Lesson 8

Alpha Decay
Alpha decay (α)

- Decay by the emission of doubly charged helium nuclei $^4\text{He}^{2+}$.
- $^{238}\text{U} \rightarrow ^{234}\text{Th} + ^4\text{He}$
- $\Delta Z = -2$, $\Delta N=-2$, $\Delta A=-4$
- All nuclei with $Z \geq 83$ decay by α-decay as do some rare earth nuclei. Alpha decay is also known in the ^{100}Sn region.
Alpha Decay

- The emitted α-particles are monoenergetic, ranging in energy from 1.8-11.6 MeV (typically 4-9 MeV).
- They can be stopped by a piece of paper and are thus an internal radiation hazard rather than an external hazard.
- The naturally occurring α-emitters form long series of nuclei that decay to one another. Some of these naturally occurring decays series involve isotopes of Rn, a gas.
Typical Alpha Spectra
Important Features of Alpha Decay

• Generally energy of decay increases with increasing Z, but in any case the energy of the emitted α-particle is less than the Coulomb barrier for the α-nucleus interaction.

• For e-e nuclei, decay leads to gs of daughter. For odd A nuclei, decay is not to the gs but a low-lying excited state.
Energetics of Alpha Decay

- Q_{alpha}
Energetics of Alpha Decay (cont.)

- Q_{α} -- Generally increases with increasing Z, but is subject to shell effects.

$Z=82$, $N=126$

$N=152-154$
\[Q_\alpha, T_\alpha \]

\[Q_\alpha = (M_{\text{parent}} - M_{\text{daughter}} - M_{\text{alpha}})c^2 \]

\[T_\alpha = Q_\alpha \frac{M_{\text{daughter}}}{M_{\text{parent}}} \]

\[T_{\text{recoil}} = Q_\alpha \frac{M_{\text{alpha}}}{M_{\text{parent}}} \]

Difference between detecting emitted alpha particle and detecting alpha from implanted atom.
Closed decay cycles

Used to measure unknown masses or Q values for beta decay
Understanding natural alpha-decay chains

- In the U natural decay series, see pattern of mixed alpha and beta decays. Why?
Understanding Alpha Decay

• The problem:
Understanding Alpha Decay (cont.)

• The Geiger Nuttall Law

\[\log(t_{1/2}) = A + \frac{B}{\sqrt{Q_\alpha}} \]
Theory of Alpha Decay

- One of the first successes of quantum mechanics
\[\lambda = fT \]
\[f = \frac{v}{2R} = \frac{\sqrt{2(V_0 + Q)/\mu}}{2R} \sim 10^{21}/s \]
\[T \approx e^{-2G} \]
\[2G = \frac{2}{\hbar} \int_{x_1}^{x_2} \left[2m(V(x) - E) \right]^{1/2} dx \]
\[2G = \frac{2}{\hbar} \int_{R}^{b} \left[2\mu \left(\frac{Z_\alpha Z_D e^2}{r} - Q_\alpha \right) \right]^{1/2} dr \]
\[b = \frac{Z_\alpha Z_D e^2}{Q_\alpha} \]
After some algebra and simplifying for the nuclear case

\[2G = 2 \sqrt{\frac{2\mu}{\hbar^2 Q_\alpha}} \left(Z_\alpha Z_D e^2 \right) \left(\frac{\pi}{2} \right) \sim 60 - 120 \]

\[T \sim 10^{-55} - 10^{-27} \]

Then

\[t_{1/2} = \frac{\ln 2}{\lambda} = \frac{\ln 2}{fT} = \frac{\ln 2}{\left[\frac{2(V_0 + Q_\alpha)/\mu}{2R} \right]^{1/2}} e^{-2G} \]

This is called the “one-body” theory of alpha decay
How well does one-body theory work?

Role of “pre-formation factor”
Effect of angular momentum

Selection Rules
Which states of daughter are populated in alpha decay?

- Dominant effect is Q_α
- Angular momentum effect

Spin/parity selection rule for α transitions: $I_i^{\pi i} = I_f^{\pi f} + (-)^\ell$

$\ell = 0$ most probable α decay
Higher ℓ values hindered significantly because of small T_ℓ
Estimate range of ℓ-values from E_α and nuclear radii!
Hindrance Factors

Hindrance Factor = $t_{1/2}(\text{meas})/t_{1/2}(\text{one-body})$
α Decay Patterns

Data from 251Fm

<table>
<thead>
<tr>
<th>α Group</th>
<th>α Energy (keV)</th>
<th>Decay Energy (keV)</th>
<th>Excited-State Energy (keV)</th>
<th>α Intensity (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>α₁</td>
<td>7205 ± 3</td>
<td>7421</td>
<td>0</td>
<td>1.5 ± 0.1</td>
</tr>
<tr>
<td>α₂</td>
<td>7251 ± 3</td>
<td>7368</td>
<td>55</td>
<td>0.93 ± 0.08</td>
</tr>
<tr>
<td>α₃</td>
<td>7184 ± 3</td>
<td>7300</td>
<td>123</td>
<td>0.29 ± 0.03</td>
</tr>
<tr>
<td>α₄</td>
<td>7106 ± 5</td>
<td>7221</td>
<td>202</td>
<td>~ 0.05</td>
</tr>
<tr>
<td>α₅</td>
<td>6928 ± 2</td>
<td>7040</td>
<td>383</td>
<td>1.8 ± 0.1</td>
</tr>
<tr>
<td>α₆</td>
<td>6885 ± 2</td>
<td>6996</td>
<td>427</td>
<td>1.7 ± 0.1</td>
</tr>
<tr>
<td>α₇</td>
<td>6833 ± 2</td>
<td>6944</td>
<td>479</td>
<td>87.0 ± 0.9</td>
</tr>
<tr>
<td>α₈</td>
<td>6782 ± 2</td>
<td>6892</td>
<td>531</td>
<td>4.8 ± 0.2</td>
</tr>
<tr>
<td>α₉</td>
<td>6762 ± 3</td>
<td>6872</td>
<td>552</td>
<td>0.38 ± 0.06</td>
</tr>
<tr>
<td>α₁₀</td>
<td>6720 ± 3</td>
<td>6829</td>
<td>594</td>
<td>0.44 ± 0.04</td>
</tr>
<tr>
<td>α₁₁</td>
<td>6681 ± 4</td>
<td>6789</td>
<td>634</td>
<td>0.07 ± 0.03</td>
</tr>
<tr>
<td>α₁₂</td>
<td>6638 ± 3</td>
<td>6745</td>
<td>678</td>
<td>0.56 ± 0.06</td>
</tr>
<tr>
<td>α₁₃</td>
<td>6579 ± 3</td>
<td>6686</td>
<td>738</td>
<td>0.26 ± 0.04</td>
</tr>
</tbody>
</table>

From Krane, *Introductory Nuclear Physics*
Proton Decay

- Same theory as alpha decay, except no pre-formation factor for protons
- Where do you expect to see proton decay? \(S_p = 0 \)
Proton Decay (cont.)

- Proton energies are low and transmission factors are small.
Proton Decay (cont.)

- Alpha decay complicates measurements
Heavy Particle Decay

- What about emitting particles other than alphas or protons?