Chad Higgins

Assistant Professor
Contact Information
Phone: 
541.737.2286
Office: 
200 Gilmore Hall
Member of Graduate Faculty in: 
Water Resources Engineering
Willing to Advise Students for: 
MS
PhD
Willing to serve on Graduate Committees for: 
MS
PhD
Detailed Research Interest : 

surface water

irrigation

soils

Current Research Interests: 

Current Research: 

  • Probing the spatial characteristics of atmospheric water vapour

Advancements in laser technology and optical detection have made high resolution Raman Lidar a reality. Here we use high powered lasers to excite water vapour molecules in the atmosphere, these molecules then release small amounts of energy that, in turn, can be detected and used to determine the water vapour concentration in the atmosphere at high spatial (1.25m) and temporal (1s) resolution. This high resolution information allows research into atmospheric structure that was not possible previously, and has been used to investigate some of the most fundamental assumptions made about atmospheric structure.

  • Effects of land surface Variability

State of the art numerical modelling is used in conjunction with field experiments to determine the effects of land surface variability on fluxes through the soil-plant-atmosphere continuum. Large Eddy Simulation (LES) is used to disentangle the complex relationships between atmospheric transport and land use, while field experimentation gives ground truth. This interdisciplinary activity has applications in water resource management, pollutant transport, urban planning, and risk assessment.

  • Instrument development

Instrument development plays a central role in the research effort. Currently, a path averaged water vapour sensor is under development. This instrument will ultimately be used to determine the average evaporation from a single agricultural field, and will provide information critical to irrigation scheduling.

Other Information: 

Areas of Interest: 

  • Environmental Fluid Mechanics with special interest in applications to atmospheric flows and hydrology
  • Measurement and modelling of fluxes through the soil-plant-atmosphere continuum
  • Optimum water management in agriculture
  • Spatial variability of the land surface and its effect on transport
  • Large Eddy Simulations
  • Raman Lidar (light detection and ranging) of atmospheric water vapor
  • Development of novel measurement techniques for atmospheric fluxes