concern.”

Media Contact: 
Source: 

Carl Schreck, 541-737-1961; carl.schreck@oregonstate.edu; Kathy Maas-Hebner, 541-737-6105; kathleen.maas-hebner@oregonstate.edu

Multimedia Downloads
Multimedia: 

DeltapondsEugene Delta Ponds, Eugene

riparianCorvallis Corvallis wetland

 

urban pollution sources

New study identifies five distinct humpback populations in North Pacific

NEWPORT, Ore. – The first comprehensive genetic study of humpback whale populations in the North Pacific Ocean has identified five distinct populations – at the same time a proposal to designate North Pacific humpbacks as a single “distinct population segment” is being considered under the Endangered Species Act.

Results of the study are being published this week in the journal Marine Ecology – Progress Series. It was supported by the National Fisheries and Wildlife Foundation, the Office of Naval Research, and the Marine Mammal Endowment at Oregon State University.

The scientists examined nearly 2,200 tissue biopsy samples collected from humpback whales in 10 feeding regions and eight winter breeding regions during a three-year international study, known as SPLASH (Structure of Populations, Levels of Abundance and Status of Humpbacks).  They used sequences of maternally inherited mitochondrial DNA and “microsatellite genotypes,” or DNA profiles, to both describe the genetic differences and outline migratory connections between both breeding and feeding grounds.

“Though humpback whales are found in all oceans of the world, the North Pacific humpback whales should probably be considered a sub-species at an ocean-basin level – based on genetic isolation of these populations on an evolutionary time scale,” said Scott Baker, associate director of the Marine Mammal Institute at Oregon State University’s Hatfield Marine Science Center and lead author on the paper.

“Within this North Pacific sub-species, however, our results support the recognition of multiple distinct populations,” Baker added. “They differ based on geographic distribution and with genetic differentiations as well, and they have strong fidelity to their own breeding and feeding areas.”

Humpback whales are listed as endangered in the United States under the Endangered Species Act, but had recently been downlisted by the International Union for the Conservation of Nature (IUCN) on a global level. However, two population segments recently were added as endangered by the IUCN – one in the Sea of Arabia, the other in Oceania – and it is likely that one or more of the newly identified populations in the North Pacific may be considered endangered, Baker said.

How management authorities respond to the study identifying the distinct North Pacific humpback populations remains to be seen, Baker said, but the situation “underscores the complexity of studying and managing marine mammals on a global scale.”

The five populations identified in the study are:  Okinawa and the Philippines; a second West Pacific population with unknown breeding grounds; Hawaii, Mexico and Central America.

“Even within these five populations there are nuances,” noted Baker, who frequently serves as a member of the scientific committee of the International Whaling Commission. “The Mexico population, for example, has ‘discrete’ sub-populations off the mainland and near the Revillagigedo Islands, but because their genetic differentiation is not that strong, these are not considered ‘distinct’ populations.”

The SPLASH program has used photo identification records to estimate humpback whale populations. The researchers estimate that there are approximately 22,000 humpbacks throughout the North Pacific – about the same as before whaling reduced their numbers. Although recovery strategies have been successful on a broad scale, recovery is variable among different populations.

“Each of the five distinct populations has its own history of exploitation and recovery that would need to be part of an assessment of its status,” said Baker, who is a professor of fisheries and wildlife at OSU. “Unlike most terrestrial species, populations of whales within oceans are not isolated by geographic barriers. Instead, migration routes, feeding grounds and breeding areas are thought to be passed down from mother to calf, persisting throughout a lifetime and from one generation to the next.

“We think this fidelity to migratory destinations is cultural, not genetic,” he added. “It is this culture that isolates whales, leading to genetic differentiation – and ultimately, the five distinct populations identified in the North Pacific.”

Media Contact: 
Source: 

Scott Baker, 541-867-0255 (cell phone: 541-272-0560), scott.baker@oregonstate.edu

Multimedia Downloads
Multimedia: 

humpbacks

OSU Press publishes book on salmon by acclaimed biologist

CORVALLIS, Ore. – For more than 40 years, Jim Lichatowich worked with Pacific salmon as a researcher, resource manager and scientific adviser, and he has seen first-hand the decline of Northwest salmon populations during that time.

In a new book published by the Oregon State University Press, Lichatowich outlines a plan for salmon recovery based on the lessons he has learned during his long career.

His book, “Salmon, People, and Place: A Biologist’s Search for Salmon Recovery,” points out many misconceptions about salmon that have hampered management and limited recovery programs. These programs will continue to fail, he argues, as long as they look at salmon as “products” and ignore their essential relationship with the environment.

Among his suggestions for reforming salmon management and recovery:

  • Holding salmon managers and administrators accountable;
  • Requiring agencies to do more “institutional learning”;
  • Not relying on shifting baselines of data;
  • Undertaking hatchery reform;
  • Returning to place-based salmon management.

John Larison, author of “The Complete Steelheader,” praised the OSU Press book written by Lichatowich. “Part science, part anthropology, part philosophy, this is a revelatory book and essential reading for anyone hoping to understand salmon in the Northwest,” Larison said.

Lichatowich served for years on the Independent Scientific Advisory board for the Columbia River restoration program, as well as on Oregon’s Independent Multidisciplinary Science Team and other science groups in British Columbia and California. He is author of the award-winning book, “Salmon without Rivers: A History of the Pacific Salmon Crisis.”

In his newest book, Lichatowich writes: “We enthusiastically accepted the gift of salmon, but failed to treat it with the respect it deserves. We failed to meet our obligation to return the gift in the way that only humans can. We failed to return the gift of salmon with the gift of stewardship.”

Lichatowich is a graduate of OSU’s Department of Fisheries and Wildlife. He will return to his alma mater in January to present a seminar on his work.

“Salmon, People, and Place” is available in bookstores, online at http://osupress.oregonstate.edu, or can be ordered by calling 1-800-621-2736.

Media Contact: 
Source: 

Micki Reaman, 541-737-4620; Micki.reaman@oregonstate.edu

Multimedia Downloads
Multimedia: 

OSU Press book on salmon