Limits of Functions
(Part I – two-sided limits)

STANDING CONVENTION: $f : \text{dom}(f) \to \mathbb{R}$ and $\text{dom}(f) \supset I$ which is a nonempty open interval that contains the point a.

DEF. The function f has limit $L \in \mathbb{R}$ as x approaches a if given any $\varepsilon > 0$ there exists a $\delta > 0$ such that

$$0 < |x - a| < \delta \implies |f(x) - L| < \varepsilon$$

Notation: If f has limit L as x approaches a we write

$$\lim_{x \to a} f(x) = L$$

or

$$f(x) \to L \text{ as } x \to a$$

DEF. If a function has a finite limit we say it converges to its limit.

Facts:

$$\lim_{x \to a} mx + b = ma + b.$$
A function may not have a limit as $x \to a$.
Limits are unique if they exist.
What Happens AT $x = a$ does NOT affect the limit as $x \to a$

Only the behavior of the function near a but not at a determines whether there is a limit at a.

The following result is used, often implicitly, in many limit calculations:

Th. If

\[
\begin{align*}
\text{dom}(f) & \supset I \setminus \{a\}, \quad \text{dom}(g) \supset I \setminus \{a\}, \\
f(x) &= g(x) \quad \text{for all } x \in I \setminus \{a\} \\
\exists \lim_{x \to a} g(x)
\end{align*}
\]

then

\[
\exists \lim_{x \to a} f(x) = \lim_{x \to a} g(x)
\]
Sequential Characterization of Limits of Functions

The following result enables us to transfer most everything we know about limits of sequences to corresponding results about limits of functions.

Th. (SCLF) The following are equivalent:
1. \(\lim_{x \to a} f(x) = L \).
2. For every sequence \(\{x_n\}_{n=1}^{\infty} \) in \(I \setminus \{a\} \) with limit \(a \),
 \(\lim_{n \to \infty} f(x_n) = L \).

Remarks.
1. This theorem also is true for the infinite limits \(L = \pm \infty \) and/or for limits as \(x \) approaches \(\pm \infty \). (Of course we haven’t defined these limits yet but you should be able to!)

2. In the theorem when \(a \in \mathbb{R} \), the interval \(I \) can be any open interval containing \(a \). In the case that \(x \to \infty \), \(I \) can be any open interval of the form \((b, \infty)\). What about when \(x \to -\infty \)?
The Algebra of Functions

Given functions \(f : X \to \mathbb{R} \) and \(g : X \to \mathbb{R} \) and \(\alpha \in \mathbb{R} \), we define their sum, difference, scalar multiple, product, and quotient, which are denoted respectively by

\[
\begin{align*}
&f + g, \quad f - g, \quad \alpha f, \quad fg, \quad \frac{f}{g}
\end{align*}
\]

as follows:

1. \(f + g \) is the function whose value at \(x \) is

\[
(f + g)(x) = f(x) + g(x)
\]

2. \(f - g \) is the function whose value at \(x \) is

\[
(f - g)(x) = f(x) - g(x)
\]

3. \(\alpha f \) is the function whose value at \(x \) is

\[
(\alpha f)(x) = \alpha f(x)
\]

4. \(fg \) is the function whose value at \(x \) is

\[
(fg)(x) = f(x)g(x)
\]

5. \(\frac{f}{g} \) is the function whose value at \(x \) is

\[
\left(\frac{f}{g}\right)(x) = \frac{f(x)}{g(x)}
\]

The domain of each of the functions \(f + g, f - g, \alpha f, fg \) is \(\text{dom}(f) \cap \text{dom}(g) \) and the domain of \(\frac{f}{g} \) is \(\{ x \in \text{dom}(f) \cap \text{dom}(g) : g(x) \neq 0 \} \).
Explicit Calculations With Limits

The process of taking a limit interacts as you would expect with the basic operations $+, -, \times, \text{ and } \div$ and with the order properties of real numbers.

Th. Suppose $\exists \lim_{x \to a} f(x)$ and $\exists \lim_{x \to a} g(x)$ and $c \in \mathbb{R}$. Then the limits on the left all exist and have the indicated value:

\[
\begin{align*}
\lim_{x \to a} (f(x) + g(x)) &= \lim_{x \to a} f(x) + \lim_{x \to a} g(x) \\
\lim_{x \to a} (cf(x)) &= c \lim_{x \to a} f(x) \\
\lim_{x \to a} (f(x)g(x)) &= \lim_{x \to a} f(x) \cdot \lim_{x \to a} g(x)
\end{align*}
\]

If, in addition, $\lim_{x \to a} g(x) \neq 0$, then

\[
\lim_{x \to a} \left(\frac{f(x)}{g(x)} \right) = \frac{\lim_{x \to a} f(x)}{\lim_{x \to a} g(x)}
\]

Th. Suppose $f(x)$ and $g(x)$ have limits as $x \to a$ and

\[
\begin{align*}
f(x) &< g(x) \text{ for all } x \in I \setminus \{a\} \\
or &&
\begin{align*}
f(x) &\leq g(x) \text{ for all } x \in I \setminus \{a\}
\end{align*}
\]

Then $\lim_{x \to a} f(x) \leq \lim_{x \to a} g(x)$.

The Squeeze Law
(AKA The Three Functions Theorem)

Th. Suppose $f(x)$, $g(x)$, and $h(x)$ are real-valued functions with

\[
f(x) \leq g(x) \leq h(x) \quad \text{for all large } x \in I \setminus \{a\}
\]

\[
\exists \lim_{x \to a} f(x) \quad \text{and} \quad \exists \lim_{x \to a} h(x) \quad \text{and} \quad \lim_{x \to a} f(x) = \lim_{x \to a} h(x).
\]

Then

\[
\exists \lim_{x \to a} g(x) \quad \text{and all three limits are equal.}
\]

Corollaries:

1. \[|g(x)| \leq h(x) \to 0 \implies \exists \lim_{x \to a} g(x) = 0.\]

2. If $f(x)$ is bounded near a (which means $\exists M > 0$ such that $|f(x)| \leq M$ for all $x \in I \setminus \{a\}$) and if $g(x) \to 0$ as $x \to a$, then $\exists \lim_{x \to a} f(x) g(x) = 0$.
One-Sided Limits

DEF. (right-hand limit) If dom \(f \) contains some open interval with left end-point \(a \in \mathbb{R} \) and \(L^+ \in \mathbb{R} \), then

\[
\lim_{x \to a^+} f(x) = L^+
\]

means: Given any \(\varepsilon > 0 \), \(\exists \delta > 0 \) such that

\[
0 < x - a < \delta \implies |f(x) - L^+| < \varepsilon
\]

DEF. (left-hand limit) LTR

Th. Let \(I \) be an open interval, \(a \in I \), and dom \(f \supset I \setminus \{a\} \). Then

\[
\exists \lim_{x \to a} f(x) \iff \exists \lim_{x \to a^-} f(x), \ \exists \lim_{x \to a^+} f(x) \text{ and } \lim_{x \to a^-} f(x) = \lim_{x \to a^+} f(x)
\]

in which case all three limits are equal.

Notation:

\[
\lim_{x \to a^+} f(x) = L^+ = f(a+) \text{ and } \lim_{x \to a^-} f(x) = L^- = f(a-)
\]

Remark: All the algebraic limit laws and squeeze laws hold when two-sided limits are replaced by one-sided limits.
Limits Involving Infinity

DEF. (finite limit as \(x \to \infty \)) If \(\text{dom}(f) \) contains an open interval of the form \((c, \infty)\) for some \(c \) and \(L \in \mathbb{R} \), then

\[
\lim_{x \to \infty} f(x) = L
\]

means: Given any \(\varepsilon > 0 \) \(\exists M > 0 \) such that

\[
x > M \implies |f(x) - L| < \varepsilon
\]

DEF. (finite limit as \(x \to -\infty \)) LTR

Remark: All the algebraic limit laws and squeeze laws hold for finite limits at \(\pm \infty \).

DEF. (limit \(\infty \) as \(x \to a \in \mathbb{R} \)) If \(\text{dom}(f) \supset I \setminus \{a\} \), then

\[
\lim_{x \to a} f(x) = \infty
\]

means: Given any \(M \in \mathbb{R} \) \(\exists \delta > 0 \) such that

\[
0 < |x - a| < \delta \implies f(x) > M
\]

Remark. WLOG you can assume in applying this definition that \(M > M_0 \) for any convenient \(M_0 \). (Proof? CDP.)

It is left to you to give precise definitions for the limits

\[
\lim_{x \to a} f(x) = -\infty, \quad \lim_{x \to a^\pm} f(x) = \pm \infty, \quad \lim_{x \to \pm \infty} f(x) = \pm \infty
\]

using the foregoing definitions as models. (CDP)
Continuous Functions

DEF. Let $f : E \to \mathbb{R}$ and $a \in E$. The function f is **continuous at** a if for every $\varepsilon > 0$ there exists a $\delta > 0$ such that

$$x \in E \text{ and } |x - a| < \delta \implies |f(x) - f(a)| < \varepsilon.$$

If $S \subseteq E$ and f is continuous at each point in S, then we say f is **continuous on** S. If f is continuous at each point in its domain we say f is **continuous**.

Facts:
1. $f(x) = b$ is continuous for any fixed real number b.
2. $f(x) = x$ is continuous.
3. $f(x) = |x|$ is continuous.

Continuity can be characterized sequentially:

Th. (SC of C) Let $f : E \to \mathbb{R}$ and $a \in E$. The following are equivalent:
1. f is continuous at a.
2. For each sequence $\{x_n\}$ in E with limit a, the sequence $\{f(x_n)\}$ has limit $f(a)$.

Cor. f is not continuous at a, if \exists a sequence $\{x_n\}$ in E with limit a, such that $f(x_n)$ does not have limit $f(a)$.

Fact: The function $f(x) = \sqrt{x}$ is continuous.
The sequential characterization of continuity and the algebraic limit laws for sequences yield:

Th. Let $f : E \to \mathbb{R}$ and $g : E \to \mathbb{R}$ be continuous at $a \in E$ and let $\alpha \in \mathbb{R}$. Then the functions $f + g$, $f - g$, αf, and fg, are continuous at a. Moreover, if $g(a) \neq 0$, the function f/g is continuous at a.

Cor. All polynomial functions and rational functions are continuous.

Very often continuity can be expressed conveniently in terms of limits of functions:

Th. Let $f : E \to \mathbb{R}$ and $a \in E$. If a belongs to an open interval J and $J \subset E$, then the following are equivalent:
1. f is continuous at a.
2. $\lim_{x \to a} f(x) = f(a)$.

Th. Let I be an interval (of any type) with endpoints $\alpha < \beta$, $f : I \to \mathbb{R}$. The following are equivalent:
1. f is continuous on I.
2. $\lim_{x \to a} f(x) = f(a)$ at each point $a \in I$ with one-sided limits understood at the endpoints of I that belong to I.
Continuity of Composite Functions

DEF. If $f : X \rightarrow Y$ and $g : Y \rightarrow Z$ are functions, the function $g \circ f : X \rightarrow Z$ defined by

$$(g \circ f) (x) = g (f (x))$$

for each $x \in X$ and read g composed with f is called a composite function.

Facts:
1. Even if $g \circ f$ and $f \circ g$ are both defined it is usually the case that $g \circ f \neq f \circ g$.

Th. Let E, F, and G be subsets of \mathbb{R}. Let $f : E \rightarrow F$, $g : F \rightarrow G$, and $a \in E$. Then:
1. If f is continuous at a and g is continuous at $b = f (a)$, then $g \circ f$ is continuous at a.
2. If f is continuous and g is continuous, then $g \circ f$ is continuous.
More About Sups and Infs

DEF. Let E be a nonempty subset of real numbers.
1. If E is not bounded above, by definition, $\sup E = \infty$.
2. If E is not bounded below, by definition, $\inf E = -\infty$.

As a consequence of these conventions and the CA for \mathbb{R}:

Every nonempty set $E \subset \mathbb{R}$ has a supremum and an infimum.

Facts:
1. For $E \neq \emptyset$, E is bounded above $\iff \sup E < \infty$.
2. For $E \neq \emptyset$, $\exists \{x_n\}$ in E with $x_n \to \sup E$. If $\sup E \notin E$, the sequence can be chosen strictly increasing.
3. What is the situation for $\inf E$?
DEF. A function $f: E \to \mathbb{R}$ is
- **bounded above** if $\exists M \in \mathbb{R}$ such that $f(x) \leq M$ for all $x \in E$;
- **bounded below** if $\exists m \in \mathbb{R}$ such that $f(x) \geq m$ for all $x \in E$;
- **bounded** if it is bounded above and bounded below. So, f is bounded $\iff \exists M \in \mathbb{R}$ such that $|f(x)| \leq M$ for all $x \in E$.

Equivalently, a function is bounded (above, below) if its range, $\text{ran}(f)$ is bounded (above, below).

DEF. A function $f: E \to \mathbb{R}$ is
- **increasing** if $x_1, x_2 \in E$ and $x_1 < x_2 \implies f(x_1) \leq f(x_2)$;
- **decreasing** if $x_1, x_2 \in E$ and $x_1 > x_2 \implies f(x_1) \geq f(x_2)$;
- **strictly increasing** if $x_1, x_2 \in E$ and $x_1 < x_2 \implies f(x_1) < f(x_2)$;
- **strictly decreasing** if $x_1, x_2 \in E$ and $x_1 > x_2 \implies f(x_1) > f(x_2)$;
- **monotone** if it is either increasing or decreasing.
Th. *(Sign Preserving Property)* Let $f : E \to \mathbb{R}$ be continuous at $a \in E$. If $f(a) > 0$, then there is a $\delta > 0$ such that

$$x \in E \text{ and } |x - a| < \delta \implies f(x) > 0.$$

Th. *(Extreme or Max-Min Value Theorem)* Let I be a closed, bounded interval and $f : I \to \mathbb{R}$ be continuous. Then f is bounded and f assumes its maximum and minimum values on I. That is, there are points α and β in I such that

$$f(\alpha) \leq f(x) \leq f(\beta) \text{ for all } x \in I.$$

In other words, the range of f is a bounded set and contains its supremum and infimum.
Th A. (Intermediate Value Theorem) Let $I = [a, b]$ be a closed, bounded interval and $f : I \rightarrow \mathbb{R}$ be continuous. If y is any value strictly between $f(a)$ and $f(b)$, then there is a point $x \in (a, b)$ such that $f(x) = y$.

Here are two equivalent formulations of the IVT:

Th B. (Intermediate Value Theorem) Let $I = [a, b]$ be a closed, bounded interval and $f : I \rightarrow \mathbb{R}$ be continuous such that $f(a)f(b) < 0$. Then there is a point $x \in (a, b)$ such that $f(x) = 0$.

Th C. (Intermediate Value Theorem) Let I be an interval of any type (open, closed, half-open, bounded or unbounded) and $f : I \rightarrow \mathbb{R}$ be continuous. Then the range of f is an interval.

Th. (nth roots exist) Let $n \in \mathbb{N}$. The function $f : [0, \infty) \rightarrow [0, \infty)$ with $f(x) = x^n$ is continuous, strictly increasing and onto; hence, invertible.

Cor. For each $n \in \mathbb{N}$ and real number $y \geq 0$ there is a unique nonnegative real number x such that $x^n = y$.

Notation: If $y > 0$, the unique x above is the **positive nth root of y**, denoted by $\sqrt[n]{y}$.
The Exponential Function on \mathbb{Q}

Let $a > 0$. By definition:

Step 1. $a^0 = 1$.

Step 2. For $n \in \mathbb{N}$,

$$a^n = \underbrace{a \cdot a \cdots a}_{n-\text{factors}}, \quad a^{-n} = \frac{1}{a^n},$$

$$a^{1/n} = \sqrt[n]{a}$$

Step 3. For $q \in \mathbb{Q}$, write $q = m/n$ with $m \in \mathbb{Z}$ and $n \in \mathbb{N}$. Then

$$a^q = (a^{1/n})^m$$

Facts:

1. The definition in Step 3 makes sense. That is, if $q = m/n = m'/n'$ with $m, m' \in \mathbb{Z}$ and $n, n' \in \mathbb{N}$, then

$$\left(a^{1/n}\right)^m = \left(a^{1/n'}\right)^{m'}$$

2. The usual rules of exponents hold:

$$a^{q+q'} = a^q a^{q'}, \quad a^{-q} = 1/a^q$$

$$(a^q)^{q'} = a^{qq'}, \quad (ab)^q = a^q b^q \quad (b > 0)$$

3. The function $f : \mathbb{Q} \to \mathbb{R}$ defined by $f(q) = a^q$ is positive, continuous, and strictly increasing if $a > 1$ and is strictly decreasing if $0 < a < 1$.

16
Rational Power Functions

1. For each fixed value of \(x > 0 \) (think of \(x = a \)) and each \(q \in \mathbb{Q} \), the number \(x^q \) has already been defined. (It is just a matter of your point of view.) So we now know what the function

\[
f : [0, \infty) \to \mathbb{R} \quad \text{given by} \quad f(x) = x^q
\]

means for any rational power \(q \).

2. If \(q = m/n \) with \(m \in \mathbb{Z} \) and \(n \) an odd number (including \(n = 1 \)), then (proof?) each \(x \in (-\infty, \infty) \) has a unique \(n \)th root \(x^{1/n} \) and by definition \(x^q = (x^{1/n})^m \). For such \(q \), \(f(x) = x^q \) has domain \((-\infty, \infty)\).

3. The function \(f(x) = x^q \) is continuous on its domain.
Uniform Continuity

DEF. Let $E \subset \mathbb{R}$. A function $f : E \to \mathbb{R}$ is uniformly continuous on E if for every $\varepsilon > 0$ there exists a $\delta > 0$ such that

$$x, x' \in E \text{ and } |x - x'| < \delta \implies |f(x) - f(x')| < \varepsilon.$$

Facts:

1. f uniformly continuous on E implies f is continuous on E.
2. Continuity and uniform continuity on a set are not equivalent concepts.

Th. Let $f : E \to \mathbb{R}$ be uniformly continuous. Then f maps Cauchy sequences in E onto Cauchy sequences in \mathbb{R}.
The Exponential Function on \mathbb{R}

1. Fix $a > 0$. $f(q) = a^q$ is uniformly continuous on $(\alpha, \beta) \cap \mathbb{Q}$ for any bounded interval $(\alpha, \beta) \subset \mathbb{R}$.

2. If $x \in \mathbb{R}$ and $\{q_n\}$ is any sequence in \mathbb{Q} with limit x, then
 \[\lim_{n \to \infty} a^{q_n}. \]

3. The limit in 2 depends only upon x and not upon the particular sequence $\{q_n\}$ with limit x.

The foregoing facts justify the following definition.

DEF. Fix $a > 0$. Let $x \in \mathbb{R}$. By definition
\[a^x = \lim_{n \to \infty} a^{q_n} \]
where $\{q_n\}$ is any sequence in \mathbb{Q} with limit x.

In other words, a^x is the unique continuous extension of a^q from \mathbb{Q} to \mathbb{R}.

Th. Fix $a > 0$ with $a \neq 1$. The function $f : \mathbb{R} \to \mathbb{R}$ defined by $f(x) = a^x$ is positive, continuous, has range $(0, \infty)$, satisfies the usual rules of exponents, and is strictly increasing when $a > 1$ and strictly decreasing when $0 < a < 1$.
DEF. Let $E \subset \mathbb{R}$. The **closure** of E, denoted \overline{E}, consists of all points $x \in \mathbb{R}$ that are limits of sequences in E. That is, \exists a sequence $\{x_n\}$ in E with limit x.

DEF. Let $E \subset \mathbb{R}$. E is **closed** if $E = \overline{E}$.

Facts:

1. $E = (0, 1)$ has closure $\overline{E} = [0, 1]$.
2. $\mathbb{Q} = \mathbb{R}$ (another version of \mathbb{Q} is dense in \mathbb{R}).
3. $E = (a, b) \cap \mathbb{Q}$ has closure $\overline{E} = [a, b]$.
4. $E = [a, b]$ has closure $\overline{E} = [a, b]$; so $[a, b]$ is closed.

Th. A If $E \subset \mathbb{R}$ is closed and bounded and $f : E \to \mathbb{R}$ is continuous, then f is uniformly continuous on E.

Th. B Let $E \subset \mathbb{R}$ and $f : E \to \mathbb{R}$ be uniformly continuous on E. Then f has a unique extension by continuity to \overline{E}. That is, there is a unique continuous function $g : \overline{E} \to \mathbb{R}$ (which, in fact, is uniformly continuous on \overline{E}) such that $g(x) = f(x)$ for all $x \in E$.