Enzyme Regulation II
Blood Clotting

Dr. Kevin Ahern
Blood Clotting

Blood coagulation *in vivo*

- **initiation phase**
 - TF (tissue factor) → TF-VIIa → IXa
 - VII → IX

- **amplification phase**
 - (αTHR) Xa → X → XIa → XI
 - (APC) VIIIa → VIII
 - (αTHR) Va → V
 - prothrombin → THROMBIN

- Stabilised, cross-linked fibrin clot
- Fibrinogen → fibrin → XIIIa → XIII
Blood Clotting

Cellular Response

Blood coagulation in vivo

- Initiation phase
 - TF (tissue factor) → TF-VIIa
 - IXa

- Amplification phase
 - (αTHR) Xa → (αTHR) Xla
 - (APC) Vlla → (APC) VIII
 - Va → V
 - (αTHR) XIIIa → (αTHR) XIII

- Prothrombin → Thrombin
 - Stabilized, cross-linked fibrin clot
 - Fibrinogen → Fibrin
Blood Clotting - Cellular Response
Blood Clotting - Cellular Response

1. Damage to epithelial tissue exposes collagen
Blood Clotting - Cellular Response

1. Damage to epithelial tissue exposes collagen
2. Platelets bind collagen-binding surface receptors
Blood Clotting - Cellular Response

1. Damage to epithelial tissue exposes collagen
2. Platelets bind collagen-binding surface receptors
3. Platelet *integrins* get activated and bind tightly to *extracellular matrix* to anchor to site of wound.
Blood Clotting - Cellular Response

1. Damage to epithelial tissue exposes collagen
2. Platelets bind collagen-binding surface receptors
3. Platelet integrins get activated and bind tightly to extracellular matrix to anchor to site of wound.
4. von Willebrand factor (a blood glycoprotein) forms additional links between the platelets’ glycoprotein and the fibrils of the collagen
Blood Clotting - Cellular Response

1. Damage to epithelial tissue exposes collagen
2. Platelets bind collagen-binding surface receptors
3. Platelet integrins get activated and bind tightly to extracellular matrix to anchor to site of wound.
4. von Willebrand factor (a blood glycoprotein) forms additional links between the platelets’ glycoprotein and the fibrils of the collagen
5. Amplification begins with release of platelet factor 4 (inhibits heparin) and thromboxane A₂ (increases platelet stickiness).
Blood Clotting - Cellular Response

1. Damage to epithelial tissue exposes collagen
2. Platelets bind collagen-binding surface receptors
3. Platelet **integrins** get activated and bind tightly to **extracellular matrix** to anchor to site of wound.
4. **von Willebrand factor** (a blood glycoprotein) forms additional links between the platelets’ glycoprotein and the fibrils of the **collagen**
5. Amplification begins with release of platelet factor 4 (inhibits heparin) and thromboxane A₂ (increases platelet stickiness).
6. Calcium released from intracellular stores (Gq cascade)
Blood Clotting - Cellular Response

1. Damage to epithelial tissue exposes collagen
2. Platelets bind collagen-binding surface receptors
3. Platelet integrins get activated and bind tightly to extracellular matrix to anchor to site of wound.
4. von Willebrand factor (a blood glycoprotein) forms additional links between the platelets’ glycoprotein and the fibrils of the collagen
5. Amplification begins with release of platelet factor 4 (inhibits heparin) and thromboxane A₂ (increases platelet stickiness).
6. Calcium released from intracellular stores (Gq cascade)

(Throughout this lecture, the ‘a’ subscript, such as TF VIIₐ, indicate the activated form of a factor)
Blood Clotting - Molecular Response

The three pathways that makeup the classical blood coagulation pathway

Intrinsic
- surface contact
- XII → XII$_{a}$
- XI → XI$_{a}$
- IX → IX$_{a}$

Extrinsic
- TF:VII$_{a}$ → tissue damage

Common
- prothrombin → thrombin (serine protease)
- fibrinogen → fibrin → stable fibrin clot

Factors and Proteases
- XII – Hageman factor, a serine protease
- XI – Plasma thromboplastin, antecedent serine protease
- IX – Christmas factor, serine protease
- VII – Stable factor, serine protease
- XIII – Fibrin stabilising factor, a transglutaminase
- PL – Platelet membrane phospholipid
- Ca$^{++}$ – Calcium ions
- TF – Tissue Factor (a = active form)
Blood Clotting - Molecular Response

The three pathways that makeup the classical blood coagulation pathway

Intrinsic
- XII → XIIa
- XI → XIa
- IX → IXa
- (VIII, PL, Ca++) → X → Xa → Xa

Extrinsic
- TF:VIIa → tissue damage

Common
- prothrombin → thrombin (serine protease)
- fibrinogen → fibrin
- stable fibrin clot
Blood Clotting - Molecular Response
Molecular response converges on polymerization of fibrin (resulting from intrinsic and extrinsic pathways) to make the blood clot.
Blood Clotting - Molecular Response

Molecular response converges on polymerization of fibrin (resulting from intrinsic and extrinsic pathways) to make the blood clot.

The intrinsic pathway is also known as the contact activation pathway and the extrinsic pathway is known as the tissue factor pathway (more important).
Blood Clotting - Molecular Response - Initiation Phase
Blood Clotting - Molecular Response - Initiation Phase

1. Tissue damage stimulates formation of TF-FVIIa complex
Blood Clotting - Molecular Response - Initiation Phase

1. Tissue damage stimulates formation of TF-FVIIa complex
2. TF-FVIIa, FIXa, Platelet Membrane Phospholipid (PL) and calcium (from the cellular response) inefficiently convert FX to FXa
Blood Clotting - Molecular Response - Initiation Phase

1. Tissue damage stimulates formation of TF-FVIIₐ complex
2. TF-FVIIₐ, FIXₐ, Platelet Membrane Phospholipid (PL) and calcium (from the cellular response) inefficiently convert FX to FXₐ
3. FXₐ, FV, PL, and calcium inefficiently convert prothrombin (zymogen) to a tiny amount of thrombin.
Blood Clotting - Molecular Response - Initiation Phase

1. Tissue damage stimulates formation of TF-FVIIa complex
2. TF-FVIIa, FIXa, Platelet Membrane Phospholipid (PL) and calcium (from the cellular response) inefficiently convert FX to FXa
3. FXa, FV, PL, and calcium inefficiently convert prothrombin (zymogen) to a tiny amount of thrombin.
4. Thrombin is key to the amplification phase of the molecular response.
Blood Clotting - Molecular Response - Amplification Phase
The amplification phase of the molecular response requires factors from the intrinsic and extrinsic response.
The amplification phase of the molecular response requires factors from the intrinsic and extrinsic response.

1. FVIII is normally bound in a complex with the von Willebrand factor and is inactive until it is released by action of thrombin.
The amplification phase of the molecular response requires factors from the intrinsic and extrinsic response.

1. FVIII is normally bound in a complex with the von Willebrand factor and is inactive until it is released by action of thrombin.

2. FXI$_a$ helps favor production of more FIX$_a$.
The amplification phase of the molecular response requires factors from the intrinsic and extrinsic response.

1. FVIII is normally bound in a complex with the von Willebrand factor and is inactive until it is released by action of thrombin.

2. FXI\(_a\) helps favor production of more FIX\(_a\).

3. FIX\(_a\) plus FVIII\(_a\) stimulate production of a considerable amount of FX\(_a\) (3-4 orders of magnitude).
The amplification phase of the molecular response requires factors from the intrinsic and extrinsic response.

1. FVIII is normally bound in a complex with the von Willebrand factor and is inactive until it is released by action of thrombin.

2. FXI\textsubscript{a} helps favor production of more FIX\textsubscript{a}.

3. FIX\textsubscript{a} plus FVIII\textsubscript{a} stimulate production of a considerable amount of FX\textsubscript{a} (3-4 orders of magnitude).

4. FV\textsubscript{a} joins FX\textsubscript{a} and calcium to make a much larger amount of thrombin (3-4 orders of magnitude).
The amplification phase of the molecular response requires factors from the intrinsic and extrinsic response response.

1. FVIII is normally bound in a complex with the von Willebrand factor and is inactive until it is released by action of thrombin.

2. FXI\textsubscript{a} helps favor production of more FIX\textsubscript{a}.

3. FIX\textsubscript{a} plus FVIII\textsubscript{a} stimulate production of a considerable amount of FX\textsubscript{a} (3-4 orders of magnitude).

4. FV\textsubscript{a} joins FX\textsubscript{a} and calcium to make a much larger amount of thrombin (3-4 orders of magnitude).
Blood Clotting - Hardening of Clot
Blood Clotting - Hardening of Clot

Transglutaminase (FXIII_a)
Blood Clotting - Hardening of Clot

Transglutamininase (FXIII\textsubscript{a})
Blood Clotting - Hardening of Clot

Transglutamininase (FXIII$_a$)
Blood Clotting - Hardening of Clot

Transglutamininase (FXIII$_a$)
Hardening of the Clot
Prothrombin
Prothrombin

1. Converts fibrinogen to fibrin
Prothrombin

1. Converts fibrinogen to fibrin
2. Serine protease
Prothrombin

1. Converts fibrinogen to fibrin
2. Serine protease
3. Must bind calcium to be at site of wound
Prothrombin

1. Converts fibrinogen to fibrin
2. Serine protease
3. Must bind calcium to be at site of wound
4. Carboxylation of glutamate side chains requires vitamin K
Prothrombin

1. Converts fibrinogen to fibrin
2. Serine protease
3. Must bind calcium to be at site of wound
4. Carboxylation of glutamate side chains requires vitamin K
5. Carboxylated glutamate side chains bind calcium
Prothrombin

1. Converts fibrinogen to fibrin
2. Serine protease
3. Must bind calcium to be at site of wound
4. Carboxylation of glutamate side chains requires vitamin K
5. Carboxylated glutamate side chains bind calcium
6. Blocking vitamin K action reduces clotting (blood thinner)
Blood Clotting - Summary
Blood Clotting - Summary

1. Tissue damage initiates a cellular response that starts a process to plug the wound (sticky platelets) and releases calcium necessary for the cellular response.
Blood Clotting - Summary

1. Tissue damage initiates a cellular response that starts a process to plug the wound (sticky platelets) and releases calcium necessary for the cellular response.

2. Tissue damage signals initiation of the intrinsic and extrinsic pathways (molecular response).
Blood Clotting - Summary

1. Tissue damage initiates a cellular response that starts a process to plug the wound (sticky platelets) and releases calcium necessary for the cellular response.

2. Tissue damage signals initiation of the intrinsic and extrinsic pathways (molecular response).

3. The intrinsic pathway and extrinsic pathway are molecular responses that converge to favor polymerization of fibrin.
Blood Clotting - Summary

1. Tissue damage initiates a cellular response that starts a process to plug the wound (sticky platelets) and releases calcium necessary for the cellular response.

2. Tissue damage signals initiation of the intrinsic and extrinsic pathways (molecular response).

3. The intrinsic pathway and extrinsic pathway are molecular responses that converge to favor polymerization of fibrin.

4. The molecular responses involve an initiation phase that activates a small amount of thrombin.
Blood Clotting - Summary

1. Tissue damage initiates a cellular response that starts a process to plug the wound (sticky platelets) and releases calcium necessary for the cellular response.

2. Tissue damage signals initiation of the intrinsic and extrinsic pathways (molecular response).

3. The intrinsic pathway and extrinsic pathway are molecular responses that converge to favor polymerization of fibrin.

4. The molecular responses involve an initiation phase that activates a small amount of thrombin.

5. The small amount of active thrombin results in amplification of factors FXα and FVα by many fold, which in turn activate thrombin by millions of fold.
1. Tissue damage initiates a cellular response that starts a process to plug the wound (sticky platelets) and releases calcium necessary for the cellular response.

2. Tissue damage signals initiation of the intrinsic and extrinsic pathways (molecular response).

3. The intrinsic pathway and extrinsic pathway are molecular responses that converge to favor polymerization of fibrin.

4. The molecular responses involve an initiation phase that activates a small amount of thrombin.

5. The small amount of active thrombin results in amplification of factors FXₐ and FVₐ by many fold, which in turn activate thrombin by millions of fold.

6. Thrombin activates fibrinogen to make fibrin and form the clot.
Hemophilia
Hemophilia

1. Deficiency of FVIII leads to Hemophilia A (about 1 in 5000 to 10,000 male births)
Hemophilia

1. Deficiency of FVIII leads to Hemophilia A (about 1 in 5000 to 10,000 male births)

2. Deficiency of FIX produces Hemophilia B (about 1 in 20,000 to 35,000 male births).
Hemophilia

1. Deficiency of FVIII leads to Hemophilia A (about 1 in 5000 to 10,000 male births)

2. Deficiency of FIX produces Hemophilia B (about 1 in 20,000 to 35,000 male births).

3. In 1960, the life expectancy of a hemophiliac was about 11 years. Today, it is over 60.
von Willebrand’s disease
von Willebrand’s disease

1. Similar to hemophilia
von Willebrand’s disease

1. Similar to hemophilia
2. von Willebrand factor is a large multimeric glycoprotein present in blood plasma and also produced in the endothelium lining blood vessels.
von Willebrand’s disease

1. Similar to hemophilia
2. von Willebrand factor is a large multimeric glycoprotein present in blood plasma and also produced in the endothelium lining blood vessels.
3. Anchors platelets near the site of the wound in the cellular response
von Willebrand’s disease

1. Similar to hemophilia
2. von Willebrand factor is a large multimeric glycoprotein present in blood plasma and also produced in the endothelium lining blood vessels.
3. Anchors platelets near the site of the wound in the cellular response
4. Binds to a platelet glycoprotein.
von Willebrand’s disease

1. Similar to hemophilia
2. von Willebrand factor is a large multimeric glycoprotein present in blood plasma and also produced in the endothelium lining blood vessels.
3. Anchors platelets near the site of the wound in the cellular response
4. Binds to a platelet glycoprotein.
5. Binds to heparin and helps moderate its action.
von Willebrand’s disease

1. Similar to hemophilia
2. von Willebrand factor is a large multimeric glycoprotein present in blood plasma and also produced in the endothelium lining blood vessels.
3. Anchors platelets near the site of the wound in the cellular response
4. Binds to a platelet glycoprotein.
5. Binds to heparin and helps moderate its action.
6. Binds to collagen
von Willebrand’s disease

1. Similar to hemophilia
2. von Willebrand factor is a large multimeric glycoprotein present in blood plasma and also produced in the endothelium lining blood vessels.
3. Anchors platelets near the site of the wound in the cellular response
4. Binds to a platelet glycoprotein.
5. Binds to heparin and helps moderate its action.
6. Binds to collagen
7. Binds to FVIII in the molecular response, playing a protective role for it. In the absence of the von Willebrand factor, FVIII is destroyed.
Vitamin K

Phylloquinone (K$_1$)
Vitamin K
Fat Soluble Vitamin With Roles in Blood Clotting and Bone Health

Phylloquinone (K₁)
Vitamin K
Fat Soluble Vitamin With Roles in Blood Clotting and Bone Health
Stored in Fat Tissue

Phylloquinone (K₁)
Vitamin K
Fat Soluble Vitamin With Roles in Blood Clotting and Bone Health
Stored in Fat Tissue
Most Abundant in Green Leafy Vegetables - Kale, Spinach, Collards

Phylloquinone (K₁)
Vitamin K

Fat Soluble Vitamin With Roles in Blood Clotting and Bone Health

Stored in Fat Tissue

Most Abundant in Green Leafy Vegetables - Kale, Spinach, Collards

Stable in Air. Decomposes in Sunlight

Phylloquinone (K₁)
Vitamin K

Fat Soluble Vitamin With Roles in Blood Clotting and Bone Health

Stored in Fat Tissue

Most Abundant in Green Leafy Vegetables - Kale, Spinach, Collards

Stable in Air. Decomposes in Sunlight

Multiple Forms

Phylloquinone (K₁)
Vitamin K

Fat Soluble Vitamin With Roles in Blood Clotting and Bone Health
Stored in Fat Tissue
Most Abundant in Green Leafy Vegetables - Kale, Spinach, Collards
Stable in Air. Decomposes in Sunlight
Multiple Forms
Vitamin K-related Modifications Facilitate Calcium Binding by Target Proteins

[Chemical structure of Phylloquinone (K₁)]
Vitamin K

Fat Soluble Vitamin With Roles in Blood Clotting and Bone Health
Stored in Fat Tissue
Most Abundant in Green Leafy Vegetables - Kale, Spinach, Collards
Stable in Air. Decomposes in Sunlight
Multiple Forms
Vitamin K-related Modifications Facilitate Calcium Binding by Target Proteins
Absence of Vitamin K Leads to Uncontrolled Bleeding

Phylloquinone (K₁)
Vitamin K

Fat Soluble Vitamin With Roles in Blood Clotting and Bone Health
Stored in Fat Tissue
Most Abundant in Green Leafy Vegetables - Kale, Spinach, Collards
Stable in Air. Decomposes in Sunlight
Multiple Forms
Vitamin K-related Modifications Facilitate Calcium Binding by Target Proteins
Absence of Vitamin K Leads to Uncontrolled Bleeding
Deficiency Rare in Healthy Adults

Phylloquinone (K₁)
Vitamin K

Fat Soluble Vitamin With Roles in Blood Clotting and Bone Health
Stored in Fat Tissue
Most Abundant in Green Leafy Vegetables - Kale, Spinach, Collards
Stable in Air. Decomposes in Sunlight
Multiple Forms
Vitamin K-related Modifications Facilitate Calcium Binding by Target Proteins
Absence of Vitamin K Leads to Uncontrolled Bleeding
Deficiency Rare in Healthy Adults
Required for Bone Formation

Phylloquinone (K₁)
Vitamin K
Vitamin K

Vitamin K is a Group of Molecules
Vitamin K

Vitamin K is a Group of Molecules
Kₑ - Phylloquinone - Electron Acceptor in Plants (Photosystem I)
Vitamin K is a Group of Molecules

K_1 - Phylloquinone - Electron Acceptor in Plants (Photosystem I)
Vitamin K

Vitamin K is a Group of Molecules
K₁ - Phylloquinone - Electron Acceptor in Plants (Photosystem I)
Found in Leaves of Green Plants

K₁
MK-4
MK-
Vitamin K

Vitamin K is a Group of Molecules
K₁ - Phylloquinone - Electron Acceptor in Plants (Photosystem I)
Found in Leaves of Green Plants
Involved in Carboxylation of Glutamates of Blood Clotting Factors II, VII, IX, X
Vitamin K

Vitamin K is a Group of Molecules

K_1 - Phylloquinone - Electron Acceptor in Plants (Photosystem I)
- Found in Leaves of Green Plants
- Involved in Carboxylation of Glutamates of Blood Clotting Factors II, VII, IX, X
- Involved in Carboxylation of Glutamates of Anticoagulation Factors Protein C and S

\[\text{K1} \]
\[\text{MK-4} \]
\[\text{MK-} \]
Vitamin K

Vitamin K is a Group of Molecules

K₁ - Phylloquinone - Electron Acceptor in Plants (Photosystem I)
 Found in Leaves of Green Plants
 Involved in Carboxylation of Glutamates of Blood Clotting Factors II, VII, IX, X
 Involved in Carboxylation of Glutamates of Anticoagulation Factors Protein C and S

K₂ - Menaquinone-n - A Group of Compounds Differing in Number of Isoprenes

\[
\text{Menaquinone-n (K}_2\text{)}
\]
Vitamin K

Vitamin K is a Group of Molecules

K₁ - Phylloquinone - Electron Acceptor in Plants (Photosystem I)
 Found in Leaves of Green Plants
 Involved in Carboxylation of Glutamates of Blood Clotting Factors II, VII, IX, X
 Involved in Carboxylation of Glutamates of Anticoagulation Factors Protein C and S

K₂ - Menaquinone-n - A Group of Compounds Differing in Number of Isoprenes
 MK-4 and MK-7 are Subtypes of K₂

![Menaquinone-n (K₂)](image-url)
Vitamin K

Vitamin K is a Group of Molecules
K₁ - Phylloquinone - Electron Acceptor in Plants (Photosystem I)
 Found in Leaves of Green Plants
 Involved in Carboxylation of Glutamates of Blood Clotting Factors II, VII, IX, X
 Involved in Carboxylation of Glutamates of Anticoagulation Factors Protein C and S
K₂ - Menaquinone-n - A Group of Compounds Differing in Number of Isoprenes
 MK-4 and MK-7 are Subtypes of K₂
 As Involved in Glutamate Carboxylations as K₁

Menaquinone-n (K₂)
Vitamin K
Vitamin K

Needed for Carboxylation of Proteins

Vitamin K

\[
\text{O}_2 + \text{CO}_2 \rightarrow \text{H}_2\text{O} + \text{H}^+ \]

Glutamate Carboxylase

\[
\text{Ca}^{++} \quad \text{COO}^- - \text{OOC} \quad \text{H}^+ \quad \text{R}_2 \quad \text{N} \quad \text{H} \quad \text{R}_1
\]

γ-carboxyglutamate

Vitamin K

Vitamin K Epoxide
Vitamin K

Warfarin Blocks Vitamin K Recycling
Warfarin blocks vitamin K recycling, which must be recycled.
Vitamin K Epoxide

Vitamin K Epoxide Reductase

H₂O

Vitamin K

Warfarin Blocks Vitamin K Recycling
Warfarin Blocks Vitamin K Recycling
Vitamin K
Vitamin K

Vitamin K is Important for Bone Health
Vitamin K

Vitamin K is Important for Bone Health
Stimulates Carboxylation and Activates Many Proteins
Vitamin K

Vitamin K is Important for Bone Health
Stimulates Carboxylation and Activates Many Proteins
 Osteocalcin - Binds Bone Matrix, Stimulates Osteoblasts
Vitamin K is Important for Bone Health
Stimulates Carboxylation and Activates Many Proteins
 Osteocalcin - Binds Bone Matrix, Stimulates Osteoblasts
 Periostin - Involved in Cell Migration, Bone Development,
Blood Thinning - Aspirin
Blood Thinning - Aspirin

Inhibits synthesis of prostaglandins
Blood Thinning - Aspirin

Inhibits synthesis of prostaglandins
Prostaglandins are precursors of thromboxane A2
Blood Thinning - Aspirin

Inhibits synthesis of prostaglandins

Prostaglandins are precursors of thromboxane A2

Thromboxane A₂ helps make platelets “sticky” in cellular response
Clot Dissolving - Plasmin
Clot Dissolving - Plasmin

Blue arrows activate
Red arrows inhibit

- Tissue plasminogen activator (tPA)
- Plasminogen activator inhibitor 1 & 2
- Urokinase
- Factor Xla, XIIa Kallikrein
- α2-antiplasmin
- α2-macroglobulin
- Fibrin
- Plasmin
- Fibrin degradation products
- Thrombin

Thrombin-activatable fibrinolysis inhibitor
Clot Dissolving - Plasmin

Blue arrows activate
Red arrows inhibit

Tissue plasminogen activator (tPA)

Plasminogen activator inhibitor 1 & 2

Urokinase

PLASMIN

PLASMINOGEN

Factor XIa, XIIa, Kallikrein

α2-antiplasmin

α2-macroglobulin

FIBRIN

FIBRIN DEGRADATION PRODUCTS

THROMBIN

Thrombin-activatable fibrinolysis inhibitor
Clot Dissolving - Plasmin

Tissue plasminogen activator (tPA)

Plasminogen activator inhibitor 1 & 2

Urokinase

PLASMINOGEN

Factor Xla, XIIa Kallikrein

α2-antiplasmin

α2-macroglobulin

FIBRIN

FIBRIN DEGRADATION PRODUCTS

THROMBIN

Thrombin-activatable fibrinolysis inhibitor

Blue arrows activate
Red arrows inhibit
Plasmin
Plasmin

Serine protease
Plasmin

Serine protease

Cleaves fibrin clots, fibronectin, thrombospondin, laminin, and the von Willebrand factor
Plasmin

Serine protease
Cleaves fibrin clots, fibronectin, thrombospondin, laminin, and the von Willebrand factor
Activates collagenases by cleavage also
Metabolic Melody
Thank Goodness My Blood is Clotting
(to the tune of "Don't Sleep in the Subway Darling")
Copyright © Kevin Ahern

I’m feeling so sad
‘Cuz I cut myself bad
Now I’m all worried ‘bout consequences

It’s starting to bleed
There’s some clo sure I need
So the body kicks in its defenses

It’s happened all so many times before
The blood flows out and then it shuts the door

Thank goodness my blood is clotting
Enmeshing the fibrin chains
Thank goodness my blood is clotting
The zymogens
Are activating and all is well
So I’ll stop bleeding again

The vitamin K’s
Help to bind to cee-ays
Adding C-O-. . . . O-H to amend things
Um-m-um-um-um-um-um
Thank Goodness My Blood is Clotting
(to the tune of "Don't Sleep in the Subway Darling")
Copyright © Kevin Ahern

I’m feeling so sad
‘Cuz I cut myself bad
Now I’m all worried ‘bout consequences

It’s starting to bleed
There’s some clo sure I need
So the body kicks in its defenses

It’s happened all so many times before
The blood flows out and then it shuts the door

Thank goodness my blood is clotting
Enmeshing the fibrin chains
Thank goodness my blood is clotting
The zymogens
Are activating and all is well
So I’ll stop bleeding again

The vitamin K’s
Help to bind to cee-ays
Adding C-O-. . . . O-H to amend things
Um-m-um-um-um-um-um

It hardens and stays
When a glu. . . . taminase
Creates co. . . . valent bonds for cementing

In just a moment, things are good to go
The clot’s in place and it has stopped the flow

But what about clot dissolving?
Untangling fibrin chains?
This calls for some problem solving
There is a way
Just activate up some t-PA
Get plasmin active in veins

Oh, oh, oh.
And thanks to the dis-enclotting’
As part of repairin’ veins
It’s part of my body’s plotting
The wound is gone
I’m back where I started and
Nothing’s wrong
My blood flow is normal again.