RIEMANN INTEGRATION

Throughout our discussion of Riemann integration
\[B = B[a, b] = B([a, b], \mathbb{R}) \]
is the set of all bounded real-valued functions on close, bounded, nondegenerate interval \([a, b]\).

1. **DEF.** A finite set of points \(P = \{x_0, x_1, \ldots, x_n\} \) is a **partition of** \([a, b]\) if
 \[a = x_0 < x_1 < \cdots < x_n = b. \]
We sometimes write
\[P = \{a = x_0 < x_1 < \cdots < x_n = b\}. \]
The set of all partitions of \([a, b]\) is denoted by \(\mathcal{P} \).

2. **DEF.** A partition \(Q \) of \([a, b]\) is a **refinement** of a partition \(P \) of \([a, b]\) if \(P \subset Q \). Then \(Q \) is said to be **finer** than \(P \).

3. **DEF.** Let \(f \in B[a, b] \) and \(P = \{x_0, x_1, \ldots, x_n\} \) be a partition of \([a, b]\). Then the \(i \)-th **subinterval of the partition** is
 \[I_i = [x_{i-1}, x_i], \quad |I_i| = x_i - x_{i-1} \]
and
 \[m_i = m_i(f) = \inf_{x \in I_i} f(x) \]
 \[M_i = M_i(f) = \sup_{x \in I_i} f(x) \]

Then
\[L_P(f) = \sum_{i=1}^{n} m_i |I_i| \]
is the **lower sum of** \(f \) **with respect to** the partition \(P \) and
\[U_P(f) = \sum_{i=1}^{n} M_i |I_i| \]
is the **upper sum of** \(f \) **with respect to** the partition \(P \).

Facts:
1. For any partition P, $L_P(f) \leq U_P(f)$.

2. If Q refines P, then

 $$L_P(f) \leq L_Q(f) \quad \text{and} \quad U_Q(f) \leq U_P(f)$$

3. If P and Q are any two partitions of $[a,b]$, then

 $$L_P(f) \leq U_Q(f).$$

4. DEF. Let $f \in B[a,b]$. The lower integral of f with respect to the partition P is

 $$(L) \int_a^b f(x) \, dx = L(f) = \sup_{\mathcal{P}} L_\mathcal{P}(f)$$

 and the upper integral of f with respect to the partition P is

 $$(U) \int_a^b f(x) \, dx = U(f) = \inf_{\mathcal{P}} U_\mathcal{P}(f)$$

5. Fact:

 $$\int_a^b f(x) \, dx \leq \int_a^b f(x) \, dx$$

 $$L(f) \leq U(f)$$

6. DEF. Let $f \in B[a,b]$. Then f is Riemann integrable (R-integrable) on (over) $[a,b]$ if $L(f) = U(f)$ in which case the Riemann integral of f on (over) $[a,b]$ is

 $$\int_a^b f(x) \, dx = L(f) = U(f).$$

 Notation: $\mathcal{R}[a,b]$ is the set of all R-integrable functions on $[a,b]$.

7. Facts:
1. Let $c \in \mathbb{R}$. The function $f : [a, b] \to \mathbb{R}$ defined by $f(x) = c$ is integrable over $[a, b]$ and
 \[\int_a^b c \, dx = c(b - a) \]

2. (Dirichlet Function) The function f defined by
 \[f(x) = \begin{cases}
 1 & \text{for } x \in [a, b] \cap \mathbb{Q} \\
 0 & \text{for } x \in [a, b] \cap \mathbb{I}
 \end{cases} \]
 is not Riemann integrable over $[a, b]$.

Existence of the Integral

8. Th. Let $f \in \mathcal{B}[a, b]$. Then f is Riemann integrable on $[a, b]$ if and only if for every $\varepsilon > 0$ there exists a partition P such that
 \[U_P(f) - L_P(f) < \varepsilon. \]

9. Th. If $f : [a, b] \to \mathbb{R}$ is monotone, then f is integrable on $[a, b]$.

10. Th. If $f : [a, b] \to \mathbb{R}$ is continuous on $[a, b]$, then f is integrable on $[a, b]$.

11. (Interval Additivity) Let $[a', b'] \subset [a, b]$ and $c \in [a, b]$. Then
 \[f \in \mathcal{R}[a, b] \implies f \in \mathcal{R}[a', b'], \]
 \[f \in \mathcal{R}[a, c] \text{ and } f \in \mathcal{R}[c, b] \implies f \in \mathcal{R}[a, b] \text{ and } \]
 \[\int_a^c f(x) \, dx + \int_c^b f(x) \, dx = \int_a^b f(x) \, dx \]
 Note: A direct consequence of 9, 10, and 11 is: If f is defined on an interval $[a, b]$ that can be decomposed into adjacent subintervals on each of which f is either monotone or continuous, then f is integrable over the full interval $[a, b]$.

12. Th. (Order Properties) If $f \in \mathcal{R}[a, b]$ and $f \geq 0$ on $[a, b]$, then
 \[\int_a^b f(x) \, dx \geq 0. \]
Cor. If \(f, g \in \mathcal{R}[a, b] \) and \(f \geq g \) on \([a, b] \), then
\[
\int_a^b f(x) \, dx \geq \int_a^b g(x) \, dx.
\]

Cor. If \(f \in \mathcal{R}[a, b] \) and \(m \leq f \leq M \) on \([a, b]\), then
\[
m(b-a) \leq \int_a^b f(x) \, dx \leq M(b-a).
\]

Combinations of Integrable Functions

13. (Linearity) If \(f, g \in \mathcal{R}[a, b] \) and \(\alpha \in \mathbb{R} \), then
\[
f + g \in \mathcal{R}[a, b] \quad \text{and} \quad \alpha f \in \mathcal{R}[a, b].
\]

14. If \(f, g \in \mathcal{R}[a, b] \) then
\[
\begin{align*}
f^2 & \in \mathcal{R}[a, b] \\
gf & \in \mathcal{R}[a, b]
\end{align*}
\]

15. (Triangle Inequality for Integrals) If \(f \in \mathcal{R}[a, b] \) then \(|f| \in \mathcal{R}[a, b] \) and
\[
\left| \int_a^b f(x) \, dx \right| \leq \int_a^b |f(x)| \, dx
\]

16. (Intermediate Value Theorem for Integrals) If \(f \in \mathcal{C}[a, b] \) and \(g \in \mathcal{R}[a, b] \) is positive on \([a, b]\), then there is a point \(c \in [a, b] \) such that
\[
\int_a^b f(x) g(x) \, dx = f(c) \int_a^b g(x) \, dx.
\]

Cor: If \(f \in \mathcal{C}[a, b] \), then there is a point \(c \in [a, b] \) such that
\[
\int_a^b f(x) \, dx = f(c)(b-a).
\]
17. **DEF:** In writing \(f \in \mathcal{R} [a, b] \) it was assumed that \(a < b \). Then by definition

\[
\int_b^a f(x) \, dx = - \int_a^b f(x) \, dx
\]

and

\[
\int_a^a f(x) \, dx = 0.
\]

Remarks:

1. These equalities become theorems if we adjust our previous definitions so that a partition \(P = \{a = x_0, x_1, \ldots, x_n = b\} \) where the intermediate points in the partition increase if \(a < b \) and decrease if \(b < a \). When \(a = b \) there is only one partition which is \(\{a = x_0, b = x_n\} \).

2. With these extensions the order properties only hold when \(a < b \).

3. The other results hold for any \(a \) and \(b \) and interval additivity is true for any order of the points \(a, b, \) and \(c \).

4. It is also useful to note that regardless of the order of \(a \) and \(b \),

\[
\left| \int_a^b f(x) \, dx \right| \leq \int_a^b |f(x)| \, dx
\]

The Fundamental Theorem (FTC) of Calculus

Throughout this topic \(f : I \to \mathbb{R} \) is a function defined on an interval of any type and \(f \in \mathcal{R} [a, b] \) for every closed, bounded subinterval \([a, b] \subset I\). Also, \(c \in I \) is fixed and \(F : I \to \mathbb{R} \) is the function defined by

\[
F(x) = \int_c^x f(t) \, dt.
\]

18. If \(f : I \to \mathbb{R} \) is as described, then \(F(x) = \int_c^x f(t) \, dt \) is continuous on \(I \).

19. *(FTC I)* If \(f : I \to \mathbb{R} \) is as described, then \(F(x) = \int_c^x f(t) \, dt \) is differentiable at each point \(x \in I \) at which \(f \) is continuous and

\[
F'(x) = f(x).
\]
20. *(FTC II)* If \(f : [a, b] \rightarrow \mathbb{R} \) is continuous and \(F \) is any antiderivative of \(f \) on \(I \), then
\[
\int_a^b f(x) \, dx = F(b) - F(a).
\]

21. *(FTC III)* If \(f' \in \mathcal{R}[a, b] \), then
\[
\int_a^b f'(x) \, dx = f(b) - f(a).
\]

Convergence and the Integral

22. **Th. Th.** If \(f_n \in \mathcal{R}[a, b] \) and \(f_n \) converges uniformly to \(f \) on \([a, b]\), then \(f \in \mathcal{R}[a, b] \) and
\[
\int_a^b f_n(x) \, dx \rightarrow \int_a^b f(x) \, dx
\]
as \(n \rightarrow \infty \), equivalently,
\[
\lim_{n \rightarrow \infty} \int_a^b f_n(x) \, dx = \int_a^b \lim_{n \rightarrow \infty} f_n(x) \, dx.
\]

The Riemann Sum Connection

23. **DEF.** Let \(P = \{a = x_0, x_1, ..., x_n = b\} \) be a partition of \([a, b]\) and \(c_i \in I_i \). Then
\[
\sum_{i=1}^n f(c_i) |I_i|
\]
is a **Riemann sum of \(f \) over (on) \([a, b]\)**.

23. **Th.** Let \(f \in \mathcal{B}[a, b] \). Then \(f \) is R-integrable over \([a, b]\) if and only if there is a real number \(A \) such that for every \(\varepsilon > 0 \) there is a partition \(P \) of \([a, b]\) such that
\[
\left| A - \sum_{i=1}^n f(c_i) |I_i| \right| < \varepsilon
\]
for all choices of \(c_i \in I_i \).