Chapter 10 Opener part 1

Biochemistry, Seventh Edition

© 2012 W. H. Freeman and Company
Figure 10.1

Biochemistry, Seventh Edition
© 2012 W. H. Freeman and Company
Rate of N-carbamoylaspartate formation

[Diagram showing a curve with the y-axis labeled [CTP], mM]
Figure 10.3
Biochemistry, Seventh Edition
© 2012 W. H. Freeman and Company
Cysteine

\[
\text{HO-} \text{Hg} - \text{COO}^-
\]

\[p\text{-Hydroxymercuribenzoate} \]

\[
\text{HOH}
\]

Figure 10.4

Biochemistry, Seventh Edition

© 2012 W. H. Freeman and Company
Figure 10.5
Biochemistry, Seventh Edition
© 2012 W. H. Freeman and Company
Figure 10.7

Biochemistry, Seventh Edition
© 2012 W. H. Freeman and Company
Figure 10.9
Biochemistry, Seventh Edition
© 2012 W. H. Freeman and Company
Figure 10.12
Biochemistry, Seventh Edition
© 2012 W. H. Freeman and Company

- **T state** (less active) favored by CTP binding
- **R state** (more active) favored by substrate binding
Figure 10.13
Biochemistry, Seventh Edition
© 2012 W. H. Freeman and Company

The graph shows the rate of N-carbamoylaspartate formation as a function of [Aspartate], mM, with two curves: one without and one with +0.4 mM CTP.
Figure 10.14

Biochemistry, Seventh Edition
© 2012 W. H. Freeman and Company
Figure 10.16a

Biochemistry, Seventh Edition
© 2012 W.H. Freeman and Company
<table>
<thead>
<tr>
<th></th>
<th>Heart</th>
<th>Kidney</th>
<th>Red blood cell</th>
<th>Brain</th>
<th>Leukocyte</th>
<th>Muscle</th>
<th>Liver</th>
</tr>
</thead>
<tbody>
<tr>
<td>H₄</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H₃M</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H₂M₂</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HM₃</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>M₄</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Modification</td>
<td>Donor molecule</td>
<td>Example of modified protein</td>
<td>Protein function</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>--------------------</td>
<td>-------------------------</td>
<td>--</td>
<td>---</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Phosphorylation</td>
<td>ATP</td>
<td>Glycogen phosphorylase</td>
<td>Glucose homeostasis; energy transduction</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Acetylation</td>
<td>Acetyl CoA</td>
<td>Histones</td>
<td>DNA packing; transcription</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Myristoylation</td>
<td>Myristoyl CoA</td>
<td>Src</td>
<td>Signal transduction</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ADP ribosylation</td>
<td>NAD⁺</td>
<td>RNA polymerase</td>
<td>Transcription</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Farnesylation</td>
<td>Farnesyl pyrophosphate</td>
<td>Ras</td>
<td>Signal transduction</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>γ-Carboxylation</td>
<td>HCO₃⁻</td>
<td>Thrombin</td>
<td>Blood clotting</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sulfation</td>
<td>3’-Phosphoadenosine-5’-phosphosulfate</td>
<td>Fibrinogen</td>
<td>Blood-clot formation</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ubiquitination</td>
<td>Ubiquitin</td>
<td>Cyclin</td>
<td>Control of cell cycle</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Acetylated lysine
Serine, threonine, or tyrosine residue

Protein kinase

ATP

Phosphorylated protein

ADP + H^+
<table>
<thead>
<tr>
<th>Signal</th>
<th>Enzyme</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cyclic nucleotides</td>
<td>Cyclic AMP-dependent protein kinase</td>
</tr>
<tr>
<td></td>
<td>Cyclic GMP-dependent protein kinase</td>
</tr>
<tr>
<td>Ca(^{2+}) and calmodulin</td>
<td>Ca(^{2+})–calmodulin protein kinase</td>
</tr>
<tr>
<td></td>
<td>Phosphorylase kinase or glycogen synthase kinase 2</td>
</tr>
<tr>
<td>AMP</td>
<td>AMP-activated kinase</td>
</tr>
<tr>
<td>Diacylglycerol</td>
<td>Protein kinase C</td>
</tr>
<tr>
<td>Metabolic intermediates and other “local” effectors</td>
<td>Many target-specific enzymes, such as pyruvate dehydrogenase kinase and branched-chain ketoacid dehydrogenase kinase</td>
</tr>
</tbody>
</table>

Source: After D. Fell, *Understanding the Control of Metabolism* (Portland Press, 1997), Table 7.2.
Phosphorylated protein + H$_2$O \rightleftharpoons Protein phosphatase \rightarrow Orthophosphate (P$_i$)
Protein–OH + ATP → Protein–OPO₃²⁻ + ADP

1 → H₂O

Protein–OH + HOPO₃²⁻
Cyclic adenosine monophosphate (cAMP)
Figure 10.17

Biochemistry, Seventh Edition
© 2012 W. H. Freeman and Company
<table>
<thead>
<tr>
<th>Site of synthesis</th>
<th>Zymogen</th>
<th>Active enzyme</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stomach</td>
<td>Pepsinogen</td>
<td>Pepsin</td>
</tr>
<tr>
<td>Pancreas</td>
<td>Chymotrypsinogen</td>
<td>Chymotrypsin</td>
</tr>
<tr>
<td>Pancreas</td>
<td>Trypsinogen</td>
<td>Trypsin</td>
</tr>
<tr>
<td>Pancreas</td>
<td>Procarboxypeptidase</td>
<td>Carboxypeptidase</td>
</tr>
</tbody>
</table>
Figure 10.20

Biochemistry, Seventh Edition
© 2012 W. H. Freeman and Company
Chymotrypsinogen (inactive)

1

π-Chymotrypsin (active)

1 15

16

245

Trypsin

π-Chymotrypsin

α-Chymotrypsin (active)

1 13

16

146

149 245

A chain

B chain

C chain

Two dipeptides

Figure 10.21

Biochemistry, Seventh Edition

© 2012 W. H. Freeman and Company
Figure 10.24
Biochemistry, Seventh Edition
© 2012 W. H. Freeman and Company
Glutamine + Lysine $\xrightarrow{\text{Transglutaminase}}$ Cross-link
Figure 10.30

Biochemistry, Seventh Edition

© 2012 W. H. Freeman and Company
Figure 10.31
Biochemistry, Seventh Edition
© 2012 W. H. Freeman and Company
γ-Carboxyglutamate residue
Antihemophilic factor (VIII)

Proteolysis
| Fibrin binding | Kringle | Kringle | | Serine protease |

Figure 10.35
Biochemistry, Seventh Edition
© 2012 W. H. Freeman and Company
Figure 10.36

Biochemistry, Seventh Edition

© 2012 W.H. Freeman and Company