OREGON STATE UNIVERSITY

Researchers seeking to use popular “beach cams” for scientific analysis

07/21/2011

CORVALLIS, Ore. – For 25 years, scientists have employed a network of land-based video cameras called Argus stations to monitor coastal surf zones – including a pioneering station at Newport’s Yaquina Head – in an effort to learn about the ever-changing dynamics of the surf zone.

There are about three dozen Argus stations around the world, and the data they have churned out have led to new revelations about beach formation, erosion, rip currents and other critical features.

Now scientists at Oregon State University and their colleagues are working to incorporate a new resource into the Argus system – the literally hundreds, even thousands of cameras mounted above beaches around the world and used by surfers, beach combers, weather watchers and coastal hazard specialists.

“There has been a proliferation of beach cameras around the world and they’re out there taking pictures constantly, but they don’t necessarily collect the scientific data that can be useful,” said Rob Holman, a professor of oceanography at Oregon State and one of the founders of the Argus system. “We think they can be tweaked into providing data that will let us create a near-shore prediction model based on remote sensing.”

Creating such a model, Holman says, would be “huge.” If scientists can map the bathymetry of a beach, analyze the physics of the waves, and plug in water movement patterns, they could predict storm surges, hurricane inundation, beach formation, dune stability, and dangers from rip currents.

Holman is co-principal investigator on a five-year, $7.5 million grant from the Office of Naval Research that is designed to explore how to meld data from radar, optics and infrared observations to make such a model a reality. OSU’s College of Oceanic and Atmospheric Sciences is partnering with the University of Washington and Woods Hole Oceanographic Institution on the project.

“We know enough about the fluid dynamics of the near-shore to make a model that we think can work,” Holman said. “What is lacking, though, is the input data – especially the bathymetry. The surf zone changes every day and bathymetry is critical for making successful predictions. The lack of such data has always stopped us dead. If we solve that, we should be able to create a model.”

That’s where the beach cameras come in. Holman and his colleagues are working with an Australian company called Coastalwatch that has hundreds of such cameras around the world. Getting those cameras to collect measurable data at timely intervals would be invaluable, he said.

“If we could have, say, 10 well-designed sites along the Oregon coast instead of just the one at Yaquina Head, it might do wonders,” Holman said.

Holman worked on the prototype Argus station at Duck, N.C., in 1986. He and his colleagues “decided on a whim” to leave a camera and video recorder at the beach and return later to see what it would record.

“We used to think that beaches were simple and repetitive,” he said with a laugh. “If we understood the physics of one storm, we knew about all storms. Then we learned about chaos.”

In 1992, OSU installed the first automated Argus system at Yaquina Head near Newport, Ore., where it has collected data ever since. OSU operates 11 Argus systems around the world, and several others are operated by scientists from other institutions internationally.

Oregon State organized the first Argus Workshop to discuss technical issues and advancements, and will host the 10th such workshop in July.