MTH 311 Advanced Calculus
Homework Assignment #1
Due in class on Monday, October 13, 2003

Directions: Solve the following problems. Each solution must neatly written and be mathematically and grammatically correct. Write up your solutions in a style similar to that used in our text when the author is presenting a proof. Sloppy written work or work that is neatly written but is not mathematically or grammatically well organized with not be graded.

1. Let a and b be real numbers.

 (a) Use mathematical induction to prove: $0 \leq a < b \Rightarrow a^n < b^n$ for all positive integers n.

 (b) Use proof by contradiction to prove: $0 \leq a < b \Rightarrow a^{1/n} < b^{1/n}$ for all positive integers n. (You may assume that $a^{1/n} = \sqrt[n]{a}$ is defined and has the usual meaning.)

 Remark: By (a) the function x^n is increasing on $[0, \infty)$. By (b) the function $x^{1/n}$ is increasing on $[0, \infty)$.

2. (Bernoulli Inequalities) Use mathematical induction to prove (a). Then deduce (b) from (a) by first taking nth roots of the result in (a) and then by making an appropriate change of variable. (You may assume that each positive number b has a positive nth root $b^{1/n}$.) Let n be a positive integer and $u > -1$. Then

 (a) $(1 + u)^n \geq 1 + nu$

 (b) $(1 + u)^{1/n} \leq 1 + \frac{1}{n}u$

3. (On nth roots)

 (a) Let $a > 1$ and n be a positive integer. Prove that $1 \leq a^{1/n} \leq 1 + \frac{1}{n} (a - 1)$.

 (b) What limit law from calculus enables you to conclude from (a) that $\lim_{n \to \infty} a^{1/n} = 1$?

 (c) If $0 < a < 1$ find $\lim_{n \to \infty} a^{1/n}$ and justify your answer.
4. Let \(n \) be a positive integer. Prove that \(n^3 < 2^n \) for all large \(n \). (This language means there exists an positive integer \(n_0 \) such that \(n^3 < 2^n \) for all \(n \geq n_0 \).) As part of this problem find the smallest \(n_0 \) that works.

5. Assume the product rule for differentiation that you learned in first-term calculus. Prove Leibniz Rule for differentiating a product of two functions: For any positive integer \(n \),

\[
(uv)^{(n)} = \sum_{k=0}^{n} \binom{n}{k} u^{(k)} v^{(n-k)}
\]

Before you can prove anything you will have to decide what must be assumed about the functions \(u = u(x) \) and \(v = v(x) \). Here the superscript \((k)\) means differentiation

\[
u^{(k)} = \frac{d^k u}{dx^k}
\]