Dave King created a teaching and learning expectations task force charged with “developing a list of (no more than 10) functional expectations our campus has for the process of teaching and learning.”

The committee consisted of Cary Green (Chair), Susie Brubaker-Cole, Cub Kahn, Kathy Becker-Blease, Richard Nafshun, Alfonso Bradoch, Dennis Bennett, Milo Koretsky, Kathy Greaves, and Cheryl Middleton. The committee is grateful to Karren Cholewinski, who provided administrative support for our efforts.

The committee had its initial meeting on May 10th. To accomplish the charge, listening sessions were held with stakeholder groups. The listening sessions were held on Thursday, June 7, 2012, 1-2 pm, Friday, June 8, 2012, 9-10 am, and Monday, June 11, 2012, 4-5 pm. Additional discussion sessions were held with groups of students on May 31, and June 6, 2012.

The task force also developed a survey that was sent to OSU faculty and administrators. Notes from the listening sessions and the results of the survey are provided in the appendices of this report.

Context

We intentionally framed our inquiry as teaching and learning as it occurs across all learning environments, not necessarily as a technology-focused process. Nonetheless, the technology was a recurrent theme in our listening sessions, survey responses, and committee discussions. Our discussions also emphasized that even in the context of technology, the human dimension and affective component of teaching and learning processes are paramount. Finally our intention when we imagine teaching and learning has been to include all settings in which teaching and learning occurs, not just those of the traditional classroom.

Expectations

The following is a list of the teaching and learning expectations we compiled from both the listening sessions and the survey. Expectations contain examples and/or negative examples, the latter of which we hope provide insight into the importance of the expectation.

1. **Frequent feedback**: Students should receive frequent and timely feedback so that they can gauge learning and make adjustments incrementally.
 - Example: Early drafts built into writing assignments
 - Example: Performing test autopsy to understand where students failed to respond correctly
 - Example: Online quizzing or in-class clicker quizzes
2. *Frequent interaction with other students and faculty:* Learning is a social process and thus occurs through meaningful, deliberate interactions in classrooms, out of class work, and co-curricular experiences.

- Example: Collaborative and group work
- Example: The “flipped classroom”: content delivered outside class; in class interactive activities
- Example: Office hours; student/teacher conferences for projects/assignments

3. *Flexible and adaptive learning environments:* Learning environments should appropriately adapt and respond to diverse and evolving student needs. This includes instructional space (on-site or online) that accommodates different teaching approaches and learning assignments—as well as instructional design that takes into account the diverse needs and goals of students.

- Example: Assignments that differentiate learning goals between majors and non-majors as appropriate
- Example: Learning management systems with built-in flexibility
- Negative example: Classrooms with fixed seats and one forward orientation

4. *Active learning:* Students should engage with course content to problem-solve and construct meaning. This is to be distinguished from the relatively passive knowledge-recipient mode of traditional lectures.

- Example: Students grapple with case studies
- Example: Students turn to their neighbor and identify the main idea or most challenging concept discussed in class
- Example: Authentic research projects
- Example: Field work and interaction with communities
- Example: Clickers and pre-lecture online quizzing

5. *Clear articulation of expectations:* Students and faculty should have a shared understanding of learning outcomes and how course (or co-curricular experience) components align with and contribute to these. Additionally, students and faculty should have a shared understanding of performance standards.

- Example: Providing models and rubrics for successful student work
- Negative example: “I don’t know how to describe excellent work for this assignment, but I know it when I see it.”

6. *Teaching for transfer and integration:* Students create transferrable skills and knowledge and make connections between different learning experiences. Students think beyond the midterm or final to how learning will be extended to other courses and learning experiences. This includes making connections across disciplines and transferring knowledge and skills to co-curricular experiences on campus and beyond.
• Example: Experience with professional practice and authentic contexts
• Example: Vertical integration across a given curriculum from introductory to advanced studies; or horizontal integration across different disciplines or areas of the Baccalaureate Core

7. Teaching that fosters reflection and the development of metacognition: Curriculum, pedagogy, and technology require students to become self-guided learners who recognize what they know and don’t know and to develop as increasingly effective and independent learners.

• Example: Adaptive quizzing that requires students to rate their confidence in their answers prior to submitting answers
• Example: Through conversation with peers in the Writing Center, a focus on the writing/learning process (as opposed to just product) develops metacognition and reflection.

8. Access to reliable and consistent technology: In order to deliver high-quality instruction and co-curricular experiences, faculty and students need classroom technologies to be consistent and reliable.

• Negative example: Not all classrooms have the same equipment.
• Example: Effort to streamline clickers
• Example: Reliable infrastructure (so that Blackboard does not go down)

9. Access to fill in gaps in prior knowledge: Academic support services and disciplinary review materials are available in recognition of differing levels of student preparedness and natural gaps in prior knowledge. This applies equally to technology literacy gaps for students and faculty.

• Example: New ALECKS math placement test system with tutorials and interactive materials for review and brush-up
• Example: TAC online tutorials and webinars
• Example: Access to course material from prior courses or prerequisites for brush-ups on content
• Example: Writing Intensive Curriculum writing guides
• Example: Student access to Blackboard for a class completed several quarters prior.
Appendix One

Notes from Listening Sessions
June 6th, 2012
Student Discussion Group #1

What students need to be successful?

• Prompt feedback (1 week?)
• Access to instructors
• Detailed schedules/syllabus- helps to establish clear expectations
• Engaging environment- established through passion and dialogue, not just lecture
• Purposeful exercises- not just busy work meant to kill time
• Some sort of standards for TA’s- some are helpful while others are not
• Students appreciate instructors who connect the material to real world applications
• Required to use Blackboard- its meant to be standard so instructors should use it
• Appreciate turning point clickers- need to have one standard clicker for all of OSU
 o Helps students stay engaged
 o Provides instant feedback to students
 o Can offer insight into sample test questions
• Respect for students- not condescending
• Instructors should not read straight off PowerPoint
 o Lectures should be adding value to the slides, additional info or insight
 o “Notes as you go” or fill in the blank are nice- maintain engagement
• Group projects through Blackboard help with collaborative learning
• Emails and posts to Blackboard help with flow of communication
• Students should be able to make up work missed for excused absences more easily
• Instructors need to establish preferred form of communication
 o Maintaining open lines of communication is essential
June 7, 2012
Listening Session

Moderated by Kathy Becker-Blease, Cheryl Middleton and Susie Brubaker-Cole

Discussion Notes:

- Need to ensure that people who are engaged in creating technology interfaces are engaged in determining appropriate processes.

- There is interest in using technology to enhance basic academic skills such as listening and speaking for English language learners.

- Is there potential for COB students who work on IT audit skills to do some technology audit in this project?

- Expectation that students are able to do collaborative work: doing something hands-on with the aid of technology (either individually or in small groups) rather than see something projected on the screen with which they can’t interact.

- Need for visualization of data, models, and other types of course material (not every student can have her own cadaver).

- How should faculty be engaged in decisions about this so that good decisions are made about what technology brings to bear?

- Technology should create efficiency in use of classroom time and not be a burden.

- Expectation that students can do project-based learning and that projects can engage with a larger community (either online community or local community).

- Expectation that we can create repository of student learning projects that can be shared with other students, future classes, and other communities.

- Students need to be able to collaborate on producing documents (such as enabled by SharePoint).

- Expectation that we can assess student learning and determine the degree to which learning experiences are producing expected learning outcomes.

- Need for evidence based explorations of whether technology is producing outcomes before making large purchasing decisions.

- Governance structure needs to reflect allowance for individual instructor choices in teaching styles and approaches. “Central” does not know best because any technology is only as good the enthusiasm the teacher has for using it.
Effective learning environments provide tools for students to use that reinforce effective learning processes. Example: adaptive flash cards to facilitate memorization. Adaptive flashcards adjust the level of difficulty based on student performance, potentially allowing for more personalized and efficient instruction.

Clickers:
- Student: student interactions and student collaborations.
- Checking attendance.
- Quick formative assessments of learning (I-clickers). Allowing students to self-assess and correct misunderstandings in a timely way.
- Summative assessments through clickers.
- Clickers put students into an active/interactive learning mode rather than listening mode.

Need for stable technology platforms that work in different circumstances. Someone besides the champion needs to evaluate the technology on the table.

There should be opportunities for idea exchange and shared faculty learning about what works and effective approaches to teaching. This should be facilitated by offices like TAC and CTL.

Students need to access faculty notes from lectures (such as PPT slides).

Need for ability to have live demonstration and exploration of concepts in class, rather than relying on quick visual representation in PPT slides. Chalk and chalkboard facilitate appropriate pace.

Students benefit from being able to pace their learning individually, pause for reflection, repeat content when they need a second time through. Need to be able to manipulate course materials and make different components of course content in different formats (readings, chalkboard demonstrations, lectures, PPT notes) interact.

Students appreciate flexibility of scheduling available through asynchronous courses such as Ecampus courses.

Students should have interaction with course concepts and materials in class time; class time should not just be about information transmission.

Lecture capture is problematic because you can’t capture jokes and informal interactions in video in the same way you can live.

Students need sense of personal presence and connection with instructors. Instructors need to be able to gauge the tone and engagement of students in the classroom.

Pen and paper and board and chalk are also technologies that add great value.
June 8, 2012
Listening Session

Moderated by, Cary Green, Cub Kahn and Cheryl Middleton

Discussion Notes:

- Efficiency of setup and implementation of classroom technology was a theme of this conversation
- Adobe Connect software the we use on campus is not an effective in solution for facilitating off-campus communication
- Our campus culture seemed to want to develop a home grown software solution to enable teaching rather than purchase a product that is already on the market.
- There was a brief discussion related concept of faculty sharing lecture notes in an instruction repository. For example, a faculty member who is teaching a course that presumes a certain skill set is present to support higher learning could embed links to the skill set so that student could refresh those skills before moving into more complex course requirements.
- One individual asked “how do you get faculty buy-in to the repository” when there will be some faculty who do not want to use another teachers lecture notes even if they are better. Conversation indicated that students will pass this type of information along to each other even if there is not a repository.
- Scope and Sequence of learning is important and it is a technique that is used in secondary schools but not in higher education. You can go back to previous course material and use it to illustrate a point you are making or the students can go back to previous course material to refresh themselves on a previous concept or skill.
- There need to be clear expectations for teaching and learning.
- One participant shared with the group that she thinks Blackboard is a useful learning management system and TAC is providing good support for Blackboard as a tool that enables interactive instruction, uploads assignments and tracks changes. There are other functionalities that Blackboard has and she wants to make sure that we just don’t move onto another tool without reflecting on what Blackboard does well.
- Using Blackboard, she wants to be able to easily pull up assignment information from the previous year to be able to back track more easily to the comments that she made in the past. This is particularly important when she is working with someone who wants to discuss their grades or is working on an incomplete. Blackboard retention records should align with the with university policy of keeping at least 1 year of student records and assignments.
- OSU gives students a year to make up completes but they are cut off of online access to University/Library resources 1 term after their last registered term. This is problematic for students trying to complete an incomplete grade.
- Lynn Greenough of TAC is compiling a list of all of the functions that faculty think blackboard should do.
- Another participant commented that since the 2011 classroom upgrades to Macs with dual boot the windows side is taking a lot more time for computers to boot up before class. While the
instructor station mac is wonderful for visualization of her photos of sage steeps it is a problem when it is projected to the students. The projected image is bad. Since she does not have a field experience with these students it is important that she be able to interpret the photos for the students with a projected image that is visually effective. She has mentioned this to IT folks and is aware that it is a problem between systems but she needs the issue to be resolved to enhance student learning.

- Another topic that came up was the problem of following another instruction. Students and instructor already in the room are engaged and enthusiastic about the teaching session and that’ wonderful. However, it leaves little time for the instructor coming into the room to setup and make the changes needed for their teaching session. Perhaps a staging centers could be implemented for class set up so that there is a seamless transition from one session to the next.

- OSU needs to be sure that students get value from attending face-to-face class systems.

- The instructor also indicated her the value and quality of conversation regarding teaching that she has gained from programs such as TAC and WIC.

- The session closed with the sentiment that Technology should be a tool for teaching/learning and not run us
Question from a participant from Information services.

Is teaching and learning within a particular time frame?

Comments, it depends on who the audience is. From a student perspective they may want 24x7 access to teaching and learning tools and the faculty member. Distance students might have another timeframe. A discussion ensured that centered on students having access to information 24 hours but not to 24x7 to the instructor.

An expectation might be that faculty post when a student can expect the timeframe for a reply from the instructor and when the instructor is available to them online, i.e. posted office hours.

Faculty member needs to have 24 hours access to the LMS. Additionally when the system goes down after the 8-5 schedule there is a need for support.

Expectation maybe that there is 24-hour access to the tools and information.

Another person asked about when should the faculty member respond. The student should have the expectation that the availability of the instructor is available to them.

E-campus says best practice is response within 48 hours and let students know when you will respond and office hours when you can expect the faculty will respond either in person or virtually.

What expectations should students have that their faculty be available to them by a variety of contact methods that include online and face-to-face.

Expectation students will need to know when they have access to faculty and what the access looks like.

Is there one set of expectations or two regarding student learning, services and access one for on campus and one for off campus?

Expectation for on campus and off are the same but there maybe different ways to facilitate the expectation to on campus and off campus student.

Expectation is that the learning systems facilitate collaboration between students and faculty to promote learning and collaborative project development.

On campus our classrooms have a wide range of access technologies that determines the ability to teach. From white boards and markers to high-end technology.

The group discussed a standardization or baseline of technology that students and faculty could have access to regardless of what classroom they were teaching in.

For example if you are teaching the same class in 3 different classrooms and you have to develop 3 ways of teaching.

Minimum expectation that the faculty and student have access to the technology they want.

What about university provided equipment verses personally owned is there a set of tools and services that the university should provide or facilitate access to? For example having every student purchase clickers or their own laptop.

Expectation students and faculty have access to and support for whatever technology/software OSU decides to utilize. Technology and tools are readily available.
Group engaged in a conversation about students using productivity software for their course assignments and some of the group felt that students lacked knowledge in how to use those tools effectively.

- Expectation that the access to and support for the technology is out available, be it university supported or purchased by a department.

- An example of this need is that there are 4 types of clickers on campus because different departments invest in different products. Students may end up having to purchase more than one clicker to meet program expectation. We need to be aware that the unexpected financial burden on the student.

- One group member presented the concept of departments developing and publishing standards for minimum expectations for students. For example make the International Computing Drivers License ICDL is a requirement for all entering students. Industries are interested in these certifications. Also mentioned the possibility of developing a placement examination for technology training/instruction.

- Expectation is that any technology is available not just for certain departments or the academic departments, but is available for co-curricular department/education for the purpose of developing teaching and learning skills.

- Expectation that our technologies are seamless and able to integrate with each other so they can engage with learning as needed. One spot, one log-in that everyone can engage with and multiple systems integrate well. Moving away from proprietary nature of the technology that is out there.

- Propriety and use of blackboard – at end of term access to student is no longer allowed. All information created by students is lost, unless they copy and paste and download to keep for the future. Be away to export and archive someplace else on line for a certain number of years?

- Not everything is time bound by the 10-week schedule term, for example co-curricular learning

- Is there a focus at OSU on learning how to learn, regardless of the technology?

- Learning Goals for graduates – students develop into life-long learners.

- Expectations students learn how to learn. Does our tool need to be able to address how do I do the basics and learn how to learn?

- Expectation faculty engage the student, show them the value of learning and excite them about learning.

- Part of the bacc core value is the development of citizen of the world. Understanding the interconnectedness of all of their classes, outside class, co-curricular activities. Understanding the global nature of learning.

- Expectation that all students become more information literate and that faculty incorporated how to be information literate into their learning curriculum. Students need to know how to find information to meet their information/research need within their discipline.

- Not everything is course bound or time bound. Create tool that is accessible by any time – anybody.

- Theme in this group is expectation there is a baseline level of technology proficiency for our students to have.

- After a student leaves the university their record of achievement is the transcript. What about tracking learning experiences gained outside the classroom. What if there was a way to create a
e-portfolio that our graduating students so they have access to their work and accomplishments after they leave the University. The concept of E-portfolios is being discussed on other campuses.

- OSU is great in that students have the ability to have minors and create their own interdisciplinary degrees but no synthesis courses that pulling I their minors and major together. For example students could do a capstone project. There may be a need to need to create learning outcomes and determine what it looks like when the student meets those outcomes.

- OSU should be looking at technology neutral ways of meeting learning outcomes. Making sure that the technologies are contributing to the ability to synthesis information and develop critical thinking. Giving the students the same learning experiences no matter what type of technologies they have. Faculty using the best pedagogies and making appropriate use of technology for learning.

- Expectation, All students should be technology literate and information literate.

- One participant informed us that we should talk with the division of student affairs and technology taskforce regarding this project and if there is any overlap between the two taskforces. Tom Kirch is chairing this committee.

- Another participant mentioned the global learning initiative and the work Larry Beckers is doing with the CTL, as well as the international degree program and education abroad. We need improved technologies would enable these courses that are co-taught in another country to really facilitate deep learning. These practices could also be applied to E-learning.

- A graduate student pointed out that in some departments students are required purchase of textbooks and reading of them did not get you any points because you are not tested on any of the material. He considered this a waste of student time and money.

- Expectation is that a faculty member will not require students to purchase required technology or books if they are not used as part of the course and students are not being assessed on content of technology or materials for a grade.
Student Discussion Group #2 – Thursday, May 31, 2012

Moderated by: Dennis Bennett

Resources
- Service Learning
- Advertising campus resources (visible and “discoverable” resources)
- Department resource link (with style guide etc. on website)

Collaborative Relationships
- Establishing relationships within cohorts
- Learning in the Zone of Proximal Development (ZPD)
- Collaboration
 - Between students
 - Between students and faculty

Instructors/Faculty
- Instructors who know material, but engage at the level of the student
- Instructors who have time for students
- Opportunities to interact with faculty outside of classroom (office hours are intimidating)
- Clear expectations from instructors

Learning Methods
- Variety of instructional methods
- Curriculum that flexes to student input
- Opportunities for self-directed learning & research (better preparation for graduate school)
- Movies (visual learning)
- Well crafted assignments
- Reading list out of class curriculum
- More interdisciplinary learning
- Exposure to professional side (more internship opportunities)

Other
- Not huge lecture halls
- More opportunities for teachers to evaluate colleagues
Appendix Two

Survey Results
Learning Management Systems Survey Report

Last Modified: 06/20/2012

1. I am:

<table>
<thead>
<tr>
<th>#</th>
<th>Answer</th>
<th>Response</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Teaching faculty</td>
<td>92</td>
<td>66%</td>
</tr>
<tr>
<td>2</td>
<td>Research faculty</td>
<td>30</td>
<td>21%</td>
</tr>
<tr>
<td>3</td>
<td>Professional faculty</td>
<td>11</td>
<td>8%</td>
</tr>
<tr>
<td>4</td>
<td>Administrator</td>
<td>7</td>
<td>5%</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>140</td>
<td>100%</td>
</tr>
</tbody>
</table>

2. I teach:

<table>
<thead>
<tr>
<th>#</th>
<th>Answer</th>
<th>Response</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>On-site</td>
<td>94</td>
<td>67%</td>
</tr>
<tr>
<td>2</td>
<td>Online</td>
<td>8</td>
<td>6%</td>
</tr>
<tr>
<td>3</td>
<td>Both on-site and online</td>
<td>24</td>
<td>17%</td>
</tr>
<tr>
<td>4</td>
<td>Neither, I don’t teach</td>
<td>15</td>
<td>11%</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>141</td>
<td>100%</td>
</tr>
</tbody>
</table>
As you consider high quality teaching and effective learning, please think of teaching and learning in the broadest sense. Different activities, processes, and interactions vary in importance across different settings. We would like you to consider as many settings as possible when answering these questions. Please consider those activities, processes, and interactions that are important for high-quality learning that occur outside the formal curriculum (for example, undergraduate research, service learning, internships, student clubs and organizations), as well as those occurring in distance learning, and on-campus classrooms, laboratories, and studios.

3. Given the broad context described above, what types of activities, processes, and interactions are important for rigorous and high-quality teaching and learning at OSU? Examples might include “Effective learning requires extensive interaction among students and between the students and teacher,” or “Effective learning requires frequent feedback.”

<table>
<thead>
<tr>
<th>Text Response (These responses have not been edited for grammar or spelling.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>"Effective learning requires extensive interaction among students and between the students and teacher."</td>
</tr>
<tr>
<td>"Effective learning requires frequent feedback."</td>
</tr>
<tr>
<td>A repeated approach to like content from multiple perspectives is effective.</td>
</tr>
<tr>
<td>Ability to provide the students visual clips of the docking of molecules to macromolecules at a site they can access easily after seeing this in lecture. For undergraduate research one of the greatest problems is finding blocks of time sufficient to complete experiments and it would help if we could develop videos demonstrating lab techniques that would allow them to learn these on their own schedule. Making the most effective use of the times they have available to work in lab with adequate supervision.</td>
</tr>
<tr>
<td>Any activity that will engage (involve) the learner is proven to be more effective than lecture only.</td>
</tr>
<tr>
<td>Assessment is key. Demands for online courses to have all their assessments online compromise this absolutely important aspect of high-quality teaching, and threaten the integrity of OSU courses.</td>
</tr>
<tr>
<td>Both examples would apply. In some disciplines, hands-on, in-the-field exercises are very important. Use of video can partially suffice for field-based examples. Interaction with professionals at distant locations would be helpful.</td>
</tr>
<tr>
<td>Both extensive interaction and frequent feedback are important.</td>
</tr>
<tr>
<td>Both of the examples given ("Effective learning requires extensive interaction among students and between the students and teacher," and "Effective learning requires frequent feedback.") hold. However, in order to achieve those goals, administration needs to understand that "doing more with less" is not going to work. Class sizes need to be reduced to improve learning.</td>
</tr>
<tr>
<td>Creating a community where people are comfortable testing out new ideas with each other. Having access to equipment to test ideas. Being able to develop agency so providing an instructional setting where it isn't about being judged by authority in a right/wrong, pass/fail way but the teacher is instead a mentor to guide and help with agency.</td>
</tr>
<tr>
<td>Creating an engaging experience for students in the classroom and finding relevant applications outside of the classroom are essential to effective teaching/learning.</td>
</tr>
<tr>
<td>Effective course-level learning requires clear articulation of expectations and supportive infrastructure for delivery</td>
</tr>
</tbody>
</table>
and staging of course content. Effective program-level learning requires intentional integration of the curriculum and co-curriculum, including vertically within a program (eg Core, major) and horizontally across the various components of the student experience.

Effective instructors should be able to integrate high-tech (e.g., using cutting-edge teaching software, and learning how to communicate with students using social media) and high-touch (e.g., letting them meet leaders in the field, the public, remembering individual student’s names, matching their career goals with additional opportunities for service learning) approaches in as many aspects in their teaching as possible.

Effective learning (mastery and competency of subject matter) requires face-to-face instruction and mentoring. In my opinion, online learning reflects the same mindset responsible for the debacle that is "no child left behind"; a mindset that suggests simple memorization and regurgitation of materials equals success. In having to use Blackboard as a class resource, it is obvious Blackboard was designed without much faculty input. So much of Blackboard processes makes more work than it saves time.

Effective learning and production of quality reports requires that students and teachers alike are conversant with the tools needed to produce and publish, photographs, videos and audio and interactive digital media. Short courses over weekends or between terms should be offered to all (faculty, staff and students) at minimal cost so that the technology being used does not become a distraction from the content being studied. Perhaps, one four hour block a week could be set aside with no formal classes offered and at these times all the labs on campus would be offering various tutorial opportunities. Students could be required to take competency performance tests on software required in certain classes--before they could enroll. This would really elevate the learning and sharing of learning from those sections.

Effective learning can vary widely among individuals. The main factors for successful learning depend on the course level, material covered, style of learner and goals for the students in the course. Each course should incorporate opportunites for peer interaction, student teacher interaction and frequent feedback. Some students require a high degree of guidance and interaction, and some students function independtly with minimal supervision. The key to providing rigorous and high-quality teaching lies in assessing each class and each student in an independent manner.

Effective learning includes frequent communication between teacher and students for clarification of assignments and engagement in the class. While students do not need gold stars to encourage them in college they need to experience enthusiasm in both the teaching and their responses to the teaching.

Effective learning requires access to tools that support such learning. Whether it be standard tools such as MS Office/iWork packages (ie spreadsheet/presentation software), access to and knowledge of tools to manage the discovery and research process, or tools that support group work online (ie. gotomeeting) and in person, all students (ecampus/on-site) and all types of learners in all disciplines need this access and an opportunity to use them effectively.

Effective learning requires activities that allow students to interact with one-another, express their learning and ideas and make connections between what they learn and the broader world.

Effective learning requires an enthusiastic interaction between teachers and students in a blended learning environment.

Effective learning requires diversity in activities to accommodate varied learning styles, and frequent high-quality interaction among students and teachers.

Effective learning requires efficient and reliable protocols for distance interactions.

Effective learning requires extensive interaction among students and between students and teachers.

Effective learning requires extensive interaction among students, between the students and teacher and between the students and content of the class.

Effective learning requires frequent feedback and clear instructions -- particularly in online courses.

Effective learning requires frequent feedback and extensive interaction between students and teacher. Effective learning requires individual quite time spend with the material without interruption. Effective learning is improved by interaction among students. Effective learning requires knowledge transfer from other classes. Effective learning requires integrating knowledge and not only learning for exams. Effective learning requires
Effective learning requires frequent feedback. Effective learning requires students to encounter skills and concepts in a variety of contexts - learning to transfer what they know into unfamiliar situations and settings. Effective learning requires metacognition - students must be able to reflect on their own learning, and make adjustments as settings, situation, audience, etc. demand. Effective learning requires students to have access to help, that they get from peers, that they get from teachers, that they access independently.

Effective learning requires hands-on experience in my discipline.

Effective learning requires hands-on experience with real-world examples or in professional settings. Effective learning requires application of skills and knowledge for retention. Effective learning requires instilling a motivation for engaging with the material.

Effective learning requires hands-on experience; also, teaching is a great way to reinforce acquired knowledge.

Effective learning requires high quality teaching and research computing facilities. Computers classrooms should be kept up to date with hardware and software. Computer classroom should not have to compete in a lottery format (TRF) for funding but should be placed on a consistent budget.

Effective learning requires prepared students that understand what the expectations are and are interested and invested in their own learning.

Effective learning requires repetition and relevancy to their lives.

Effective learning requires significant effort on the part of the student struggling with unfamiliar concepts and/or methodologies to achieve ends. Learning further requires synthetic integration of the new knowledge into an overall intellectual construct in which the faculty is a facilitator. Effective teaching (by the faculty) requires high expertise in their chosen field, frequent interaction with the students in contexts including exposition of new knowledge (i.e., lecture), discussion (in and out of class), and application (as in thought provoking assignments). Ideally testing is not needed except as a measuring technique to ensure the student is learning and to allow the teacher to assign a grade signifying something like "A: the student exhibited superior ability to demonstrate proficiency in the intended course learning outcomes when tested" or "C: the student was able to demonstrate adequate proficiency in some of the intended CLOs", etc. Therefore, effective teaching and learning requires a partnership to be formed between an expert in a field and an able student strongly committed to the topic (interested, intellectually able, willing to do hard work) to occur. The best aid to effective teaching and learning at OSU would be to: i-decrease student/faculty ratio to enable sufficient time for effective interactions, ii-eliminate less able students that take up disproportionate amounts of teaching/learning time with pointless discussion (same as i?), iii-ensure that faculty have time to engage in effective interaction with higher end students (e.g., effectively working with a PhD student takes 4x more effort an MS student and an MS student takes 10x times more than a senior undergraduate, etc, and therefore someone that has 5 PhD students should be exempted from undergraduate teaching)(same as i?).

Effective learning requires significant interaction between the teacher and the students, between and among students, engaging in activities outside of traditional classroom settings particularly hands-on and service learning activities.

Effective learning requires strong communication between the learner and the instructor/facilitator. Effective learning requires clear goals and solid measurable objectives. Effective learning requires an environment conducive to learning and free of distractions (e.g. comfortable chairs, temperature is pleasant, effective lighting, sufficient space, technology that works).

Effective learning requires sustained contact between student and teacher, scaffolded instruction and engaged students.

Effective learning requires that instructors consider what type of outcome the student is looking for. It is important to bring the real world into the conversation by introducing real people from the area being studied so the students can see an embodiment of their goal.

Effective learning requires that teacher and students have regular access to basic classroom technologies. This includes stereo equipment, an LCD projector, computer, and document camera. Unfortunately not every building on campus meets these requirements. Ensuring that every building on campus has these basic necessities is
High level of interaction between all parties. Additionally, effective teaching and learning requires that both teachers and students have digital access to electronic journals pertinent in their field of study. Currently, there are major gaps in electronic journal access in my field (either limited or no access) which severely hinders student progress in research classes, and hinders my ability to remain current and productive in my field.

Effective learning requires the ability for teachers and students to gather in a learning-centered community. This means having technology that is a useful tool in the learning process (i.e. doc cams, computers with internet connected to projectors) but not having technology just for the sake of technology (i.e. Starboards, which are completely useless and a waste of money and space). Learning happens as a result of positive relationships between teachers and students collaboratively.

Effective learning requires the ability to use a multitude of media types so you can impact students who learn by different methods (sight, sound, touch).

Effective learning requires: extensive interaction between students-content, students-instructor, students-students. Frequent specific feedback is essential in writing classes. For effective progress in writing, students need the opportunity to submit several drafts at different stages and get feedback from classmates and instructor. Effective learning in writing frequently involves research. Working with the OSU Library Instructional Faculty aids student learning. The ability to get feedback from the OSU Writing Center is valuable. Students benefit from opportunities to discuss ideas and concepts and see how this works in the broader world. All of these (and more) take place either in the classroom on campus or the online classroom.

Effective teaching requires ... Well organized classes with challenging work to engage the interest of students with potential to deeply and honestly learn.

Effective teaching requires that the instructor build interest, motivation, and high expectations for the students. One to one, or small group environments are much more useful than large lectures for achieving this.

E-Technology in classrooms that allows projection of high resolution powerpoints, ease of playing DVD, etc. Current systems are slower than 3 yrs ago and do not 'talk' to Microsoft format readily. Quick log-on access to Vslely Lib resources, improved menue to access e-journals & e-databases. Blackboard functions that allow dialog among faculty and students or groups of students within a class.

Face to face contact between teacher and student: relationships are essential; also inspiration to excel.

Face to face teaching, honest criticism, starting with what students think they are interested in, and standards in grammar, analytical thinking, and stretching the student mind.

Faculty support staff

Frequent and timely feedback. Real time discussions that allow students to learn from each other.

Frequent interaction is required among students as well as between students and faculty. Effective learning and teaching requires feedback.

Good interaction with students who care and want to learn, and not just getting a degree for the sake of the letters behind their name. We need adequate time and facilities, as well as supplies.

Good learning rarely happens in a vacuum. If a student only has his or her own input, they can memorize what they hear and see, and come to some conclusions, but there is no testing of these until there is interaction—with an instructor, other learners, friends, people in the community and so on. Anything that fosters interactions leads to more effect learning—these can be discussion sessions, online challenge questions, assignments that involve thinking outside of their own head, and many other kinds of interactions. Learning also happens when information is applied in some way, such as through examining samples or studies, group projects, a guided research paper, etc. etc.

Hands-on experience, interactions among students with diverse backgrounds, dialog between students and instructors, feedback and revision processes for projects and writing, challenging opportunities/high expectations.

High level of energy and engagement by the teacher, and same for the student; hence, open enthusiastic teaching and committed students, inviting Q&A periods during class, input/feedback from students, and student discussion/break-out groups.

High level of interaction between all parties. high level of mutual communication group/collaborative
High quality learning requires preparation, interaction, "intelligent design", and easy access to information.

I believe that teaching is both a science and an art. There are clearly some empirically validated teaching techniques (e.g. online pre-lecture quizzes) and many that have mixed results depending on how they are used and how enthusiastic the instructor is (e.g. clickers). OSU should consider empirical research, not just what students or faculty *think* are necessary for effective teaching and learning. We should also consider faculty's preferences and resource constraints in considering what is effective. Many things would be possible in a course of 25, but in a class of 300+, some high-quality, effective practices are not supported (e.g. frequent, personalized feedback, extensive interaction between instructor and students.) That said, in general, high quality, rigorous teaching and learning includes:

- Activities that are within students' ability level. In large classes, this can mean activities that adapt to students' abilities, or the provision of extra/remedial help (e.g. Supplemental Instruction). When too much help is provided, our highest achieving students are actually harmed. For example, strong readers create structure as they read and listen. When books or lecturers add the structure for poor readers/listeners, strong readers cannot create their own structure, and they end up with impoverished understanding.
- Activities that are thoughtfully chosen by the instructor of record. Not administration or student preferences. Activities that the faculty member chooses to meet a specific need.
- Feedback that increase's students awareness of what they know and don't know, and what processes work (elaboration as a study technique) and those that don't (rehearsal as a study technique).
- Efficient mechanisms for dealing with unusual situations (e.g. DAS exams, incompletes, emergencies). A way to post grade information securely (e.g. Blackboard gradebook).
- Time on task. Students are, in general, need a great deal of support in structuring their study time and actually studying. Self-regulated learning. This is a "real world" skill. No boss is going to tell you how long to spend on something, tell you how to do it, and give you a rubric for evaluating the product. We need activities that require real-world applicable skills.

Retrieval practice. Empirical research clearly indicates that practicing retrieving information is more effective than re-reading, highlighting, recopying notes, etc. Students need to understand that they can adjust their techniques and effort to get better results. This is a huge practical problem right now. A quarter isn't much time for a student to adjust and improve, and some students are simply not able to do college-level work, and no amount of effort will change that before they are asked to leave the university. Interaction between students is not necessary, especially for some classes. Group work and other processes requiring students to engage with each other have downsides. Even short, low or no stake activities have downsides: they are hostile to introverts, they tend to bog down the highest performing group member, and there is the potential to learn incorrect information from peers. A deference to students' learning styles or other preferences is harmful. Instead, OSU should focus on those activities that work for everyone. Faculty and students need reliable technology. In many classrooms at OSU, faculty routinely encounter: poor lighting/burnt out bulbs/no electricity; slow computers, particularly booting on the PC side in classrooms; broken DVD players; overheated projectors; bugs with the clickers; etc. It seems unwise to invest in learning to use any technology that may or may not work all classrooms.

I think effective learning requires enthusiasm, collaboration, and interaction between students (and their teacher) as well as frequent assessments and timely feedback.

In engineering, effective learning of concepts requires doing. Engineering courses, particularly upper division, require projects and extensive faculty interaction.

- Individual interaction with peers and faculty; small group interaction with the same.
- Interaction between students and teacher, connecting the dots for the students, making real-world connections for the students between the theory and practice.
- Interactive engagement timely feedback

Internships and hands-on activities.
It is pretty clear that students need to have direct interaction with the material in order to learn. The actual implications depend, of course, on the topic of study. Passive learning is a contradiction in terms. Also, it is beneficial to the students to have several different avenues of interaction.

Much assigned work (e.g., reading, analysis and summaries, problem sets, essays and paper writing, information/literature searches). Valid assessment (grading and feedback) of completed work. Iteration (performance, evaluation and feedback, repeated performance, evaluation and feedback, etc.)

Much cognitive research shows that students need to process information effortfully and, in thinking about the information, make mental connections with other things they know.

My student/participants are here briefly and return to their home countries. Mechanisms for forming groups to keep in touch with "alumni" of our programs would be valuable to me, along with ability to continue to share work and projects across the world. Survey tools (like this one) for pre-program planning are also essential. Being able to tracking progress in non-traditional ways -- such as keeping an on-line portfolio of projects and assignments is useful. Also good tools for maintaining a database of volunteers who interact with our students and of volunteer organizations which can host them are useful.

need interaction between faculty and students. Clickers are a good way in large classes, which I teach. However, we need reliable equipment and software that easily interfaces with Blackboard (or other system that is adopted). The current Clicker (Turning Point) and Blackboard are mostly compatible by about 20% or time, it does not record the activity properly.

no comment

Student learning requires student engagement. I believe student learning is not only from a direction instruction from an instructor but also interactions among students.

Students learn effectively through hands-on experience, interact with teachers, as well as peers and other students, and the community. Real-world assignments are as vital as assignments based on teaching theories. Students also need effective feedback that provides them with constructive criticism.

Students need to be able to seek clarification on information provided.

Suuport, reward, academic freedom and freedom of structure and opportunities; varying from well working smart classrooms, to flexibility in learning tools used, and support for experimeneting in classes beyond what exists in current syllabi.

Technological tools can enhance interactions among members of the learning community (fac & students) however the "person-time" still has to be invested to keep those interactions rich.

The two statements you provide on effective learning are important. Effective learning incorporates the use of technology, experiential learning/teaching, and interactions that happen outside of the physical classroom. Helping both professors/instructors and students know how to use of various technologies and programs expands the learning environment.

We need effective tools to promote interaction between teachers and students

Wow, this has to be the most open-ended question ever. Should I just keep typing until I answer the question, or just just give a short, one-off blurb like the two examples you've provided? survey fail on page 2

Writing, and feedback on writing use of question and answer sessions in the classroom -- forcing students to think and come up with answers
4. What teaching and learning-related tools do you use in your class and how do you use them to help your students learn? Examples of teaching and learning tools include social networking technologies, simulations, digital gaming, document reader, Smart board, audience response system, survey tool, Google docs, podcasts, and SharePoint.

<table>
<thead>
<tr>
<th>Text Responses (These responses have not been edited for grammar or spelling.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>a little of all but not reliant on any one tool except for dialog.</td>
</tr>
<tr>
<td>audience response system: for attendance tracking as part of the grading criterion and to gauge student understanding of the material</td>
</tr>
<tr>
<td>audio and video system, social networking, etc.</td>
</tr>
<tr>
<td>Blackboard</td>
</tr>
<tr>
<td>Blackboard -- post grades, deliver announcements, collect and grade assignments, post PPT slides, deliver answer keys to students immediately after the exam. Publisher-supplied LMS including simulations, adaptive quizzes, interactive activities, etc. -- reading quizzes, homework, added exercises for struggling students, reports on students’ quizzes are used to plan lecture and in-class tests. Email - Communication with students and TAS</td>
</tr>
<tr>
<td>Doc Cam -- demonstrate how to take notes, display student work, show students how to fill out a scantron personal iphone -- I get email on my personal phone. If there is a problem in a large class (e.g. an answer key has an error), I find out quickly and post an announcement.</td>
</tr>
<tr>
<td>Blackboard for document delivery, collecting assignments, some "quiz" like testing, and posting grades Audience response system for in class testing</td>
</tr>
<tr>
<td>Blackboard is sufficient for me at this time.</td>
</tr>
<tr>
<td>Blackboard is very helpful in allowing me to put up material I will cover ahead of time and provide supplementary explanations</td>
</tr>
<tr>
<td>Blackboard, adobe, surveymonkey</td>
</tr>
<tr>
<td>Blackboard, clicker</td>
</tr>
<tr>
<td>Blackboard, data analysis software, interactive websites</td>
</tr>
<tr>
<td>Blackboard, digital video,</td>
</tr>
<tr>
<td>Blackboard, Google docs, Google sites, extensive numerical simulation tools</td>
</tr>
<tr>
<td>Blackboard, podcasts, video teaching tools, interactive discussion boards, survey tools</td>
</tr>
<tr>
<td>Blackboard, Power Point, demonstrations</td>
</tr>
<tr>
<td>chalk and board, always</td>
</tr>
<tr>
<td>Chalk board and laptop projector. I think the old-fashioned way of taking notes from a chalkboard (or dry erase board) is still the best way to study math/physics-based material.</td>
</tr>
<tr>
<td>Currently I use clickers. I am investigating using other items as mention above next year.</td>
</tr>
<tr>
<td>Different art materials in describing visually the perceived world and the invented world. Tech tools include projectors, digital cameras, smart phones, copiers.</td>
</tr>
<tr>
<td>Doc reader, internet images, Powerpoint on my flash drive, Blackboard</td>
</tr>
</tbody>
</table>
Email, it is the best way to reach the students and interact. Blackboard has some good things, but since we are always dealing with one issue or another, the most reliable way to communicate is email.

email, video capture of my computer screen, and survey tool.

Good chalk boards. I am in the mathematics department, and I assure you that there is nothing better than a set of large boards in good condition ... the students can see a large amount of material and can interact with the instructor with questions that relate various aspects of the material. I also use Computer Algebra Systems (Maple, Mathematica); in entry-level courses this is mainly to show examples (as possible with dynamic figures); in higher level courses this is to allow the students to grapple with difficult problems by allowing the CAS to perform trivial computations. Some of this falls under your rubric of “simulations”; other aspects go deeper. I have also found “on-line” exercise banks, which are “immediately” graded to be very helpful for entry-level courses.

Hardly any of it, as technology isn’t really a substitute for student thought, and much of it feels like a waste of class/student time with regard to the payoff. Anything that helps present information more readily (e.g., document readers, etc.) is potentially useful, though.

High tech classroom is very useful and effective in presentation of the masses of visual and experiments I use during lecture.

I don’t currently teach, but last time I did, Google Earth was very useful.

I frequently use discussion forums on Blackboard. I use the document camera and the internet almost everyday in class for accessing videos, listening activities, or simply Google images. I don’t use the Starboard at all. It requires far too much planning time to far too little actual classroom productivity.

I have begun using an online free blog (Word Press), since the blog user interface is more user friendly than Blackboard. I have been encouraging my students to use the blog as another way to interact and collaborate with each other regarding the course content. Online discussions and debates are one of the requirements of the class.

I have not used any of these as yet as I have taught only for one term, but I do hope to use social networking technologies to engage students in both the online and onsite mediums of instruction.

I have students investigate something on the web, ask a question about it, and pursue the answers using web or paper resources, then report out to the class for feedback. Reporting out can be online or in class. I use "learning quizzes" which allow students to change their answers until they get them "right." No penalties for these particular quizzes. Sometimes we do role-playing, forcing students to take roles that are not their usual ones. Students connect on Facebook. When teaching blended classes, I give an assignment to pursue and report on in class, briefly. This seems to motivate them to actually do the assignment because they are presenting to peers. Have used surveys too. I believe these and many more technologies will expand greatly in the future. Our students, regardless of age, are often ahead of us as teachers.

I have used the document reader and a Smart board. I think these tools can enhance the clarity of the presentation of material.

I only use blackboard, but I wish there was something easier than the clickers that we currently use. They are so hard to set up and use!
I post partial notes on blackboard so students can print them and bring them to class to fill in missing information. I open discussion boards also on blackboard so the students can correspond with each other. Other than that I don’t utilize the above mentioned tools. I feel it is important to have personal interaction with students.

I teach classes with 250 students, 75 students, 20 students, graduate seminars with less than 8 students, and training graduate students in my research labs. Each of these classes requires a completely different set of operations and technologies.

I teach Geographic Information Systems and utilize the blackboard system for posting laboratory exercises related to ArcGIS software, video clips and streaming video lectures. The students interact via email and Discussion Boards.

I teach off campus. We do not have access to the same level of technology as those on campus. I utilize podcasts, webinars, Google docs as well as polycom and face-to-face sessions.

I teach very large classes. I use Blackboard, taped lectures available through OSU media, iClicker, and YouTube

I use all of your examples. This term I used PBS and Utube information.

I use Blackboard for my online classes. I will not use social networks (not appropriate faculty) but I do use YouTube, podcasts and Google. I would like to add smartboards to my classroom instruction.

I use BlackBoard and powerpoint, video, sometime group debate, discussions, position papers, peer review. etc.

I use Blackboard extensively in my courses, as well as other web-based tools including TED/TED ED and iTunes U.

I use blackboard mostly for posting content and grades - as a course library and archive. The discussion board is a really nice aspect of encouraging students to help each other. I use simulations and the document reader a lot. I also use the audience response system a lot - and often for open-ended questions where there isn’t one right answer, so it’s only for participation points, not for grade based on what they picked. I have tried podcasts but not very much yet.

I use Blackboard to post syllabus and PDF readings. As an adjunct instructor, I favor keeping it simple. I’m a big believer in that principle that deep learning occurs best in the classroom with engaged live interaction.

I use social networking with my partners. I use document readers when working in elementary classrooms. I use polycom and skype for meetings. Partners use meeting doodle, google docs and audience response systems (in classroom and webinar). I am looking into using the I-pad and pico-projector for more flexible presentations in a variety of classrooms settings (even outdoors).

I use SoftChalk to create games, social networking technologies to reach students, digital gaming (virtual learning environments in Second Life), survey tools (qualtrics), and Adobe Captivate.

I use the internet and Blackboard mostly, with all my lectures in PowerPoint. I am a hands-on teacher, so I like to give the students real-world examples. For instance, we use Grants.gov, and the OWL at Purdue.

I videotape my lectures and stream them through YouTube. I also provide digital downloads of them through iTunes U.

In the campus classroom, I depend on the computer and projector plus document reader to share concepts with students and provide discussion. My campus classroom also uses Blackboard heavily during class (assuming I have a projector) to show the assignments and links. I store any PowerPoints I am going to use in Blackboard for easy access during class. I use Blackboard for online submission of student work even for my campus classes. That way, I can annotate student drafts and reattach them in a permanent archive so that students have access and never "lose" my comments.

Individual assessment of material then group.

Interactive white board, survey tools, wikis, podcasts, screencasts, VoiceThread

Multi-media tools should be able to be used simultaneously and in parallel. Eg whiteboards and screen/projector used at the same time with seamless transitions. Also, class-to-class transitions (shut down, set up) need to be less time-consuming. Can the next class’s materials be set up and primed while the previous class is still in session? Also, can we move control of the projector system to pads, rather than fixed desktop/crestron setups now in use?
None of the above yet.

None of those given, and none in particular. Primarily encouraging classroom participation.

Presentation software - PowerPoint - primary instructional tool in the computer classroom Video clips from YouTube and other such sources - use these short (2-5 minute clips) to illustrate a point or help provide a conversation piece, also used for motivation purposes Tools that work specifically with PowerPoint - Articulate, Turning Point - use these to enhance the presentation capabilities of PowerPoint InDesign and Excel software applications for basic skill building Good texts - Some supplemental texts presenting a point or introducing skill set

Blackboard for elearning opportunities

Response systems. Electronic homework.

Routinely: Information management tools (Zotero) to teach principles of metadata and the research process, as well as to give students an important learning tool. Flickr and Youtube to demonstrate principles of metadata and information organization. Youtube also provides content. Smart board as a demonstration tool (for me and for them) Survey tool to create out-of-class learning modules Google docs for collaborative commenting on texts

Library databases to demonstrate information literacy concepts and to find content. Course webpage to provide resource lists and course documents. Blackboard for transparency in grades and communication Sometimes: Online discussion fora (on Zotero, social networks or Blackboard) Audience response systems in the classroom (though I am just as likely to do something low-tech)

Simulations Doc cam Demo cam simulations, document reader, sharepoint Skype and oovoo for discussions Blackboard- assignments, groups, tests

Smart board

Smart Board - I do a lot of live searching for information with students; survey software to do pre- and post-feedback.

Smart board, podcasts, computer programs, blackboard, and powerpoint INTERNET.

SmartBoards Audience Response System Simulations Document Reader

social networking, google docs, podcasts, Adobe connect.

social networking, video & audio productions, blogs, etc.

survey tools discussion boards blogs video-conferencing Skype uploading/downloading documents announcement boards editing tools to provide feedback on document (tracking info and posts)

Those listed are good. Access to web-based information.

Tools, primary from library resources, that help with the research process such as RSS feeds from searches as well as connection of those resources to citation managers such as zotero.

Traditionalist. Sorry.

We have used Blackboard, the internet, audience response systems, podcasts though media.oregonstate.edu,

Why on earth do you limit "tools" to "technological tools"? I care far more about classroom design -- no tablet armchairs, for instance -- than about the ever-changing availability of technological tools. Access to (good quality) blackboards (not whiteboards) covering multiple walls would be another example.
5. What are the most important issues or challenges you face in using an LMS like Blackboard today?

<table>
<thead>
<tr>
<th>Text Responses (These responses have not been edited for grammar or spelling.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. technical glitches that render the system unavailable, though infrequent these do occur 2. after a new version is installed there is little time to come up to speed on new features. TAC does a good job of offering webinars, etc, but teaching schedules often conflict.</td>
</tr>
<tr>
<td>A challenge is remembering what to enable at the beginning of the course. There is be a set of questionnaires when starting a new quarter for each course rather than relying on the instructor to remember to set a certain number of parameters in order for the students to be able to access the materials, etc.</td>
</tr>
<tr>
<td>Ability to use the grade book easily, ie, be able to put in a zero total points for dropping the lowest quiz.</td>
</tr>
<tr>
<td>assessment</td>
</tr>
<tr>
<td>Bb is slow</td>
</tr>
<tr>
<td>Blackboard could be more efficient and adaptable, and work faster. It is slow to upload work. Working with the course site takes many clicks. Grade Center would be much better if it were as flexible as Excel, with the easy ability to move columns around, re-size them, etc. It would be more effective for students and instructors if Grade center were faster in loading and moving around. NOTE: Surveys are easier if we can see all the questions at once ahead of time to brainstorm answers. Going through like this it is not possible to remember or think of everything one might want to suggest. I hope we can have another opportunity. I will probably think of other things to add.</td>
</tr>
<tr>
<td>Blackboard has an absolutely CLUNKY interface. It is not intuitively designed and clearly has been put together in piece that were never clearly planned in advance. As a result, its interface is ridiculous and requires much more training to use effectively than it should.</td>
</tr>
<tr>
<td>Blackboard interface seems outdated and not as easy to utilize as it should be - in general across a wide variety of areas.</td>
</tr>
<tr>
<td>Blackboard is a good product, but it is difficult to create truly interactive experiences in blackboard. Threaded conversations are not best. I would like to see or learn about possibilities for conversations all on one page, where people can just check in and comment.</td>
</tr>
<tr>
<td>Blackboard is a time sink. Blackboard is obviously not been designed with much of any faculty input. You can not enter certain things into Blackboard fields unless you do exactly what Blackboard demands: this is not always what I want shown or totalled. The result is confusion and frustration to myself and students.</td>
</tr>
<tr>
<td>Blackboard is cumbersome for me, especially in a class of almost 1000 students. I find it useful for posting class materials and sending emails. I have found it very difficult to use for giving quizzes or having discussions. It would be useful to have a "rate comments and answers" system so that good questions and good answers rise to the top in a big class.</td>
</tr>
<tr>
<td>Blackboard is not particularly intuitive, but I've learned its quirks.</td>
</tr>
<tr>
<td>Blackboard is not particularly user friendly and even though it permits micro-management of items, it also requires a component which will allow multiple items to be edited at once...</td>
</tr>
<tr>
<td>Blackboard is often too slow. The hardware and/or software needs to be upgraded and/or augmented.</td>
</tr>
<tr>
<td>Blackboard is overly complicated to use. Furthermore, OSU has to pay for this. That seems crazy given there are free alternatives that are much easier to use. Due to this, I only use Blackboard with my online classes.</td>
</tr>
<tr>
<td>Blackboard is still buggy. It will crash or kicks me out for no reason. Students submitting assignments or test often have failures and lose their work.</td>
</tr>
<tr>
<td>Blackboard is totally clunky, slow and non-intuitive in so many ways. Turning on student access to a course should not be something hidden in a seemingly random control panel. Simply posting a file takes multiple clicks when it should as close as possible to drag-and-drop. Finding the results from a survey requires that I pull out a written list</td>
</tr>
</tbody>
</table>
of instructions every time. Try finding the help section on survey results; its a nightmare. If you want to check a student answer to an online quiz, you click through multiple layers. I want to interact with the LMS similarly to an online email account or a Google doc. I want to be able to EASILY find a podcast and link it to Blackboard (this now requires several steps). I could go on and on.

Blackboard is very bulky, but it's an adequate place to post documents or have discussion forums.

Blackboard is very cumbersome, and is bloatware. There are too many menus and features that are totally worthless. I know how to give students quizzes on blackboard, but there are too many complications for me to figure out how to have students submit things in blackboard, etc.

Blackboard runs too slowly to make use of all of it's features. Creating quizzes and setting adaptive release quickly becomes unmanageable in large classes with weekly quizzes. Blackboard is incredibly bloated, cumbersome, demoralizing to use. The gap between Blackboard and other technology I use (e.g. iphone, ipad) is growing. Blackboard doesn't integrate well with other technology I want to use. Students will never use Blackboard after they graduate. It would be better for them to learn to use software that they will also use on the job (e.g. dropbox, google docs, excel). Blackboard is difficult or impossible to use with mobile devices. Run into a delay on my commute to campus? I have to call the TA, who can post an announcement in Blackboard. I'd prefer to be able to use Blackboard from an iphone and ipad.

Blackboard? I wouldn't use it if you paid me. Every action requires a dozen mouse clicks, and customization is painful. The "learning-related" tools I use in the classroom are all available elsewhere with superior interfaces. Examples include blogs and wikis. The only additional "features" an LMS provides are class management options, such as gradebooks; I'd rather make my own spreadsheet.

Controlling student access/visibility. We have to be really careful not to make mistakes otherwise it is more hassle than its worth.

don't use blackboard

Ease of use. Blackboard is very clunky to use; its one of my least favorite pieces of software. It should be almost immediately obvious to novices how to get things done with the technology. Unfortunately, many tech companies (outside of, say, Apple) aren't very good at this. This ultimately wastes much time and, ultimately, money because end users end up spending time trying to figure things out or doing things inefficiently and the university has to pay support staff to help with the problems.

Finding time to learn how to use Blackboard features effectively and to incorporate more learning technologies into my teaching.

Getting my material prepared far enough ahead

Giving step-by-step directions to students on how to interact with technology. I am moving away from written directions to recording examples through video capture of what I am doing on my computer screen. But this has been difficult because of lack of equipment and software.

Hard to figure out how to use it. Suggest you create a user guide and offer whatever you consider 'best practices' for faculty use.

how to make interaction exciting rather than one-dimensional discussion baord.

I don not stretch myself on this front and have not utuillized Blackboard capacities to the extent that I should. This is a facult of the instructor's time constraints, not a reflection of a deficit in the LMS.

I don't like that it's a walled garden - my teaching is focused on how to learn, gather information and use information (frequently, but not always online) and the walled garden structure of the LMS doesn't work well with that. I still find the interface non-intuitive and clunky. Mostly, though, the focus of my teaching is on how students can build their own library of resources and learning materials as they progress through their course of study and the way that the LMS is structured around courses - effectively turning each course into its own silo - undercuts that.

I don't use an LMS as my teaching is in other instructors courses. I don't have my own courses.

I have had issues with Blackboard and my class this year. I don't want to depend on it and would rather just pass handouts in class. I feel it takes more of my time to maintain class information using Blackboard then just
communicating directly with the students and allowing them to take responsibility for organizing materials.

I have taken graduate courses using Blackboard and similar technologies. Access is easy. Some difficulty locating submit buttons and other key items when using a small laptop screen. Discussion boards are a key component of many classes, but can be lengthy-- can you highlight what comments have already been read? (maybe that already happens)

If I was more technologically oriented, I might be able to describe issues or challenges. Blackboard works fine for my current needs.

Integrating gradebook and course documents across linked sections, eg lecture and multiple recitations/labs.

It can be so very slow.......The interface could also be designed better, but that is a much more controversial issue. We often have different preferences. If they could be built in, so we had choices in how the site presented itself to the instructors, that would be nice. And just to repeat, it can be so so so slow.

It is NOT intuitive some names for some links don't make sense things are difficult to find sometimes some things don't always work i don't use extensive material distribution, so I don't need something that cumbersome that requires 4 mouse clicks and reloading windows to do a single thing.

It is often slow, and while I love Blackboard, some things don't work very well. For instance, I would like to simply be able to copy announcements from class to class. Also, when I copy my courses over, sometimes all my materials fall out of the folders and I spend hours trying to fix it. I would also like to use Blackboard for quizzes, but have had challenges with the grading.

It is slow and sometimes crashes, Blackboard does not always have the easiest to use editing and user interfaces.

It is sometimes quite slow, especially when deleting folder materials that are outdated. No method, that I can find, to mass delete a group of files without deleting them all.

It's awkward interface, slow response, and the multiple "clicks" required to do simple things.

Keeping up with the changes when we go to a new blackboard system or other programs that are updated, and then using all of the capabilities. Time - I do not take the time to play, explore, and learn new technology and programs. I'm thinking about signing up for or establishing a "technology challenged" group to meet each week and learn something new and play around.

Lets start with the technology itself - bandwidth, speed of the system, reliability of the technology, capabilities of the software. In today's world more and more video is being used. This is a limitation with Blackboard. Synchronous communication is difficult with LMS systems.

n/a

N/A

NA

No access due to off-campus location

No challenges. It is a terrific tool.

No one taught me how to use it or told me where to find out how to use it. Everyone just told me "yes it is very hard to use." I was completely unsupported until I complained....loudly, and I never did get any lessons. My supervisor just told me she would do what needed to be done.

None

Not all students bother to use the system. It is also a step toward automatic teaching which depersonalizes the process. Also, students are less attentive in web reading than in hard copy. It is also cumbersome to use, and the updating at the start of fall quarter has been a ritual. Our best teachers, who win awards, frequently don't use BlackBoard.

Ocassionally it doesn't work so well.

Once you know how to using it, newer program and/or different systems are adopted by OSU. I see the value of LMS, but I feel I spend more time to learn how to use a new system than the content of subject matter.
Unexpected outage.

Understanding how to do it and finding the time to both learn how to create the media and then creating it.

Understanding how to use it after every iteration, finding out how to use it best.

Unexpected outage.
Unreliability of the software
Used to it - works OK
User-friendliness for the international students I teach.
Utilizing the quiz tool.

Very cumbersome to edit documents in a Blackboard environment - Google Docs works much better for collaborative learning projects. Its difficult to blend outside websites into Blackboard. Archiving function in Blackboard is terrible. There is a need for better management of video presentations.

While blackboard has a lot of capacity- most of my students are basic users and struggle to navigate and find material or use the group work features. Overall it can be difficult to sort and filter assignments or discussions when I need to evaluate a student 's overall performance.

While I feel Blackboard is an efficient method of storing and retrieving course material, some of its other options are not as user firendly. For example, as I mentioned in the previous question, its blog interface is not conducive for commenting on discussion threads, or "threads within threads." I have also found that other survey tools are easier to use and more efficient than Blackboard (i.e. Survey Monkey and Qualtrics).

6. What are some teaching and learning-related tools that you would like to see available in an LMS?

<table>
<thead>
<tr>
<th>Text Responses (These responses have not been edited for grammar or spelling.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>"Magic Planet" (large size) in the new Classroom Building in a circular classroom. This tool has unlimited applications in the natural sciences, social sciences, and the arts: http://www.globalimagination.com/</td>
</tr>
<tr>
<td>"stack- overflow" type rating system for comments to encourage good thinking and good peer interaction.</td>
</tr>
<tr>
<td>1) Qualtrics for creating professional surveys in social marketing. 2) Inspirations or Webspiration for mind mapping.</td>
</tr>
<tr>
<td>A Blackboard user guide.</td>
</tr>
<tr>
<td>A simple version of a clicker system A way to post letter grades, and I want the OSU grading program to interact directly with blackboard</td>
</tr>
<tr>
<td>Ability for student writing on special tablet/voice annotation imported directly into LMS for observation/replay by instructor</td>
</tr>
<tr>
<td>Ability to share video more easily.</td>
</tr>
<tr>
<td>Adaptive quizzes. Analytics -- what are students doing and when. Quizzes with item analysis. Integration with publisher-supplied materials (single sign-on). SI groups run through Blackboard. A much easier way to download and save student work beyond the end of classes.</td>
</tr>
<tr>
<td>As mentioned earlier, I already under-utilize this teaching resource, expanding it won't change that.</td>
</tr>
<tr>
<td>Audio, video, and documents. HYPERLINKS</td>
</tr>
<tr>
<td>Better tools than Blackboard.</td>
</tr>
<tr>
<td>Better video capabilities, better video conferencing capabilities.</td>
</tr>
<tr>
<td>Can't think of any at the moment</td>
</tr>
<tr>
<td>Catch with most advanced one.</td>
</tr>
</tbody>
</table>
| Cheating proof tests that make it impossible for two or more students to collaborate in taking a test (probably
impossible without a "policeman"...)(I'm sure I meant a "proctor") (look up the meaning of "proctor" as applied in early English speaking universities like Oxford - you'll find something like "university police"...)(while you're at it, look up "provost" - it implies OSU is a prison...)(ok, enough of that) How about a Skype like "chat" facility for remote student-faculty discussion?

discussion board

Don't know enough to respond.

easier ways for student to voice, picture record short items and spot them for other students in class.

Expanded opportunities for off-campus faculty to utilize the latest techniques to reach students statewide.

Higher-quality projectors!!! Make sure that all necessary cables/connections are available to put the laptop resolution onto the projector! When I am forced to go from my HD graphics to VGA (as opposed to HD or HMI) there is loss of quality and content.

I am not sure if an LMS is the right place for tools. I see the LMS as an administrative piece of software. I think it is a mistake to load everything into an LMS.

I don't know.

I don't know.

I have nothing specific to offer. I am willing to explore options as I become aware of them.

I like it this way.

I like links to articles and videos that give more depth to the curriculum. Audio feedback from instructors is good.

I prefer to have the money spent directly on supplies to teach the students.

I would like to be able to post videos of student presentations, so that the students can do self-evaluations and reflections.

I would like to see interactive technologies where teachers and students can interact online, similar to Skype software. I also would like to make use of software platforms like join.me.com that allow the instructor to access the student's computer while talking on the phone for technical assistance.

I would really like to see plagiarism detection software.

I'm not sure.

Interactivity that does not require hours of reading on the part of students and instructors.

Make the media software available to students and teach them how to use it for their online courses.

More effective wiki type application, easier way to organize students into groups and for them to interact within their groups.

More engagement with rss feeds, news sites, and an online chat component.

More social network tools.

My main interest is with area specific LMS. I look forward to improved methods for students to enter mathematical formulas and the like into LMS.

N/A

N/A

No big ideas here.

no opinion

None that I can think of right now.

None. I do not use an LMS, and am not likely to do so in the future. You're asking the wrong question.
Open chat rooms and sessions. Ability to collaborate online in an easier way, such as for a group project, in a kind of wiki environment where they put something together jointly. Maybe it already exists and I am not aware of it. Incorporating live talks and video, sort of like a skype group, might help a bit, especially for students who work or have odd schedules for other reasons. When students ask each other questions rather than just interacting with the instructor, they learn in different ways, sometimes more effectively.

Please see my response to the first open ended question. There are still buildings on campus that do not meet the basic technology requirements for a 20th-century classroom. In order to meet the needs of a 21st-century classroom, these basic technology needs must first be addressed in EVERY building on campus.

Private student folders where they could post a portfolio of final documents. An attendance tool.

Provide for students to login in real time to view a lecture from a distance--something like "GoToMeeting" for a class. Have the ability to have real-time "white board" talks to students logged in from a distance for virtual recitation sections with audio.

publishing accessibility management to allow for in class and off class groups to participate at various times as needed and appropriate real time communication (office hours and group activities) tools that support large group collaboration, document editing, document sharing, and communication satisfied with current tools

screen capture of my computer screen

Smartphone apps...

Speed and consistency. Each new release of a Bb version requires relearning a bulky interface.

survey too long

This is hard to answer when I feel behind already on what is out there and what to use.

This relates to my answer to #5. If I had known that you would ask this question, I could have done some research and asked instructional development colleagues for suggestions. I'm sure there are many things I would like that I am not thinking of at the moment.

this was my first session, so I am not sure. I brought in people to talk to students about what they did in my field as I work in the field I taught about.

Video presentations, collaborative work environments.

Well, since its just about the only company that seems to emphasize end-user experiences, I'd say the Apple learning tools.

wikki type features links to twitter and other social media

7. What features and functions would you like to see in an LMS five years from now?

Text Response *(These responses have not been edited for grammar or spelling.)*

? ??

1) Synchronization with diet, physical activity tracking devices. 2) Link to virtual classroom in Second Life.

ability for student writing on special tablet/voice annotation imported directly into LMS for observation/replay by instructor

Basic features that help reporting of material and grades. I do not think centralized software should be
the starting point. Instructors need to go out on their own and find technology, play with it, and report to the OSU community. New technology is not introduced centrally. Locally proven technology can be made more accessible centrally, but that would be step two in the process. Committees do not innovate, but they can advocate for incorporation of innovation. I see an LMS in the same way. An LMS is also intended to be an administrative tool. For example, I would not integrate clicker responses directly into the LMS data. It is much easier to copy to a personal data base and then go from there. This allows me to think about the educational aspects of the data gathered. If they go directly to the LMS data base, it just becomes bookkeeping and not instruction.

Better video capabilities, better video conferencing capabilities. Better interaction with standard applications like Excel, PowerPoint, Word.

Chat features.

Classrooms should be elevated like amphitheatres so people in the back can't hide and it is a more intimate experience for the students. This is the way all the old lecture halls were built, cost savings that put students on flat ground, regardless of how many there are, takes this away and everybody suffers.

Completely compatible with our grading system

Continue to simplify ease of use, for students and instructors

Database control to enable grade centers in linked courses to communicate.

Don't know

Don't know enough to respond.

Easier access for students to videos and to professors for making them.

Easier communication, easier grade center, more flexible multi media for uploading, more flexible links to outside sources (and the defaults need to change - the default should be "open in another tab" versus - keep it here as the option one has to take. See my answer to #5 - with advance warning - yes the email did prepare us generally for the topic and questions, but a chance to see the actual questions would have allowed for some research and brainstorming to give the best answers. Thank you for allowing us to provide input.

Easy and reliably operational crafting of documents in a WYSIWIG sort of environment

I don't know.

I don't know.

I expect that in 5 years, LMS tools will be extinct and we'll be using Google docs, sites, fusion, etc.

I would like it to be easier to use.

I would like to be able to create a private bookshelf where students (or instructors) can review books/articles that they are reading in class in the same format that you find on goodreads.com or shelfari.com.

I would like to have the ability to invite teachers and scholars from around the country to my virtual classroom, and present via Skype, or another similar program. However, since not every building on campus has this capability, I have not been able to do this.

Increased use of computer generated videos that allow student interaction with the program as in drug receptor binding

Integration with scantron or some other way to quickly regrade, drop questions, etc. after an in-class assessment. Some publisher-supplied LMS's do this much better than Blackboard or Angel. The ability
to use the LMS from mobile devices.

interactive face to face learning via internet -- at the moment too slow and many students do not have the internet/hardware capability to use it.

Just to return to my main point, I look forward to a balanced approach to low- and high-tech methods for instruction. (in particular, the recognition that for certain domains the *simultaneous* display of all parts of a serious argument (proof) or of a challenging computation offers a student a unique type of learning opportunity. So far at least, screens --- whether they be direct video displays or receive projections) are too small to permit deep discussion of large quantities of serious argument. Perhaps in 5 years, one could have a good high-tech wrap-around presentation.

Lightning speed and sensical distribution.

Like I mentioned before I like personal interaction with students, not interaction via the computer.

mobile interfaces.

More interactive platforms, integration of video games into the curriculum and communication tools.

More social network tools

N/A

N/A

No big ideas here.

No comment.

no opinion

No suggestions.

not sure

Not sure.

Online social group problem solving spaces with an interactive whiteboard and video chat.

Please remain intuitive enough to use without extensive training

random problem generator

real time face to face communication/interaction for individuals and large groups regardless of physical location publishing ability for dissemination to any selected audience ability to organize and promote collaborative projects with full support for document sharing, posting, editing, presenting, and publishing

same

Same answer.

See above.

survey too long

Teach my class for me. lol

The ability to change default values in Blackboard. For example, when I create an announcement in Blackboard, I always have to change the Duration to "Not Date Restricted". I would like the ability to make this the default value.

The ability to have secured exams online. Meaning, have a feature in the LMS where the rest of the computer is locked out while the student is taking an exam. Integrate the lecture capture system
directly with the LMS. Have the ability to record voice to powerpoint slides and then post it directly in the LMS.

unknown