OREGON STATE UNIVERSITY

$4.8 million grant to OSU will enhance tsunami research

02/06/2001

CORVALLIS, Ore. - The National Science Foundation has announced that Oregon State University will receive a $4.8 million, four-year grant to create the world's most sophisticated tsunami wave basin research facility, allowing scientists to better understand these natural disasters, improve warnings and ultimately save lives.

Construction of the new research facility, which will be a significant expansion of the Hinsdale Wave Research Laboratory on the OSU campus, will begin this summer and be complete by late 2002. The award is part of the NSF's $82 million Network for Earthquake Engineering Simulation, or NEES program, which will also support research at the OSU laboratory through at least 2014.

"This new facility will be an enormous step forward for tsunami research, and the knowledge our engineers gain with it should eventually help predict tsunami behavior and save lives all over the world," said Ron Adams, dean of the OSU College of Engineering. "It should also be of special value to citizens of the Pacific Northwest with the clear dangers we face from the Cascadia subduction zone."

Beyond that, Adams said, the facility will connect OSU researchers with ocean, structural, and earthquake engineers throughout the world, enhance education for undergraduate and graduate students, and represents another major step toward OSU's goal of operating a "top 25" engineering program.

This lab not only can conduct new types of experiments, but it will feature advanced computer networking that allows other scientists to design, observe and even control their own experiments from halfway around the world. The very concept of the lab, officials say, is to concentrate resources in one larger, world-class facility and then make it readily, conveniently available for use by scientists anywhere.

"This will be the largest and best tsunami research facility in the world for the next decade or more," said Solomon Yim, a professor of civil engineering and principal investigator on the project. Other OSU grant recipients are Charles Sollitt, director of the Hinsdale Wave Research Laboratory; and Cherri Pancake, professor of computer science and Intel Faculty Fellow.

According to Pancake, the new facility will allow researchers and students to collaborate via the Internet. Detailed images and data from each experiment will be added to an international Tsunami Experimental Databank that will be maintained at the Northwest Alliance for Computational Science and Engineering, or NACSE, located at OSU.

NACSE's powerful data analysis capabilities and high-speed networking connections will make it possible to replay experiments and watch the most important portions in slow-motion.

The databank is the first truly comprehensive repository for experimental information from any type of engineering laboratory.

"Researchers will be able to determine quickly if someone else has already performed the type of experiment they need, gain instant access to an incredibly wide variety of data from those experiments, and download the data for comparing with their own experiments and simulations," Pancake said.

Tsunamis, Yim said, represent complex "nonlinear" natural phenomena whose behavior is difficult to understand and predict. Since tsunamis are sudden and devastating, scientists can't routinely study the real thing. They depend on laboratories, computers and wave basin facilities such as this to "model" tsunami behavior and conduct experiments measuring tsunami impacts on shorelines or man-made structures such as piers and offshore drilling platforms.

The stakes are high. Just in the past 10 years, tsunamis have claimed more than 4,000 lives, and the death toll has the potential to increase as coastal areas become more heavily populated. More than 200 tsunamis are known to have affected the United States since the first records were kept in the 1700s.

For residents of the Pacific Northwest, the problem lies close to home. About 300,000 people live or work in nearby coastal regions, not including a huge influx of tourists. One survey suggested that a great Cascadia subduction zone earthquake and associated tsunami could cost the region between $1.25 billion and $6.25 billion.

Features of the new research laboratory include:

  • An existing wave basin will be expanded to create the first large-scale, shape-controlled, three dimensional tsunami testing facility, allowing for a full range of deep to shallow-water wave testing for ocean, coastal and harbor studies. 
  • A wealth of instrumentation at the new wave basin will include 20 wave gauges, four velocity transducers, 10 underwater cameras, six surface cameras and three microphones, and advances in networking technology will allow researchers to be involved in experiments from remote sites. 
  • The Tsunami Experimental Databank will make data easily accessible for replay and review via the web, improving the cost-effectiveness of future experiments and making it easy to use experimental data to improve computer models for predicting tsunamis. 
  • Both undergraduate and graduate students can participate in studies, as no fewer than 22 scheduled courses at OSU now involve topics that are clearly related to this type of research.

"Our long-term goal with studies such as this is to better understand how tsunamis will behave and react in different types of ocean terrain, depths, distances, and what impacts they will have once they reach land," Yim said. "Ideally, the databank will make it possible to use the information learned from previous experiments almost immediately when an earthquake or underwater landslide occurs and then transmit accurate warnings to people and coastlines that may be affected."

In the future, Yim said, it might also be possible to design tsunami resistant buildings and other structures with a better understanding of the wave forces they may face.