Infinite Sequences of Real Numbers
(AKA ordered lists)

DEF. An **infinite sequence** of real numbers is a function $f : \mathbb{N} \to \mathbb{R}$.

Usually (infinite) sequences are written as lists, such as,

$$\{x_n\}_{n=1}^{\infty}, \{x_n\}, \ x_1, x_2, x_3, \ldots$$

where $x_n = f(n)$.

DEF. An infinite sequence $\{x_n\}_{n=1}^{\infty}$ has the real number a as a **limit** if given an real number $\varepsilon > 0$ there is a corresponding $N \in \mathbb{N}$ such that

$$n > N \Rightarrow |x_n - a| < \varepsilon$$

in which case we write

$$\lim_{n \to \infty} x_n = a, \text{ or } x_n \to a \text{ as } n \to \infty.$$

DEF. If a sequence has a **finite** limit we say it **converges**.

Facts:

The sequence $\{1/n\}$ converges and has limit 0.

A sequence may not have a limit.
Limits are unique if they exist.
Explicit Calculations With Limits

The process of taking a limit interacts as you would expect with the basic operations +, −, ×, and ÷ and with the order properties of real numbers.

Th. Suppose \(\{x_n\} \) and \(\{y_n\} \) are convergent sequences in \(\mathbb{R} \) and \(c \in \mathbb{R} \). Then the limits on the left all exist and have the indicated value:

\[
\lim_{n \to \infty} (x_n + y_n) = \lim_{n \to \infty} x_n + \lim_{n \to \infty} y_n \\
\lim_{n \to \infty} (cx_n) = c \lim_{n \to \infty} x_n \\
\lim_{n \to \infty} (x_n y_n) = \lim_{n \to \infty} x_n \cdot \lim_{n \to \infty} y_n
\]

If, in addition, \(\lim_{n \to \infty} y_n \neq 0 \), then

\[
\lim_{n \to \infty} \left(\frac{x_n}{y_n} \right) = \frac{\lim_{n \to \infty} x_n}{\lim_{n \to \infty} y_n}
\]

Th. Suppose \(\{x_n\} \) and \(\{y_n\} \) are convergent sequences in \(\mathbb{R} \) and

\(x_n < y_n \) for all large \(n \)

or

\(x_n \leq y_n \) for all large \(n \)

Then

\[
\lim_{n \to \infty} x_n \leq \lim_{n \to \infty} y_n
\]
The Squeeze Law
(AKA The Three Sequences Theorem)

Th. Suppose \(\{x_n\} \), \(\{y_n\} \), and \(\{z_n\} \) are sequences in \(\mathbb{R} \) with
\[
x_n \leq y_n \leq z_n \text{ for all large } n
\]
\[
\exists \lim_{n \to \infty} x_n \text{ and } \exists \lim_{n \to \infty} z_n \text{ and } \lim_{n \to \infty} x_n = \lim_{n \to \infty} z_n.
\]
Then
\[
\exists \lim_{n \to \infty} y_n \text{ and all three limits are equal.}
\]

Corollaries:

1. \[|y_n| \leq z_n \rightarrow 0 \Rightarrow \exists \lim_{n \to \infty} y_n = 0. \]

2. If \(\{x_n\} \) is bounded (which means \(\exists M > 0 \) such that \(|x_n| \leq M \) for all \(n \)) and if \(y_n \rightarrow 0 \) as \(n \rightarrow \infty \), then \(\exists \lim_{n \to \infty} x_n y_n = 0. \)
The Dilemma With Limits!

In significant applications in which limits occur you generate a sequence \(\{x_n\} \) whose terms get "closer and closer" to the solution of a difficult practical or theoretical problem that you cannot solve by more elementary means. Your hope is that "closer and closer" means the sequence converges and that its limit, say \(a \), is the solution to your problem.

Here is the dilemma: You don’t know \(a \). If you did, you wouldn’t need the sequence! If you don’t know \(a \), then you can’t use the definition of a limit to check that the sequence has limit \(a \).

What are you to do?

You need ways to guarantee that a sequence converges without knowing its limit in advance! Stay turned.
Basic Properties a Sequence May Have

DEF. A sequence \(\{x_n\} \) of real numbers is **bounded above** if \(\exists M \in \mathbb{R} \) such that \(x_n \leq M \) for all \(n \);

bounded below if \(\exists m \in \mathbb{R} \) such that \(x_n \geq m \) for all \(n \);

bounded if it is both bounded above and bounded below.

Facts:
1. \(\{x_n\} \) is bounded \(\iff \exists M \in \mathbb{R} \) such that \(|x_n| \leq M \) for all \(n \).

2. Convergent sequences are bounded.

3. Bounded sequences need not converge.

4. Bounded sequences often contain convergent subsequences.

DEF. A **subsequence** of a sequence \(\{x_n\}_{n=1}^{\infty} \) is a sequence of the form

\[
\{x_{n_k}\}_{k=1}^{\infty} = \{x_{n_1}, x_{n_2}, x_{n_3}, \ldots\}
\]
where $1 \leq n_1 < n_2 < n_3 < \cdots$
Increasing and Decreasing Sequences

DEF. A sequence \(\{x_n\} \) of real numbers is
- **increasing** if \(x_1 \leq x_2 \leq x_3 \leq \cdots \leq x_n \leq \cdots \);
- **decreasing** if \(x_1 \geq x_2 \geq x_3 \geq \cdots \geq x_n \geq \cdots \);
- **strictly increasing** if \(x_1 < x_2 < x_3 < \cdots < x_n < \cdots \);
- **strictly decreasing** if \(x_1 > x_2 > x_3 > \cdots > x_n > \cdots \);
- **monotone** if it is either increasing or decreasing.

Monotone sequences are important because they give one way out of our dilemma.

Th. [Monotone Convergence Theorem] Every *bounded monotone* sequence of real numbers converges.

Th. [MCT – full disclosure version]
1. An increasing sequence that is bounded above converges (to its least upper bound).
2. A decreasing sequence that is bounded below converges (to its greatest lower bound).
3. An increasing sequence that is not bounded above diverges to \(+\infty \).
4. A decreasing sequence that is not bounded below diverges to $-\infty$.
Very Important Consequences of Monotonicity

Cantor’s Nested Intervals Theorem: If \(\{I_n\}_{n \in \mathbb{N}} \) is a sequence of *nonempty, closed, bounded, nested* intervals (nested means \(I_1 \supset I_2 \supset I_3 \supset \cdots \)), then

\[
\cap_{n \in \mathbb{N}} I_n \neq \emptyset
\]

Furthermore, if \(|I_n| = \text{length of } I_n \to 0 \) as \(n \to \infty \), then

\[
\cap_{n \in \mathbb{N}} I_n \text{ is a single real number.}
\]

Th. Every sequence contains a monotone subsequence.

The Bolzano-Weierstrass Theorem: Every bounded sequence of real numbers has (contains) a convergent subsequence.
Cauchy Criterion for Convergence

DEF. A sequence \(\{x_n\}_{n=1}^{\infty} \) is a **Cauchy sequence** if given any \(\varepsilon > 0 \) \(\exists N \) such that
\[
n, m > N \implies |x_n - x_m| < \varepsilon.
\]

Facts:

1. Convergent sequences are Cauchy.

2. Cauchy sequences are bounded.

3. (Theorem with a capital T): A sequence of real numbers converges if and only if it is a Cauchy sequence.

This theorem provides another way out of the limit dilemma.