Universal Covering Space

Def: Universal Covering Space

Lemma: Let $p : (E, e_0) \to (B, b_0)$ be a covering map, where B is *path connected and locally path connected*, but E need not be path connected. If E_0 is a path component of E then $p_0 = p|_{E_0}$ is a covering map.

Examples:

Compositions of Covering Maps

Lemma: Suppose $p = r \circ q$.

- If p and r are covering maps, q is.
- If p and q are covering maps, r is.
- If Z has a universal covering space, and r and q are covering maps, so is p.

Universal Cover

Theorem: Let $p : (E, e_0) \to (B, b_0)$ be a universal covering map and $r : (Y, y_0) \to (B, b_0)$ be an covering map. Then there is a covering map $q : E \to Y$ such that $p = r \circ q$.

Lemma: Let $p : (E, e_0) \to (B, b_0)$ be a universal covering map. Then b_0 has a neighborhood U such that inclusion $i : U \to B$ induces the trivial homomorphism on π_1.

Def: Any space satisfying the condition in the previous Lemma is said to be *semilocally simply connected*.

Examples:

Existence of Covers

Theorem: (Existence of Covering Spaces:) Let B be path connected, locally path connected, semilocally simply connected, and $b \in B$. Then, given a subgroup H of $\pi_1(B, b)$, there exists a covering map $p : (E, e) \to (B, b)$ with $p_*(\pi_1(E, e)) = H$.

Corollary: B has a universal covering space if and only if B is path connected, locally path connected, and semilocally simply connected.