Feeding Companion Animals

Introduction
- Dogs
 - domesticated about 12,000 years ago
 - omnivore
- Cats
 - domesticated about 3,000 years ago
 - carnivore
- Pet food industry: $8.8 billion
- 160 million dogs and cats

Nutrient Requirements
- Originally established by the NRC
 - growing animals – minimum requirements
- Association of American Feed Control Officials (AAFCO)
 - ensure pet foods uniformly labeled
 - developed standard nutrient profiles
 - nutrient concentrations for growth and maintenance

Nutrient Requirements
- AAFCO
 - suggested range of nutrients
 - Chihuahua 1 kg vs Great Dane 75 kg
 - bone length and density, hair type and length, muscle tone

Water
- Nutrient required in greatest amount
- Animal can survive 10x longer without food vs H₂O
- Body H₂O is inversely related to body fat
 - dehydration concern in growing animals
- H₂O content of commercial diets 10 – 84%

Energy
- Requirements influenced by
 - environmental factors
 - physical activity
 - age and reproductive state
- Maintenance
 - Dogs: 145 kcal/kg BW
 - Cats: 80 kcal/kg BW
- Animals offered a balanced diet tend to eat to satisfy energy requirement
Dog Energy Requirements

- Maintenance energy = 145 kcal/kg BW \(^{0.67}\)

ME Reproductive Requirements

Cat Energy Requirements

- Maintenance energy = 80 kcal/kg BW

Carbohydrates

- Grain sources provide energy
 - corn, rice, wheat, oats, and barley
 - processing important - finely ground and heat treated
- Hexokinase & Glucokinase
 - glucokinase absent in cats

Fat

- Proportion of metabolizable fat to other metabolizable nutrients important
 - when diet contains low % CP or poor-quality protein, desired % fat may be as low as 5-10%
- Linoleic essential
 - arachidonic essential in cats
- Tallow, lard, poultry, vegetable, fish
Protein

- Soybean meal, corn gluten meal, poultry and meat by-products
- Cats have significantly higher protein requirement than dogs
- Cats require taurine
 - by-product of S amino acid metabolism
 - important component of bile salts
- Ratio of CP to ME important

Recommended Nutrient Concentration of Dog Foods

<table>
<thead>
<tr>
<th></th>
<th>Growth & Reproduction</th>
<th>Maintenance</th>
</tr>
</thead>
<tbody>
<tr>
<td>ME kcal/g DM</td>
<td>3.5</td>
<td>3.5</td>
</tr>
<tr>
<td>CP, %</td>
<td>22.0</td>
<td>18.0</td>
</tr>
<tr>
<td>Fat</td>
<td>8.0</td>
<td>5.0</td>
</tr>
<tr>
<td>Ca</td>
<td>1.0</td>
<td>0.6</td>
</tr>
<tr>
<td>P</td>
<td>0.8</td>
<td>0.5</td>
</tr>
</tbody>
</table>

Commercial Foods

- Dry (88-94% DM), semi-moist (60-77% DM), and moist (22-40% DM)
- Dry pet foods
 - extrusion - high temp, short time, optimizes expansion and dextrinization of starch
 - pelleted or kibbled
- Semi-moist - snacks
- Moist - most expensive, cats major mkt

Commercial Foods

- Puppy and kitten foods - more protein
- Working dog
 - Iditarod - 10,000-11,000 kcal/d
 - Dog racing - anaerobic metabolism
- Diet foods
 - 24-34% of adult dogs obese
 - important not to restrict other nutrients
- Generic or Brand Name pet foods

Pet Food Labels

- Information required on the label
 - product name
 - net weight
 - ingredient list
 - guaranteed analysis
 - name and address of manufacturer
 - designation “Dog Food” or “Cat Food”
 - statement of nutritional adequacy or purpose

Pet Food Labels

- Labels do not provide information on availability of nutrients
- Pet foods in interstate commerce must contain a statement and validation of nutritional adequacy
 - complete and balanced nutrition - must indicate method used to substantiate
 - feeding trials or formulation to meet AAFCO Nutrient Profiles
Pet Food Labels

- Guaranteed Analysis
 - min protein and fat & max fiber and water
 - as-fed basis
- Ingredient list
 - decreasing order of predominance based on weight
- Nutritional adequacy
 - Undergone feeding trials - "feeding tests", "AAFCO feeding test protocols", "AAFCO feeding studies"
 - Calculation method – "complete and balanced"
- Caloric density – maybe, maybe not

Atwater's Physiological Fuel Values (PFV)

<table>
<thead>
<tr>
<th></th>
<th>GE</th>
<th>Dig (%)</th>
<th>ME (kcal/g)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHO</td>
<td>4.15</td>
<td>x 98</td>
<td>4</td>
</tr>
<tr>
<td>Protein</td>
<td>(5.65-1.25)</td>
<td>x 92</td>
<td>4</td>
</tr>
<tr>
<td>Fat</td>
<td>9.4</td>
<td>x 95</td>
<td>9</td>
</tr>
</tbody>
</table>

Dog

<table>
<thead>
<tr>
<th></th>
<th>GE</th>
<th>Dig (%)</th>
<th>ME (kcal/g)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHO</td>
<td>4.15</td>
<td>x 85</td>
<td>3.5</td>
</tr>
<tr>
<td>Protein</td>
<td>(5.65-1.25)</td>
<td>x 80</td>
<td>3.5</td>
</tr>
<tr>
<td>Fat</td>
<td>9.4</td>
<td>x 93</td>
<td>8.7</td>
</tr>
</tbody>
</table>

Calculating ME Content

<table>
<thead>
<tr>
<th>Nutrient</th>
<th>% of DM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fat</td>
<td>9</td>
</tr>
<tr>
<td>Protein</td>
<td>24</td>
</tr>
<tr>
<td>Fiber</td>
<td>3</td>
</tr>
<tr>
<td>Ash</td>
<td>15</td>
</tr>
</tbody>
</table>

- Fat = 9 g/100 x 8.7 = 0.78 kcal/g
- CHO = 100 - 58 = 42%
- CHO = 42 g/100 x 3.5 = 1.47 kcal/g
- Protein = 24 g/100 x 3.5 = 0.84 kcal/g
- 3.10 kcal ME/g vs 3.45 kcal ME/g

Calculating Intake

- 145 kcal/kg BW^{0.67}
- 60 lb dog (27 kg)
- 2,182 kcal ME (145 kcal x 27^{0.67})
- 1,319 kcal ME/3.10 kcal ME/g = 425 g or 0.94 lb/d
- Nutrient Balance
 - 0.84 kcal ME protein/3.1 kcal ME = 27%

Have a Great Spring Break